RNA contains diverse post-transcriptional modifications,and its catabolic breakdown yields numerous modified nucleosides requiring correct processing,but the mechanisms remain unknown.Here,we demonstrate that three RN...RNA contains diverse post-transcriptional modifications,and its catabolic breakdown yields numerous modified nucleosides requiring correct processing,but the mechanisms remain unknown.Here,we demonstrate that three RNA-derived modified adenosines,N6-methyladenosine(m6A),N6,N6-dimethyladenosine(m6,6A),and N6-isopentenyladenosine(i6A),are sequentially metabolized into inosine monophosphate(IMP)to mitigate their intrinsic cytotoxicity.展开更多
Steel slag(SS)accumulates unavoidably due to its complex and unstable composition,high production volumes,and limited value-added resource utilization.Single or multiple interface modifiers were proposed to enhance th...Steel slag(SS)accumulates unavoidably due to its complex and unstable composition,high production volumes,and limited value-added resource utilization.Single or multiple interface modifiers were proposed to enhance the properties of SS through high-speed dispersion,transforming its inherent hydrophilic and oleophobic characteristics into hydrophily and lipophilicity.The modification effects were innovatively assessed by observing the color changes of modified steel slag solutions following the dissolution-settlement equilibrium constant.This approach avoided human-induced errors and improved estimated accuracy in conformance with conventional methods such as oil absorption value,activation index,sedimentation volume,and lipophilicity.The hydrolysis of 3-aminopropyltriethoxysilane(KH)generated–Si(OH)_(3)structure to form hydrogen or covalent bonds with active substances(OH groups)from SS.Concurrently,SS underwent encapsulation via Si–O–Si structure resulting from the dehydration of–Si(OH)_(3).The stearic acid coupling agent(SA),aluminate coupling agent(AC),and titanate coupling agent(TN)underwent chemical reactions with Ca(OH)_(2),Al(OH)_(3),and CaCO_(3)in SS.The acidic SA primarily created stable chemical bonds and acted as a supplement due to its package,reducing surface activity and hydrophilicity while enhancing lipophilicity.Specifically,the optimal modification effect was obtained at 3 wt.%SA.Consequently,3 wt.%SA was established as the benchmark for multiple modifiers and the most effective combination was 3 wt.%SA and 3 wt.%AC.Compared with a single interface modifier,SA corroded the SS surface to provide numerous active sites for further modification by KH,AC,or TN,resulting in a more densely packed structure.In addition,more organic groups on SS prevent the proximity of other particles from agglomerating to achieve dispersion and a synergistic modification,laying a theoretical foundation of SS in a new pathway for organic composite materials.展开更多
With the approval of more and more genetically modified(GM)crops in our country,GM safety management has become more important.Transgenic detection is a major approach for transgenic safety management.Nevertheless,a c...With the approval of more and more genetically modified(GM)crops in our country,GM safety management has become more important.Transgenic detection is a major approach for transgenic safety management.Nevertheless,a convenient and visual technique with low equipment requirements and high sensitivity for the field detection of GM plants is still lacking.On the basis of the existing recombinase polymerase amplification(RPA)technique,we developed a multiplex RPA(multi-RPA)method that can simultaneously detect three transgenic elements,including the cauliflower mosaic virus 35S gene(CaMV35S)promoter,neomycin phosphotransferaseⅡgene(NptⅡ)and hygromycin B phosphotransferase gene(Hyg),thus improving the detection rate.Moreover,we coupled this multi-RPA technique with the CRISPR/Cas12a reporter system,which enabled the detection results to be clearly observed by naked eyes under ultraviolet(UV)light(254 nm;which could be achieved by a portable UV flashlight),therefore establishing a multi-RPA visual detection technique.Compared with the traditional test strip detection method,this multi-RPA-CRISPR/Cas12a technique has the higher specificity,higher sensitivity,wider application range and lower cost.Compared with other polymerase chain reaction(PCR)techniques,it also has the advantages of low equipment requirements and visualization,making it a potentially feasible method for the field detection of GM plants.展开更多
To reduce the temperature diseases of asphalt pavement,improve the service quality of road and extend service life,the research of inorganic powders that reduce the temperature of asphalt pavements was systematically ...To reduce the temperature diseases of asphalt pavement,improve the service quality of road and extend service life,the research of inorganic powders that reduce the temperature of asphalt pavements was systematically sorted out.The common types,physicochemical properties and application methods of inorganic powders were defined.The road performances of modified asphalt and its mixture were evaluated.The modification mechanism of inorganic powders in asphalt was analyzed.On this basis,the cooling effect and cooling mechanism of inorganic powders was revealed.The results indicate that inorganic powders are classified into hollow,porous,and energy conversion types.The high-temperature performance of inorganic powders modified asphalt and its mixture is significantly improved,while there is no significant change in low-temperature performance and water stability.The average increase in rutting resistance factor(G*/sin(δ))and dynamic stability is 40%–72%and 30%–50%,respectively.The modification mechanism of inorganic powders in asphalt is physical blending.The thermal conductivity of hollow and porous inorganic powders modified asphalt mixture decreases by 30.05%and 43.14%,respectively.The temperature of hollow,porous and energy conversion inorganic powders modified asphalt mixture at 5 cm decreases by 2.3 ℃–3.5 ℃,0.8 ℃–3.7 ℃and 4.1 ℃–4.7℃,respectively.Hollow and porous inorganic powders block heat conduction,while energy conversion inorganic powders achieve cooling through their functional properties.展开更多
Semenov-Tian-Shansky has given the solution of the modified classical Yang-Baxter equation, which was called the modified r-matrix. Relevant studies have been extensive in recent times. In this paper, we introduce the...Semenov-Tian-Shansky has given the solution of the modified classical Yang-Baxter equation, which was called the modified r-matrix. Relevant studies have been extensive in recent times. In this paper, we introduce the concept and representations of modified RotaBaxter Hom-Lie algebras. We develop a cohomology of modified Rota-Baxter Hom-Lie algebras with coefficients in a suitable representation. As applications, we study formal deformations and abelian extensions of modified Rota-Baxter Hom-Lie algebras in terms of second cohomology groups.展开更多
BACKGROUND Common bile duct stones pose a high risk of recurrence or disease progression if not promptly treated.However,there is still no optimal treatment approach.AIM To investigate the clinical efficacy of modifie...BACKGROUND Common bile duct stones pose a high risk of recurrence or disease progression if not promptly treated.However,there is still no optimal treatment approach.AIM To investigate the clinical efficacy of modified pancreatic duct stent drainage in endoscopic retrograde cholangiopancreatography(ERCP)for treating common bile duct stones.METHODS This retrospective study included 175 patients with common bile duct stones treated at Taizhou Fourth People’s Hospital between January 1,2021,and November 30,2023.The patients were divided into three groups-the modified pancreatic duct stent drainage group(59 cases),the nasobiliary drainage group(58 cases),and the standard biliary drainage group(58 cases).Preoperative general clinical data,laboratory indicators,and the visual analog scale(VAS)at two time points(24 hours before and after surgery)were compared,along with postoperative complications across the three groups.RESULTS Serum levels of aspartate aminotransferase,alanine aminotransferase,alkaline phosphatase,gamma-glutamyltransferase,total bilirubin,direct bilirubin,Creactive protein,and amylase were significantly lower in the modified pancreatic duct stent drainage group and the standard biliary drainage group than those in the nasobiliary drainage group(P<0.05).However,no statistically significant differences were observed in white blood cells,hemoglobin,or neutrophil levels among the three groups(P>0.05).The standard biliary drainage group had significantly lower VAS scores[(4.36±1.18)points]than those for the modified pancreatic duct stent drainage group[(4.92±1.68)points](P=0.033),and the nasobiliary drainage group[(5.54±1.24)points](P=0.017).There were no statistically significant differences in complication rates across the three groups(P>0.05).CONCLUSION Compared to standard biliary drainage and nasobiliary drainage,the modified pancreatic duct stent used during ERCP for patients with bile duct stones significantly reduced hepatocyte injury,improved liver function parameters,alleviated inflammation and pain,enhanced patient comfort,and demonstrated superior safety.展开更多
As a crucial human activity,dam construction can profoundly impact the surface hydrology patterns.The Three Gorges Reservoir(TGR),as one of the largest hydraulic engineering projects in the world,has gained continuous...As a crucial human activity,dam construction can profoundly impact the surface hydrology patterns.The Three Gorges Reservoir(TGR),as one of the largest hydraulic engineering projects in the world,has gained continuous attention for its eco-hydrological effects.However,further investigation is necessary to understand the runoff and social impacts of the TGR on the Upper Yangtze River.This study first employed a modified SWAT model to simulate runoff,compared scenarios with and without the TGR,and finally evaluated water supply and demand in the Upper Yangtze River.The results showed a significant increasing trend in the surface water area of the Upper Yangtze River from 2000-2020.The modified SWAT model performs well in simulating the runoff,with Nash-Sutcliffe Efficiency and Percent Bias improved by 0.04-0.30 and 2-31.90,respectively.Scenario simulation results revealed that the TGR reduced seasonal differences in runoff.During the flood season,the runoff volume at the Yichang Station in the scenario with the TGR is lower than in the scenario without the TGR,peaking at 4500 m3/s.Conversely,in the dry season,the runoff volume of the scenario with TGR is higher,with a maximum increase of 1500 m3/s.The region exhibiting the greatest runoff variations is the Yangtze River's main stem in the Three Gorges Reservoir region.Besides,the TGR notably alleviated the water supply-demand imbalance in Chongqing during the winter and spring seasons,with a maximum increase of 0.16 in the supplydemand index.This study can contribute significantly to understanding the natural and social impacts of the TGR from the perspective of hydrological and scenario simulation.展开更多
Spinal cord injury and treatment opportunities:The adult mammalian spinal cord has a very limited capacity for spontaneous regeneration due to various intrinsic molecular and cellular factors.Although the spinal cord ...Spinal cord injury and treatment opportunities:The adult mammalian spinal cord has a very limited capacity for spontaneous regeneration due to various intrinsic molecular and cellular factors.Although the spinal cord neurons have the capacity to regenerate their axons,the expression of growth inhibitory factors,lack or suppression of proper guidance cues,and profound inflammatory responses do not permit successful regeneration(Khyeam et al.,2021).展开更多
Uneven power distribution,transient voltage,and frequency deviations are observed in the photovoltaic storage hybrid inverter during the switching between grid-connected and island modes.In response to these issues,th...Uneven power distribution,transient voltage,and frequency deviations are observed in the photovoltaic storage hybrid inverter during the switching between grid-connected and island modes.In response to these issues,this paper proposes a grid-connected/island switching control strategy for photovoltaic storage hybrid inverters based on the modified chimpanzee optimization algorithm.The proposed strategy incorporates coupling compensation and power differentiation elements based on the traditional droop control.Then,it combines the angular frequency and voltage amplitude adjustments provided by the phase-locked loop-free pre-synchronization control strategy.Precise pre-synchronization is achieved by regulating the virtual current to zero and aligning the photovoltaic storage hybrid inverter with the grid voltage.Additionally,two novel operators,learning and emotional behaviors are introduced to enhance the optimization precision of the chimpanzee algorithm.These operators ensure high-precision and high-reliability optimization of the droop control parameters for photovoltaic storage hybrid inverters.A Simulink model was constructed for simulation analysis,which validated the optimized control strategy’s ability to evenly distribute power under load transients.This strategy effectively mitigated transient voltage and current surges during mode transitions.Consequently,seamless and efficient switching between gridconnected and island modes was achieved for the photovoltaic storage hybrid inverter.The enhanced energy utilization efficiency,in turn,offers robust technical support for grid stability.展开更多
Graphene oxide nanomaterials are increasingly used in various fields due to their superior properties.In order to study the influence of graphene oxide additives on the performance of modified asphalt,in this study,gr...Graphene oxide nanomaterials are increasingly used in various fields due to their superior properties.In order to study the influence of graphene oxide additives on the performance of modified asphalt,in this study,graphene oxide modified asphalt was prepared and characteristics was studied including the high deformation resistance performance and the self-healing property of modified asphalt.Functional groups and morphology of graphene oxide modified asphalt were described by Fourier transform infrared spectroscopy.The high deformation resistance performance and self-healing effect of asphalt samples were obtained through dynamic slear rheometer(DSR)test.Results shows that graphene oxide dispersions improve the performance of asphalt relatively well compared to graphene oxide powder.There is no chemical reaction between graphene oxide and asphalt,but physical connection.The addition of graphene oxide improved the high deformation resistance of modified asphalt and expedited the self-healing ability of asphalt under fatigue load.展开更多
For the magnetized complex plasma,dependences of modified Yukawa potential on the gov-erning parameters,viz.,mass ratio md/mi,number ratio nd/ne0,charge magnitude Q/e,and temperature ratio Te/Ti are investigated.It is...For the magnetized complex plasma,dependences of modified Yukawa potential on the gov-erning parameters,viz.,mass ratio md/mi,number ratio nd/ne0,charge magnitude Q/e,and temperature ratio Te/Ti are investigated.It is found that md/mi,nd/ne0 and Q/e contribute to the coupling strength of the system,and Te/Ti contributes to the shielding cloud surrounding the charged dust particles.Further analysis shows that the modified Yukawa potential depends on Te/Ti.The consequent structure changes of the system are discussed based on the Langevin dynamics simulation.It is found that the variation of Ham-iltonian contributes to the equilibrium structure of the system.展开更多
The modifiedλ-differential Lie-Yamaguti algebras are considered,in which a modifiedλ-differential Lie-Yamaguti algebra consisting of a Lie-Yamaguti algebra and a modifiedλ-differential operator.First we introduce t...The modifiedλ-differential Lie-Yamaguti algebras are considered,in which a modifiedλ-differential Lie-Yamaguti algebra consisting of a Lie-Yamaguti algebra and a modifiedλ-differential operator.First we introduce the representation of modifiedλ-differential Lie-Yamaguti algebras.Furthermore,we establish the cohomology of a modifiedλ-differential Lie-Yamaguti algebra with coefficients in a representation.Finally,we investigate the one-parameter formal deformations and Abelian extensions of modifiedλ-differential Lie-Yamaguti algebras using the second cohomology group.展开更多
The luminescence behavior of Eu^(3+)-activated lanthanum tungstate nanophosphors exhibiting intense red emission was systematically explored by modifying their surfaces using various agents,including polyvinylpyrrolid...The luminescence behavior of Eu^(3+)-activated lanthanum tungstate nanophosphors exhibiting intense red emission was systematically explored by modifying their surfaces using various agents,including polyvinylpyrrolidone(PVP),cetyltrimethylammonium bromide(CTAB),trisodium citrate(TC),polyvinyl alcohol(PVA),and ethylene glycol(EG).These nanophosphors were synthesized via a facile hydrothermal-assisted solid-state reaction.X-ray diffraction(XRD)analysis confirmed the orthorhombic crystal structure of all the prepared samples.Morphological and size analyses were performed using scanning electron microscopy(SEM)and particle size distribution profiling.High-resolution transmission electron microscopy(HRTEM)complemented by elemental mapping was used to evaluate the particle dimensions and interplanar spacing of the optimized sample.Fourier-transform infrared spectroscopy(FTIR)was used to identify functional groups and assign corresponding vibrational bands.X-ray photoelectron spectroscopy(XPS)provided insights into the elemental composition and binding energies of the optimized nanophosphors.Notably,the PVA-modified sample doped with 14mol%Eu3+exhibited pronounced red emission at 616 nm,attributed to the ^(5)D_(0)→^(7)F_(2) electric dipole transition of Eu3+ions under ultraviolet(UV)excitation.Detailed excitation and emission spectral analyses were performed,with band assignments corresponding to the relevant electronic transitions.Among the surface-treated variants,the PVA-modified nanophosphors demonstrated exceptional color purity of 99.6%,international commission on illumination(CIE)chromaticity coordinates of(0.6351,0.3644),and a correlated color temperature of 1147 K.These superior optical features are ascribed to the enhanced surface passivation and suppression of nonradiative recombination,facilitated effectively by the PVA surface layer.Lifetime decay analysis across all samples revealed a significantly extended lifetime for the optimized composition,further supporting its superior luminescence efficiency.In addition,evaluation of the biocompatibility of the nano-phosphors highlighted their potential for biomedical applications.Overall,these findings emphasize the efficacy of PVA-modified Eu^(3+)-doped lanthanum tungstate nanophosphors as highly efficient red emitters,suitable for application in white light-emitting diodes(WLEDs)and latent fingerprint detection while offering valuable insights into the role of surface modification in tuning the optical properties of nanophosphors.展开更多
To investigate the performance of utilizing the shape memory effect of SMA(Shape Memory Alloy)wire to generate recovery stress,this paper performed single heating recovery stress tests and reciprocating heating-coolin...To investigate the performance of utilizing the shape memory effect of SMA(Shape Memory Alloy)wire to generate recovery stress,this paper performed single heating recovery stress tests and reciprocating heating-cooling recovery stress tests on SMA wire under varying initial strain conditions.The effects of various strains and different energized heating methods on the recovery stress of SMA wires were explored in the single heating tests.The SMA wire was strained from 2%to 8%initially,and two distinct heating approaches were employed:one using a large current interval for rapid heating and one using a small current interval for slower heating.The experimental outcomes reveal that during a single heating cycle,the temperature-recovery stress relationship of SMA wire exhibits three distinct stages:the martensite phase stage,the transition stage from martensite to austenite phase,and the austenite phase stage.Notably,the choice of heating method does not influence the maximum recovery stress value,and the correlation between initial strain and maximum recovery stress is predominantly linear.Moreover,conducting the reciprocating temperature rise and fall performance test is important to better simulate the scenario in practical engineering where multiple recovery stress in SMA wires for structural repair.In this test,two temperature cycling methods were studied:interval rise and fall,as well as direct rise and fall.In the case of utilizing the interval temperature rise and fall method,it was observed that the recovery stress associated with cooling was significantly higher than that corresponding to heating at the same temperature.Furthermore,the recovery stress was lower upon subsequent heating than that measured during the previous heating cycle.Based on the experimental results,a prediction model for the temperature-recovery stress relationship has been proposed to simplify numerical calculations.It is hoped that an approximate temperaturerecovery stress curve can be obtained from the parameters of the SMA wire.The calculated values derived from this model show good alignment with the measured values,indicating its reliability.展开更多
BACKGROUND At present,the concept of surgical treatment of gastric cancer(GC)has changed from“radical treatment”to“care for patients”to a certain extent.The reconstruction method is the most likely to affect the p...BACKGROUND At present,the concept of surgical treatment of gastric cancer(GC)has changed from“radical treatment”to“care for patients”to a certain extent.The reconstruction method is the most likely to affect the postoperative life of the patient.Currently,the traditional Roux-en-Y esophagojejunostomy anastomosis is a commonly used method for gastrointestinal reconstruction after total gastrectomy for GC.However,more recent studies have shown that the traditional Roux-en-Y anastomosis is complicated in operation procedure,with more reconstruction steps and longer reconstruction time,and the incidence of postoperative complications such as adhesive intestinal obstruction,internal abdominal hernia and volvulus is high.Moreover,the incidence of Roux stasis syndrome is 10%-30%after traditional Roux-en-Y reconstruction.Thus,we modified the traditional Roux-en-Y alimentary tract reconstruction,and designed a new digestive tract reconstruction method for laparoscopy-assisted Roux-en-Y anastomosis for total gastrectomy of GC.AIM To evaluate the clinical advantages,feasibility,and safety of a modified Roux-en-Y digestive tract reconstruction in laparoscopy-assisted total gastrectomy for the treatment of GC compared with the traditional Roux-en-Y method.METHODS Ninety-seven patients who underwent laparoscopy-assisted D2 radical gastrectomy(total gastrectomy)for GC were divided into two groups:fifty-four in the conventional Roux-en-Y reconstruction group(Orr group)and forty-three in the modified Roux-en-Y reconstruction group(the modified group).Perioperative and short-term outcomes were analyzed,including complications,postoperative weight loss,hemoglobin levels,and nutritional status.RESULTS The Orr group and the modified group showed no statistically significant differences in baseline characteristics.Compared with the Orr group,the modified group had shorter digestive tract reconstruction and operation times,less intraoperative bleeding,and shorter postoperative hospital stays compared to the Orr group.Although both groups had similar amounts of intraoperative blood loss,postoperative recovery times,and hospital expenses,the Orr group experienced longer operation times and digestive tract reconstruction times.Furthermore,the modified Roux-en-Y group demonstrated significantly fewer short-term and long-term complications,with a reduced incidence of reflux esophagitis and improved nutritional status.CONCLUSION The modified Roux-en-Y digestive tract reconstruction method after laparoscopy-assisted total gastrectomy for GC offers safety,simplicity,and a reduction in bile reflux.This method shortens operation times and minimizes postoperative complications,aligns with modern rapid rehabilitation surgery trends and potentially improves patient prognosis and overall survival.This method warrants further clinical application and promotion.展开更多
Retrogradation of semi-dry rice noodles severely reduced their eating quality during storage.Three commonly used modified starches(oxidized starch,acetylated starch,and hydroxypropyl starch)were applied to investigate...Retrogradation of semi-dry rice noodles severely reduced their eating quality during storage.Three commonly used modified starches(oxidized starch,acetylated starch,and hydroxypropyl starch)were applied to investigate the anti-retrogradation effects of semi-dry rice noodles during cold storage.Loss of water content,migration of water,and increase in relative crystallinity,retrogradation enthalpy,and hardness could be retarded by adding chemically modified starches,especially hydroxypropyl starches.The effect of hydroxypropyl starch addition levels(2%,4%,6%,8%,and 10%)on the properties of rice flour and the edible quality of semi-dry rice noodles was further evaluated.The water solubility index of rice flour decreased with the addition of hydroxypropyl starch,while the swelling power showed the opposite trend.The quality of semi-dry rice noodles were improved with the addition of hydroxypropyl starch.Compared to the control,semi-dried rice noodles with 8%hydroxypropyl starch possessed superior properties,i.e.lower cooking loss(decreasing from 12.89%to 6.62%),lower adhesiveness(decreasing from 5.40 to 4.31 g·s),and higher hardness(rising from 10.89 to 13.81 N).These findings demonstrated that the incorporation of hydroxypropyl starch is a promising strategy for the preparation of semi-dry rice noodles with satisfactory cooking and edible qualities as well as a long shelf life.展开更多
Presently,many asphalts and modified asphalts fail to satisfy long-term serviceability and durability criteria.Researchers are utilizing several asphalt modifiers to enhance the overall performance of flexible pavemen...Presently,many asphalts and modified asphalts fail to satisfy long-term serviceability and durability criteria.Researchers are utilizing several asphalt modifiers to enhance the overall performance of flexible pavements.This study consolidated findings from multiple research efforts on using nanomaterials for modifying SBS modified asphalt(SBS MA)and conducted a comprehensive literature review.Initially,it discussed the importance of SBS MA within asphalt modification systems and identified the key nanomaterials utilized in SBS modified asphalt.After this,it reviewed their preparation methods,dispersion and characterization techniques,and their impact on the key performance parameters of SBS MA binder and its mixture such as viscosity,rutting resistance,fatigue resistance,ageing and moisture damage etc.Additionally,it highlighted the advantages of nanomaterials over other modifiers.This study also addressed the challenges and limitations of incorporating nanomaterials in SBS MA.The findings indicated that when properly integrated,nanomaterials could significantly improve the performance of SBS MA,making them a promising addition to future road construction and maintenance projects.However,using nanomaterials for SBS MA modifications and mixtures has been challenged by limited practical applications,insufficient life cycle cost analyses,a lack of standardized guidelines,cost-effective nanomaterials and insufficient mixing procedures.Those areas require additional research to realise the potential application of nanomaterials in SBS modified asphalt modifications full.展开更多
Nitrate(NO3-)is a widespread pollutant in high-salt wastewater and causes serious harm to human health.Although electrochemical removal of nitrate has been demonstrated to be a promising treatment method,the developme...Nitrate(NO3-)is a widespread pollutant in high-salt wastewater and causes serious harm to human health.Although electrochemical removal of nitrate has been demonstrated to be a promising treatment method,the development of low-cost electro-catalysts is still challenging.In this work,a phosphate modified iron(P-Fe)cathode was prepared for electrochemical removal of nitrate in high-salt wastewater.The phosphate modification greatly improved the activity of iron,and the removal rate of nitrate on P-Fe was three times higher than that on Fe electrode.Further experiments and density functional theory(DFT)calculations demonstrated that the modification of phosphoric acid improved the stability and the activity of the zero-valent iron electrode effectively for NO_(3)^(-) removal.The nitrate was firstly electrochemically reduced to ammonium,and then reacted with the anodic generated hypochlorite to N_(2).In this study,a strategy was developed to improve the activity and stability of metal electrode for NO_(3)^(-)removal,which opened up a new field for the efficient reduction of NO3-removal by metal electrode materials.展开更多
文摘RNA contains diverse post-transcriptional modifications,and its catabolic breakdown yields numerous modified nucleosides requiring correct processing,but the mechanisms remain unknown.Here,we demonstrate that three RNA-derived modified adenosines,N6-methyladenosine(m6A),N6,N6-dimethyladenosine(m6,6A),and N6-isopentenyladenosine(i6A),are sequentially metabolized into inosine monophosphate(IMP)to mitigate their intrinsic cytotoxicity.
基金supported by the National Natural Science Foundation of China(U23A20605)Anhui Graduate Innovation and Entrepreneurship Practice Project(2022cxcysj090)+2 种基金China Baowu Low Carbon Metallurgy Innovation Foundation(BWLCF202202)the University Synergy Innovation Program of Anhui Province(GXXT-2020-072)the Outstanding Youth Fund of Anhui Province(2208085J19).
文摘Steel slag(SS)accumulates unavoidably due to its complex and unstable composition,high production volumes,and limited value-added resource utilization.Single or multiple interface modifiers were proposed to enhance the properties of SS through high-speed dispersion,transforming its inherent hydrophilic and oleophobic characteristics into hydrophily and lipophilicity.The modification effects were innovatively assessed by observing the color changes of modified steel slag solutions following the dissolution-settlement equilibrium constant.This approach avoided human-induced errors and improved estimated accuracy in conformance with conventional methods such as oil absorption value,activation index,sedimentation volume,and lipophilicity.The hydrolysis of 3-aminopropyltriethoxysilane(KH)generated–Si(OH)_(3)structure to form hydrogen or covalent bonds with active substances(OH groups)from SS.Concurrently,SS underwent encapsulation via Si–O–Si structure resulting from the dehydration of–Si(OH)_(3).The stearic acid coupling agent(SA),aluminate coupling agent(AC),and titanate coupling agent(TN)underwent chemical reactions with Ca(OH)_(2),Al(OH)_(3),and CaCO_(3)in SS.The acidic SA primarily created stable chemical bonds and acted as a supplement due to its package,reducing surface activity and hydrophilicity while enhancing lipophilicity.Specifically,the optimal modification effect was obtained at 3 wt.%SA.Consequently,3 wt.%SA was established as the benchmark for multiple modifiers and the most effective combination was 3 wt.%SA and 3 wt.%AC.Compared with a single interface modifier,SA corroded the SS surface to provide numerous active sites for further modification by KH,AC,or TN,resulting in a more densely packed structure.In addition,more organic groups on SS prevent the proximity of other particles from agglomerating to achieve dispersion and a synergistic modification,laying a theoretical foundation of SS in a new pathway for organic composite materials.
基金the Experimental Technology Research Project of Zhejiang University(SYB202138)National Natural Science Foundation of China(32000195)。
文摘With the approval of more and more genetically modified(GM)crops in our country,GM safety management has become more important.Transgenic detection is a major approach for transgenic safety management.Nevertheless,a convenient and visual technique with low equipment requirements and high sensitivity for the field detection of GM plants is still lacking.On the basis of the existing recombinase polymerase amplification(RPA)technique,we developed a multiplex RPA(multi-RPA)method that can simultaneously detect three transgenic elements,including the cauliflower mosaic virus 35S gene(CaMV35S)promoter,neomycin phosphotransferaseⅡgene(NptⅡ)and hygromycin B phosphotransferase gene(Hyg),thus improving the detection rate.Moreover,we coupled this multi-RPA technique with the CRISPR/Cas12a reporter system,which enabled the detection results to be clearly observed by naked eyes under ultraviolet(UV)light(254 nm;which could be achieved by a portable UV flashlight),therefore establishing a multi-RPA visual detection technique.Compared with the traditional test strip detection method,this multi-RPA-CRISPR/Cas12a technique has the higher specificity,higher sensitivity,wider application range and lower cost.Compared with other polymerase chain reaction(PCR)techniques,it also has the advantages of low equipment requirements and visualization,making it a potentially feasible method for the field detection of GM plants.
基金supported by Fundamental Research Funds for the Central Universities(300102214908)Innovation Capability Support Program of Shaanxi(2022TD-07).
文摘To reduce the temperature diseases of asphalt pavement,improve the service quality of road and extend service life,the research of inorganic powders that reduce the temperature of asphalt pavements was systematically sorted out.The common types,physicochemical properties and application methods of inorganic powders were defined.The road performances of modified asphalt and its mixture were evaluated.The modification mechanism of inorganic powders in asphalt was analyzed.On this basis,the cooling effect and cooling mechanism of inorganic powders was revealed.The results indicate that inorganic powders are classified into hollow,porous,and energy conversion types.The high-temperature performance of inorganic powders modified asphalt and its mixture is significantly improved,while there is no significant change in low-temperature performance and water stability.The average increase in rutting resistance factor(G*/sin(δ))and dynamic stability is 40%–72%and 30%–50%,respectively.The modification mechanism of inorganic powders in asphalt is physical blending.The thermal conductivity of hollow and porous inorganic powders modified asphalt mixture decreases by 30.05%and 43.14%,respectively.The temperature of hollow,porous and energy conversion inorganic powders modified asphalt mixture at 5 cm decreases by 2.3 ℃–3.5 ℃,0.8 ℃–3.7 ℃and 4.1 ℃–4.7℃,respectively.Hollow and porous inorganic powders block heat conduction,while energy conversion inorganic powders achieve cooling through their functional properties.
基金Supported by the Universities Key Laboratory of System Modeling and Data Mining in Guizhou Province(Grant No.2023013)the National Natural Science Foundation of China(Grant No.12161013)the Science and Technology Program of Guizhou Province(Grant No.ZK[2023]025)。
文摘Semenov-Tian-Shansky has given the solution of the modified classical Yang-Baxter equation, which was called the modified r-matrix. Relevant studies have been extensive in recent times. In this paper, we introduce the concept and representations of modified RotaBaxter Hom-Lie algebras. We develop a cohomology of modified Rota-Baxter Hom-Lie algebras with coefficients in a suitable representation. As applications, we study formal deformations and abelian extensions of modified Rota-Baxter Hom-Lie algebras in terms of second cohomology groups.
文摘BACKGROUND Common bile duct stones pose a high risk of recurrence or disease progression if not promptly treated.However,there is still no optimal treatment approach.AIM To investigate the clinical efficacy of modified pancreatic duct stent drainage in endoscopic retrograde cholangiopancreatography(ERCP)for treating common bile duct stones.METHODS This retrospective study included 175 patients with common bile duct stones treated at Taizhou Fourth People’s Hospital between January 1,2021,and November 30,2023.The patients were divided into three groups-the modified pancreatic duct stent drainage group(59 cases),the nasobiliary drainage group(58 cases),and the standard biliary drainage group(58 cases).Preoperative general clinical data,laboratory indicators,and the visual analog scale(VAS)at two time points(24 hours before and after surgery)were compared,along with postoperative complications across the three groups.RESULTS Serum levels of aspartate aminotransferase,alanine aminotransferase,alkaline phosphatase,gamma-glutamyltransferase,total bilirubin,direct bilirubin,Creactive protein,and amylase were significantly lower in the modified pancreatic duct stent drainage group and the standard biliary drainage group than those in the nasobiliary drainage group(P<0.05).However,no statistically significant differences were observed in white blood cells,hemoglobin,or neutrophil levels among the three groups(P>0.05).The standard biliary drainage group had significantly lower VAS scores[(4.36±1.18)points]than those for the modified pancreatic duct stent drainage group[(4.92±1.68)points](P=0.033),and the nasobiliary drainage group[(5.54±1.24)points](P=0.017).There were no statistically significant differences in complication rates across the three groups(P>0.05).CONCLUSION Compared to standard biliary drainage and nasobiliary drainage,the modified pancreatic duct stent used during ERCP for patients with bile duct stones significantly reduced hepatocyte injury,improved liver function parameters,alleviated inflammation and pain,enhanced patient comfort,and demonstrated superior safety.
基金supported by the National Natural Science Foundation of China(Nos.41975044,42371354,41801021,42101385)Open Fund of Hubei Luojia Laboratory(No.2201000043)the Fundamental Research Funds for National Universities,China University of Geosciences,Wuhan。
文摘As a crucial human activity,dam construction can profoundly impact the surface hydrology patterns.The Three Gorges Reservoir(TGR),as one of the largest hydraulic engineering projects in the world,has gained continuous attention for its eco-hydrological effects.However,further investigation is necessary to understand the runoff and social impacts of the TGR on the Upper Yangtze River.This study first employed a modified SWAT model to simulate runoff,compared scenarios with and without the TGR,and finally evaluated water supply and demand in the Upper Yangtze River.The results showed a significant increasing trend in the surface water area of the Upper Yangtze River from 2000-2020.The modified SWAT model performs well in simulating the runoff,with Nash-Sutcliffe Efficiency and Percent Bias improved by 0.04-0.30 and 2-31.90,respectively.Scenario simulation results revealed that the TGR reduced seasonal differences in runoff.During the flood season,the runoff volume at the Yichang Station in the scenario with the TGR is lower than in the scenario without the TGR,peaking at 4500 m3/s.Conversely,in the dry season,the runoff volume of the scenario with TGR is higher,with a maximum increase of 1500 m3/s.The region exhibiting the greatest runoff variations is the Yangtze River's main stem in the Three Gorges Reservoir region.Besides,the TGR notably alleviated the water supply-demand imbalance in Chongqing during the winter and spring seasons,with a maximum increase of 0.16 in the supplydemand index.This study can contribute significantly to understanding the natural and social impacts of the TGR from the perspective of hydrological and scenario simulation.
文摘Spinal cord injury and treatment opportunities:The adult mammalian spinal cord has a very limited capacity for spontaneous regeneration due to various intrinsic molecular and cellular factors.Although the spinal cord neurons have the capacity to regenerate their axons,the expression of growth inhibitory factors,lack or suppression of proper guidance cues,and profound inflammatory responses do not permit successful regeneration(Khyeam et al.,2021).
基金received funding from the Postgraduate Research&Practice Innovation Program of Jiangsu Province(SJCX23_1633)2023 University Student Innovation and Entrepreneurship Training Program(202311463009Z)+1 种基金Changzhou Science and Technology Support Project(CE20235045)Open Project of Jiangsu Key Laboratory of Power Transmission&Distribution Equipment Technology(2021JSSPD12).
文摘Uneven power distribution,transient voltage,and frequency deviations are observed in the photovoltaic storage hybrid inverter during the switching between grid-connected and island modes.In response to these issues,this paper proposes a grid-connected/island switching control strategy for photovoltaic storage hybrid inverters based on the modified chimpanzee optimization algorithm.The proposed strategy incorporates coupling compensation and power differentiation elements based on the traditional droop control.Then,it combines the angular frequency and voltage amplitude adjustments provided by the phase-locked loop-free pre-synchronization control strategy.Precise pre-synchronization is achieved by regulating the virtual current to zero and aligning the photovoltaic storage hybrid inverter with the grid voltage.Additionally,two novel operators,learning and emotional behaviors are introduced to enhance the optimization precision of the chimpanzee algorithm.These operators ensure high-precision and high-reliability optimization of the droop control parameters for photovoltaic storage hybrid inverters.A Simulink model was constructed for simulation analysis,which validated the optimized control strategy’s ability to evenly distribute power under load transients.This strategy effectively mitigated transient voltage and current surges during mode transitions.Consequently,seamless and efficient switching between gridconnected and island modes was achieved for the photovoltaic storage hybrid inverter.The enhanced energy utilization efficiency,in turn,offers robust technical support for grid stability.
基金supported by Gansu Provincial Science and Technology Plan(23CXGA0195)Longnan Science and Technology Plan(2024CX03)。
文摘Graphene oxide nanomaterials are increasingly used in various fields due to their superior properties.In order to study the influence of graphene oxide additives on the performance of modified asphalt,in this study,graphene oxide modified asphalt was prepared and characteristics was studied including the high deformation resistance performance and the self-healing property of modified asphalt.Functional groups and morphology of graphene oxide modified asphalt were described by Fourier transform infrared spectroscopy.The high deformation resistance performance and self-healing effect of asphalt samples were obtained through dynamic slear rheometer(DSR)test.Results shows that graphene oxide dispersions improve the performance of asphalt relatively well compared to graphene oxide powder.There is no chemical reaction between graphene oxide and asphalt,but physical connection.The addition of graphene oxide improved the high deformation resistance of modified asphalt and expedited the self-healing ability of asphalt under fatigue load.
基金Supported by National Natural Science Foundation of China(12275354,11805272)the College Students'Innovative Entrepreneurial Training Plan Program of Civil Aviation University of China(202210059080)。
文摘For the magnetized complex plasma,dependences of modified Yukawa potential on the gov-erning parameters,viz.,mass ratio md/mi,number ratio nd/ne0,charge magnitude Q/e,and temperature ratio Te/Ti are investigated.It is found that md/mi,nd/ne0 and Q/e contribute to the coupling strength of the system,and Te/Ti contributes to the shielding cloud surrounding the charged dust particles.Further analysis shows that the modified Yukawa potential depends on Te/Ti.The consequent structure changes of the system are discussed based on the Langevin dynamics simulation.It is found that the variation of Ham-iltonian contributes to the equilibrium structure of the system.
基金National Natural Science Foundation of China(12161013)Research Projects of Guizhou University of Commerce in 2024。
文摘The modifiedλ-differential Lie-Yamaguti algebras are considered,in which a modifiedλ-differential Lie-Yamaguti algebra consisting of a Lie-Yamaguti algebra and a modifiedλ-differential operator.First we introduce the representation of modifiedλ-differential Lie-Yamaguti algebras.Furthermore,we establish the cohomology of a modifiedλ-differential Lie-Yamaguti algebra with coefficients in a representation.Finally,we investigate the one-parameter formal deformations and Abelian extensions of modifiedλ-differential Lie-Yamaguti algebras using the second cohomology group.
基金financial support provided by the National Research Foundation of Korea(NRF)through the Basic Science Research Program,funded by the Ministry of Education(Nos.2021R1A6A1A03039493 and 2022R1A2C1009389)the authors extend their appreciation to the Researchers Supporting Project(No.RSPD2025R956)。
文摘The luminescence behavior of Eu^(3+)-activated lanthanum tungstate nanophosphors exhibiting intense red emission was systematically explored by modifying their surfaces using various agents,including polyvinylpyrrolidone(PVP),cetyltrimethylammonium bromide(CTAB),trisodium citrate(TC),polyvinyl alcohol(PVA),and ethylene glycol(EG).These nanophosphors were synthesized via a facile hydrothermal-assisted solid-state reaction.X-ray diffraction(XRD)analysis confirmed the orthorhombic crystal structure of all the prepared samples.Morphological and size analyses were performed using scanning electron microscopy(SEM)and particle size distribution profiling.High-resolution transmission electron microscopy(HRTEM)complemented by elemental mapping was used to evaluate the particle dimensions and interplanar spacing of the optimized sample.Fourier-transform infrared spectroscopy(FTIR)was used to identify functional groups and assign corresponding vibrational bands.X-ray photoelectron spectroscopy(XPS)provided insights into the elemental composition and binding energies of the optimized nanophosphors.Notably,the PVA-modified sample doped with 14mol%Eu3+exhibited pronounced red emission at 616 nm,attributed to the ^(5)D_(0)→^(7)F_(2) electric dipole transition of Eu3+ions under ultraviolet(UV)excitation.Detailed excitation and emission spectral analyses were performed,with band assignments corresponding to the relevant electronic transitions.Among the surface-treated variants,the PVA-modified nanophosphors demonstrated exceptional color purity of 99.6%,international commission on illumination(CIE)chromaticity coordinates of(0.6351,0.3644),and a correlated color temperature of 1147 K.These superior optical features are ascribed to the enhanced surface passivation and suppression of nonradiative recombination,facilitated effectively by the PVA surface layer.Lifetime decay analysis across all samples revealed a significantly extended lifetime for the optimized composition,further supporting its superior luminescence efficiency.In addition,evaluation of the biocompatibility of the nano-phosphors highlighted their potential for biomedical applications.Overall,these findings emphasize the efficacy of PVA-modified Eu^(3+)-doped lanthanum tungstate nanophosphors as highly efficient red emitters,suitable for application in white light-emitting diodes(WLEDs)and latent fingerprint detection while offering valuable insights into the role of surface modification in tuning the optical properties of nanophosphors.
基金financially supported by National Natural Science Foundation of China(Project No.51878156).
文摘To investigate the performance of utilizing the shape memory effect of SMA(Shape Memory Alloy)wire to generate recovery stress,this paper performed single heating recovery stress tests and reciprocating heating-cooling recovery stress tests on SMA wire under varying initial strain conditions.The effects of various strains and different energized heating methods on the recovery stress of SMA wires were explored in the single heating tests.The SMA wire was strained from 2%to 8%initially,and two distinct heating approaches were employed:one using a large current interval for rapid heating and one using a small current interval for slower heating.The experimental outcomes reveal that during a single heating cycle,the temperature-recovery stress relationship of SMA wire exhibits three distinct stages:the martensite phase stage,the transition stage from martensite to austenite phase,and the austenite phase stage.Notably,the choice of heating method does not influence the maximum recovery stress value,and the correlation between initial strain and maximum recovery stress is predominantly linear.Moreover,conducting the reciprocating temperature rise and fall performance test is important to better simulate the scenario in practical engineering where multiple recovery stress in SMA wires for structural repair.In this test,two temperature cycling methods were studied:interval rise and fall,as well as direct rise and fall.In the case of utilizing the interval temperature rise and fall method,it was observed that the recovery stress associated with cooling was significantly higher than that corresponding to heating at the same temperature.Furthermore,the recovery stress was lower upon subsequent heating than that measured during the previous heating cycle.Based on the experimental results,a prediction model for the temperature-recovery stress relationship has been proposed to simplify numerical calculations.It is hoped that an approximate temperaturerecovery stress curve can be obtained from the parameters of the SMA wire.The calculated values derived from this model show good alignment with the measured values,indicating its reliability.
文摘BACKGROUND At present,the concept of surgical treatment of gastric cancer(GC)has changed from“radical treatment”to“care for patients”to a certain extent.The reconstruction method is the most likely to affect the postoperative life of the patient.Currently,the traditional Roux-en-Y esophagojejunostomy anastomosis is a commonly used method for gastrointestinal reconstruction after total gastrectomy for GC.However,more recent studies have shown that the traditional Roux-en-Y anastomosis is complicated in operation procedure,with more reconstruction steps and longer reconstruction time,and the incidence of postoperative complications such as adhesive intestinal obstruction,internal abdominal hernia and volvulus is high.Moreover,the incidence of Roux stasis syndrome is 10%-30%after traditional Roux-en-Y reconstruction.Thus,we modified the traditional Roux-en-Y alimentary tract reconstruction,and designed a new digestive tract reconstruction method for laparoscopy-assisted Roux-en-Y anastomosis for total gastrectomy of GC.AIM To evaluate the clinical advantages,feasibility,and safety of a modified Roux-en-Y digestive tract reconstruction in laparoscopy-assisted total gastrectomy for the treatment of GC compared with the traditional Roux-en-Y method.METHODS Ninety-seven patients who underwent laparoscopy-assisted D2 radical gastrectomy(total gastrectomy)for GC were divided into two groups:fifty-four in the conventional Roux-en-Y reconstruction group(Orr group)and forty-three in the modified Roux-en-Y reconstruction group(the modified group).Perioperative and short-term outcomes were analyzed,including complications,postoperative weight loss,hemoglobin levels,and nutritional status.RESULTS The Orr group and the modified group showed no statistically significant differences in baseline characteristics.Compared with the Orr group,the modified group had shorter digestive tract reconstruction and operation times,less intraoperative bleeding,and shorter postoperative hospital stays compared to the Orr group.Although both groups had similar amounts of intraoperative blood loss,postoperative recovery times,and hospital expenses,the Orr group experienced longer operation times and digestive tract reconstruction times.Furthermore,the modified Roux-en-Y group demonstrated significantly fewer short-term and long-term complications,with a reduced incidence of reflux esophagitis and improved nutritional status.CONCLUSION The modified Roux-en-Y digestive tract reconstruction method after laparoscopy-assisted total gastrectomy for GC offers safety,simplicity,and a reduction in bile reflux.This method shortens operation times and minimizes postoperative complications,aligns with modern rapid rehabilitation surgery trends and potentially improves patient prognosis and overall survival.This method warrants further clinical application and promotion.
基金funded by the fund of national natural science foundation of China(32101996,32160530)the training plan for academic and technical leaders of major disciplines in Jiangxi province(20232BCJ23024)+1 种基金the key research and development program of Jiangxi province(20232BBF60023)“Shuangqian Project”of Jiangxi Province(jxsq2023201042)。
文摘Retrogradation of semi-dry rice noodles severely reduced their eating quality during storage.Three commonly used modified starches(oxidized starch,acetylated starch,and hydroxypropyl starch)were applied to investigate the anti-retrogradation effects of semi-dry rice noodles during cold storage.Loss of water content,migration of water,and increase in relative crystallinity,retrogradation enthalpy,and hardness could be retarded by adding chemically modified starches,especially hydroxypropyl starches.The effect of hydroxypropyl starch addition levels(2%,4%,6%,8%,and 10%)on the properties of rice flour and the edible quality of semi-dry rice noodles was further evaluated.The water solubility index of rice flour decreased with the addition of hydroxypropyl starch,while the swelling power showed the opposite trend.The quality of semi-dry rice noodles were improved with the addition of hydroxypropyl starch.Compared to the control,semi-dried rice noodles with 8%hydroxypropyl starch possessed superior properties,i.e.lower cooking loss(decreasing from 12.89%to 6.62%),lower adhesiveness(decreasing from 5.40 to 4.31 g·s),and higher hardness(rising from 10.89 to 13.81 N).These findings demonstrated that the incorporation of hydroxypropyl starch is a promising strategy for the preparation of semi-dry rice noodles with satisfactory cooking and edible qualities as well as a long shelf life.
基金supported by the Key R&D Project in Shaanxi Province(No.2024GX-YBXM-371)Shaanxi Qinchuangyuan“Scientists+Engineers”Team Construction Project(2025QCY-KXJ-141).
文摘Presently,many asphalts and modified asphalts fail to satisfy long-term serviceability and durability criteria.Researchers are utilizing several asphalt modifiers to enhance the overall performance of flexible pavements.This study consolidated findings from multiple research efforts on using nanomaterials for modifying SBS modified asphalt(SBS MA)and conducted a comprehensive literature review.Initially,it discussed the importance of SBS MA within asphalt modification systems and identified the key nanomaterials utilized in SBS modified asphalt.After this,it reviewed their preparation methods,dispersion and characterization techniques,and their impact on the key performance parameters of SBS MA binder and its mixture such as viscosity,rutting resistance,fatigue resistance,ageing and moisture damage etc.Additionally,it highlighted the advantages of nanomaterials over other modifiers.This study also addressed the challenges and limitations of incorporating nanomaterials in SBS MA.The findings indicated that when properly integrated,nanomaterials could significantly improve the performance of SBS MA,making them a promising addition to future road construction and maintenance projects.However,using nanomaterials for SBS MA modifications and mixtures has been challenged by limited practical applications,insufficient life cycle cost analyses,a lack of standardized guidelines,cost-effective nanomaterials and insufficient mixing procedures.Those areas require additional research to realise the potential application of nanomaterials in SBS modified asphalt modifications full.
基金supported by the National Natural Science Foundation of China (No.22176068)the Research and Innovation Initiatives of WHPU (No.2022J03),the Hubei Provincial Natural Science Foundation (No.2023AFB938)the Scientific research project of Education Department of Hubei Province (No.D20221610).
文摘Nitrate(NO3-)is a widespread pollutant in high-salt wastewater and causes serious harm to human health.Although electrochemical removal of nitrate has been demonstrated to be a promising treatment method,the development of low-cost electro-catalysts is still challenging.In this work,a phosphate modified iron(P-Fe)cathode was prepared for electrochemical removal of nitrate in high-salt wastewater.The phosphate modification greatly improved the activity of iron,and the removal rate of nitrate on P-Fe was three times higher than that on Fe electrode.Further experiments and density functional theory(DFT)calculations demonstrated that the modification of phosphoric acid improved the stability and the activity of the zero-valent iron electrode effectively for NO_(3)^(-) removal.The nitrate was firstly electrochemically reduced to ammonium,and then reacted with the anodic generated hypochlorite to N_(2).In this study,a strategy was developed to improve the activity and stability of metal electrode for NO_(3)^(-)removal,which opened up a new field for the efficient reduction of NO3-removal by metal electrode materials.