Leaf area index(LAI)is a key measure of forest stand physiology and biomass production,and is essential within ecosystem modeling.There are two common approaches to obtaining LAI:(i)terrestrial forest inventory-based...Leaf area index(LAI)is a key measure of forest stand physiology and biomass production,and is essential within ecosystem modeling.There are two common approaches to obtaining LAI:(i)terrestrial forest inventory-based“bottom-up”,and(ii)satellite-based“top-down”techniques.The purpose of this study is to compare terrestrial LAI from allometric functions applied to more than 30,000 trees of the Austrian National Forest Inventory(NFI)vs.satellite-based LAI estimates obtained from moderate resolution imaging spectroradiometer(MODIS)and Sentinel(Sentinel-3 TOC reflectance and PROBA-V)data across Austrian forests.We analyzed a satellite pixelto-plot aggregation and obtained the full inventory data set for the LAI comparison.The results suggest that terrestrial vs.satellite(MODIS and Sentinel)driven LAI estimates are consistent,but(i)the variation of the terrestrial forest inventory LAI is larger vs.the pixel average LAI from satellite data,and(ii)any satellite LAI estimation needs a forest stand density correction if the crown competition factor(CCF),a measure for stand density,is<250 to avoid an overestimation in LAI.展开更多
Fire season affects the dynamic changes of post-fire vegetation communities and carbon emissions.Analyzing its global patterns supports understanding of the ecological impacts of fires and responses of fires to climat...Fire season affects the dynamic changes of post-fire vegetation communities and carbon emissions.Analyzing its global patterns supports understanding of the ecological impacts of fires and responses of fires to climate change.Meteorological variables have been widely used to quantify fire season in current studies.However,their results can not be used to assess climate impacts on the seasonality of fire activities.Here we utilized satellite-based Moderate Resolution Imaging Spectroradiometer(MODIS)burned area data from 2001 to 2022 to identify global fire season types based on the number of peaks within a year.Using satellite data and innovatively processing the data to obtain a more accurate length of the fire season.We divided fire season types and examined the spatial distribution of fire season types across the Koppen-Geiger climate(KGC)zones.At a global scale,we identified three major fire season types,including unimodal(31.25%),bimodal(52.07%),and random(16.69%).The unimodal fire season primarily occurs in boreal and tropical regions lasting about 2.7 mon.In comparison,temperate ecosystems tend to have a longer fire season(3 mon)with two peaks throughout the year.The KGC zones show divergent contributions from the fire season types,indicating potential impacts of the climatic conditions on fire seasonality in these regions.展开更多
Fires are one of the most destructive natural disasters and have serious long-term effects on the environment,economy,and human health.In Inner Mongolia Autonomous Region,China,frequent fire disturbance occurs due to ...Fires are one of the most destructive natural disasters and have serious long-term effects on the environment,economy,and human health.In Inner Mongolia Autonomous Region,China,frequent fire disturbance occurs due to the intensification of climate change and human activities.It is crucial to understand the fire regime and estimate the probability of regional fire occurrence and reducing fire losses.However,most studies have primarily focused on the dynamic changes,probability of occurrence,and driving mechanisms of wildfires in the grassland and forest land ecosystems in Inner Mongolia,while insufficient research has been conducted on the spatiotemporal variations in active fires and their impact on the wildfire risk in forest land and grassland.Therefore,in this study,we analyzed the active fire regime based on Moderate Resolution Imaging Spectroradiometer(MODIS)thermal anomalies and burned area products from 2000 to 2022.Combined with climate,topographic,landscape,anthropogenic,and vegetation datasets,logistic regression(LR),support vector machine(SVM),random forest(RF),and convolutional neural network(CNN)models were chosen to estimate the probability of active fire occurrence at the seasonal timescale.The results revealed that:(1)a total of 100,343 active fires occurred in Inner Mongolia and the burned area reached 6.59×104 km².The number of ignition point exhibited a significant increasing trend,while the burned area exhibited a nonsignificant decreasing trend;(2)four active fire belts were detected,namely,the Hetao-Tumochuan Plain fire belt,Xiliao River Plain fire belt,Songnen Plain fire belt,and Hailar River Eroded Plain fire belt.The centroid of the active fires has shifted 456.4 km toward the southwest;(3)RF model achieved the highest accuracy in estimating the probability of active fire occurrence,followed by CNN,and LR and SVM models had lower accuracies;and(4)the distribution of the high and extremely high fire risk areas largely aligned with the four fire belts.The probability of active fire occurrence was the highest in spring,followed by that in autumn,and it gradually decreased in summer and winter.Our results revealed active fires migrated to the southwest and ignition sources increased,despite reduction of the burned area was not significant.The RF model outperformed the other models in predicting the probability of active fire occurrence.These findings contribute to future fire prevention and prediction in Inner Mongolia.展开更多
Cotton is one of the most significant cash crops in the world,and it is also the main source of natural fiber for textiles.It is crucial for cotton management to identify the spatiotemporal distribution of cotton plan...Cotton is one of the most significant cash crops in the world,and it is also the main source of natural fiber for textiles.It is crucial for cotton management to identify the spatiotemporal distribution of cotton planting areas timely and accurately on a fine scale.However,previous research studies have predominantly concentrated on specific years using remote sensing data.Challenges still exist in the extraction of cotton areas for long time series with high accuracy.To address this issue,a novel cotton sample selection method was proposed and the machine learning method is employed to effectively identify the long time series cotton planting areas at a 30-m resolution scale.Bortala and Shuanghe in Xinjiang,China,were selected as the study cases to demonstrate the approach.Specifically,the cropland in this study was extracted by using an object-oriented classification method with Landsat images and the results were optimized as the vectorized boundary of croplands.Then,the cotton samples were selected using the Normalized Difference Vegetation Index(NDVI)series of Moderate Resolution Imaging Spectroradiometer(MODIS)based on its phenological characteristics.Next,cotton was identified based on the croplands from 2000 to 2020 by using the machine learning model.Finally,the performance was evaluated,and the spatiotemporal distribution characteristics of cotton planting areas were analyzed.The results showed that the proposed approach can achieve high accuracy at a fine spatial resolution.The performance evaluation indicated the applicability and suitability of the method,there is a good correlation between the extracted cotton areas and statistical data,and the cotton area of the study area showed an increasing trend.The cotton spatial distribution pattern developed from dispersion to agglomeration.The proposed approach and the derived 30-m cotton maps can provide a scientific reference for the optimization of agricultural management.展开更多
Double-and triple-cropping in a year have played a very important role in meeting the rising need for food in China.However,the intensified agricultural practices have significantly altered biogeochemical cycles and s...Double-and triple-cropping in a year have played a very important role in meeting the rising need for food in China.However,the intensified agricultural practices have significantly altered biogeochemical cycles and soil quality.Understanding and mapping cropping intensity in China′s agricultural systems are therefore necessary to better estimate carbon,nitrogen and water fluxes within agro-ecosystems on the national scale.In this study,we investigated the spatial pattern of crop calendar and multiple cropping rotations in China using phenological records from 394 agro-meteorological stations(AMSs)across China.The results from the analysis of in situ field observations were used to develop a new algorithm that identifies the spatial distribution of multiple cropping in China from moderate resolution imaging spectroradiometer(MODIS)time series data with a 500 m spatial resolution and an 8-day temporal resolution.According to the MODIS-derived multiple cropping distribution in 2002,the proportion of cropland cultivated with multiple crops reached 34%in China.Double-cropping accounted for approximately 94.6%and triple-cropping for 5.4%.The results demonstrat that MODIS EVI(Enhanced Vegetation Index)time series data have the capability and potential to delineate the dynamics of double-and triple-cropping practices.The resultant multiple cropping map could be used to evaluate the impacts of agricultural intensification on biogeochemical cycles.展开更多
The Aral Sea Basin in Central Asia is an important geographical environment unit in the center of Eurasia.It is of great significance to the ecological protection and sustainable development of Central Asia to carry o...The Aral Sea Basin in Central Asia is an important geographical environment unit in the center of Eurasia.It is of great significance to the ecological protection and sustainable development of Central Asia to carry out dynamic monitoring and effective evaluation of the eco-environmental quality of the Aral Sea Basin.In this study,the arid remote sensing ecological index(ARSEI)for large-scale arid areas was developed,which coupled the information of the greenness index,the salinity index,the humidity index,the heat index,and the land degradation index of arid areas.The ARSEI was used to monitor and evaluate the eco-environmental quality of the Aral Sea Basin from 2000 to 2019.The results show that the greenness index,the humidity index and the land degradation index had a positive impact on the quality of the ecological environment in the Aral Sea Basin,while the salinity index and the heat index exerted a negative impact on the quality of the ecological environment.The eco-environmental quality of the Aral Sea Basin demonstrated a trend of initial improvement,followed by deterioration,and finally further improvement.The spatial variation of these changes was significant.From 2000 to 2019,grassland and wasteland(saline alkali land and sandy land)in the central and western parts of the basin had the worst ecological environment quality.The areas with poor ecological environment quality are mainly distributed in rivers,wetlands,and cultivated land around lakes.During the period from 2000 to 2019,except for the surrounding areas of the Aral Sea,the ecological environment quality in other areas of the Aral Sea Basin has been improved in general.The correlation coefficients between the change in the eco-environmental quality and the heat index and between the change in the eco-environmental quality and the humidity index were–0.593 and 0.524,respectively.Climate conditions and human activities have led to different combinations of heat and humidity changes in the eco-environmental quality of the Aral Sea Basin.However,human activities had a greater impact.The ARSEI can quantitatively and intuitively reflect the scale and causes of large-scale and long-time period changes of the eco-environmental quality in arid areas;it is very suitable for the study of the eco-environmental quality in arid areas.展开更多
Time-series Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) data have been widely used for large area crop mapping.However,the temporal crop signatures generated fro...Time-series Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) data have been widely used for large area crop mapping.However,the temporal crop signatures generated from these data were always accompanied by noise.In this study,a denoising method combined with Time series Inverse Distance Weighted (T-IDW) interpolating and Discrete Wavelet Transform (DWT) was presented.The detail crop planting patterns in Hebei Plain,China were classified using denoised time-series MODIS NDVI data at 250 m resolution.The denoising approach improved original MODIS NDVI product significantly in several periods,which may affect the accuracy of classification.The MODIS NDVI-derived crop map of the Hebei Plain achieved satisfactory classification accuracies through validation with field observation,statistical data and high resolution image.The field investigation accuracy was 85% at pixel level.At county-level,for winter wheat,there is relatively more significant correlation between the estimated area derived from satellite data with noise reduction and the statistical area (R2 = 0.814,p < 0.01).Moreover,the MODIS-derived crop patterns were highly consistent with the map generated by high resolution Landsat image in the same period.The overall accuracy achieved 91.01%.The results indicate that the method combining T-IDW and DWT can provide a gain in time-series MODIS NDVI data noise reduction and crop classification.展开更多
Sea ice thickness is one of the most important input parameters in the studies on sea ice disaster prevention and mitigation. It is also the most important content in remote sensing monitoring of sea ice. In this stud...Sea ice thickness is one of the most important input parameters in the studies on sea ice disaster prevention and mitigation. It is also the most important content in remote sensing monitoring of sea ice. In this study, a practical model of sea ice thickness(PMSIT) was proposed based on the Moderate Resolution Imaging Spectroradiometer(MODIS) data. In the proposed model, the MODIS data of the first band were used to estimate sea ice thickness and the difference between the second-band reflectance and the fifth-band reflectance in the MODIS data was calculated to obtain the difference attenuation index(DAI) of each pixel. The obtained DAI was used to estimate the integrated attenuation coefficient of the first band of the MODIS at the pixel level. Then the model was used to estimate sea ice thickness in the Bohai Sea with the MODIS data and then validated with the actual sea ice survey data. The validation results showed that the proposed model and corresponding parameterization scheme could largely avoid the estimation error of sea ice thickness caused by the spatial and temporal heterogeneity of sea ice extinction and allowed the error of 18.7% compared with the measured sea ice thickness.展开更多
e The objective of this study was to investigate the tempo-spatial distribution of paddy rice in Northeast China using moderate resolution imaging spectroradiometer (MODIS) data. We developed an algorithm for detect...e The objective of this study was to investigate the tempo-spatial distribution of paddy rice in Northeast China using moderate resolution imaging spectroradiometer (MODIS) data. We developed an algorithm for detection and estimation of the transplanting and flooding periods of paddy rice with a combination of enhanced vegetation index (EVI) and land surface water index with a central wavelength at 2130 nm (LSW12130). In two intensive sites in Northeast China, fine resolution satellite imagery was used to validate the performance of the algorithm at pixel and 3x3 pixel window levels, respectively. The commission and omission errors in both of the intensive sites were approximately less than 20%. Based on the algorithm, annual distribution of paddy rice in Northeast China from 2001 to 2009 was mapped and analyzed. The results demonstrated that the MODIS-derived area was highly correlated with published agricultural statistical data with a coefficient of determination (R^2) value of 0.847. It also revealed a sharp decline in 2003, especially in the Sanjiang Plain located in the northeast of Heilongjiang Province, due to the oversupply and price decline of rice in 2002. These results suggest that the approaches are available for accurate and reliable monitoring of rice cultivated areas and variation on a large scale.展开更多
The spatial pattern of rice paddies is an essential parameter used for studies of greenhouse gas emissions,agricultural resource management,and environmental monitoring.On large spatial scales,previous studies have us...The spatial pattern of rice paddies is an essential parameter used for studies of greenhouse gas emissions,agricultural resource management,and environmental monitoring.On large spatial scales,previous studies have usually mapped rice paddies using a single vegetation index product based on a traditional classification method,or a combined analysis of various vegetation and water indices derived from the moderate resolution imaging spectroradiometer(MODIS)satellite data.However,different indices increase the computational cost and constrain the satellite data sources,and traditional classification methods(e.g.,maximum likelihood classification)may be time-consuming and difficult to carry out over a large area like China.In this study,we designed an auto-thresholding and single vegetation index(normalized difference vegetation index(NDVI))-based procedure to estimate the spatial distribution of rice paddies in China.The MOD09Q1 product,which was available at MODIS’s highest spatial resolution(250 m),was taken as the input source.An auto-threshold function was also introduced into the change detection process to distinguish rice paddies from other croplands.Our MODIS-derived maps were validated with ground surveys and then compared with China national statistical data of rice paddy areas.The results indicated that the best classification result was achieved for plain regions,and that the accuracy declined for hilly regions,where the complex landscape could lead to an underestimation of the rice paddy area.A comparison between the modeled results and other analyses using 500-m MODIS data suggests that rice paddies may be identified routinely using a single vegetation index with finer resolution on large spatial scales.展开更多
In this paper,a thin cloud removal method was put forward based on the linear relationships between the thin cloud reflectance in the channels from 0.4 μm to 1.0 μm and 1.38 μm.Channels of 0.66 μm,0.86 μm and 1....In this paper,a thin cloud removal method was put forward based on the linear relationships between the thin cloud reflectance in the channels from 0.4 μm to 1.0 μm and 1.38 μm.Channels of 0.66 μm,0.86 μm and 1.38 μm were chosen to extract the water body information under the thin cloud.Two study cases were selected to validate the thin cloud removal method.One case was applied with the Earth Observation System Moderate Resolution Imaging Spectroradiometer(EOS/MODIS) data,and the other with the Medium Resolution Spectral Imager(MERSI) and Visible and Infrared Radiometer(VIRR) data from Fengyun-3A(FY-3A).The test results showed that thin cloud removal method did not change the reflectivity of the ground surface under the clear sky.To the area contaminated by the thin cloud,the reflectance decreased to be closer to the reference reflectance under the clear sky after the thin cloud removal.The spatial distribution of the water body area could not be extracted before the thin cloud removal,while water information could be easily identified by using proper near infrared channel threshold after removing the thin cloud.The thin cloud removal method could improve the image quality and water body extraction precision effectively.展开更多
The Moderate Resolution Imaging Spectroradiometer(MODIS)surface reflectance data were used to analyze the temporal and spatial distribution characteristics of water clarity(Z_(sd))in the Jiaozhou Bay,Qingdao,China,in ...The Moderate Resolution Imaging Spectroradiometer(MODIS)surface reflectance data were used to analyze the temporal and spatial distribution characteristics of water clarity(Z_(sd))in the Jiaozhou Bay,Qingdao,China,in the Yellow Sea from 2000 to 2018.Z_(sd)retrieval models were regionally optimized using in-situ data with coincident MODIS images,and then were used to retrieve the Z_(sd) products in Jiaozhou Bay from 2000-2018.The analysis of the Z_(sd) results suggests that the spatial distribution of relative Z_(sd) spatial characteristics in Jiaozhou Bay was stable,being higher Z_(sd) in the southeast and a lower Z_(sd) in the northwest.The annual mean Z_(sd) in Jiaozhou Bay showed a significant upward trend,with an annual increase of approximately 0.02 m.Water depth and wind speed were important factors affecting the spatial distribution and annual variation of Z_(sd) in Jiaozhou Bay,respectively.展开更多
Distribution of monsoon forests is important for the research of carbon and water cycles in the tropical regions. In this paper, a simple approach is proposed to map monsoon forests using the Normalized Difference Veg...Distribution of monsoon forests is important for the research of carbon and water cycles in the tropical regions. In this paper, a simple approach is proposed to map monsoon forests using the Normalized Difference Vegetation lndex (NDVI) derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) data. Owing to the high contrast of greenness between wet season and dry season, the monsoon forest can be easily discriminated from other forests by combining the maximum and minimum annual NDVI. The MODIS-based monsoon forest maps (MODMF) from 2000 to 2009 are derived and evaluated using the ground-truth dataset. The MODMF achieves an average producer accuracy of 80.0% and the Kappa statistic of 0.719. The variability of MODMF among different years is compared with that calculated from MODIS land cover products (MCD 12Q 1). The results show that the coefficient of variation of total monsoon forest area in MODMF is 7.3%, which is far lower than that in MCD12Q1 with 24.3%. Moreover, the pixels in MODMv which can be identified for 7 to 9 times between 200l and 2009 account for 53.1%, while only 7.9% ofMCD12QI pixels have this frequency. Additionally, the monsoon forest areas estimated in MODMF, Global Land Cover 2000 (GLC2000), MCDI2Q1 and University of Maryland (UMD) products are compared with the statistical dataset at national level, which reveals that MODMv has the highest R^2 of 0.95 and the lowest RMSE of 14 014 km^2. This algorithm is simple but reliable for mapping the monsoon forests without complex classification techniques.展开更多
Moderate resolution imaging spectroradiometer (MODIS) data are very suitable for vast extent, long term and dynamic drought monitoring for its high temporal resolution, high spectral resolution and moderate spatial ...Moderate resolution imaging spectroradiometer (MODIS) data are very suitable for vast extent, long term and dynamic drought monitoring for its high temporal resolution, high spectral resolution and moderate spatial resolution. The composite Enhanced Vegetation Index (EVI) and composite land surface temperature (Ts) obtained from MODIS data MOD11A2 and MOD13A2 were used to construct the EVI-Ts space. And Temperature Vegetation Dryness Index (TVDI) was calculated to evaluate the agriculture drought in Guangxi province, China in October of 2006. The results showed that the drought area in Guangxi was evidently increasing and continuously deteriorating from the middle of September to the middle of November. The TVDI, coming from the EVI-Ts space, could effectively indicate the spatial distribution and temporal evolution of drought, so that it could provide a strong technical support for the forecasting agricultural drought in south China.展开更多
In this study,using Moderate Resolution Imaging Spectroradiometer(MODIS)satellite images and environmental satellite CCD images,the spatio-temporal distribution of Ulva prolifera in the southern Yellow Sea during the ...In this study,using Moderate Resolution Imaging Spectroradiometer(MODIS)satellite images and environmental satellite CCD images,the spatio-temporal distribution of Ulva prolifera in the southern Yellow Sea during the period of 2011–2018 was extracted and combined with MODIS Level3 Photosynthetically Active Radiation(PAR)product data and Earth System Research Laboratory(ESRL)Sea Surface Temperature(SST)data to analyze their influences on the growth and outbreak of Ulva prolifera.The following conclusions were drawn:1)comprehensive analysis of Ulva prolifera distribution during the eight-year period revealed that the coverage area of Ulva prolifera typically exhibited a gradually increasing trend.The coverage area of Ulva prolifera reached a maximum of approximately 1714.21 km^2 during the eight-year period in late June 2015.The area affected by Ulva prolifera fluctuated.In mid-July 2014,the area affected by Ulva prolifera reached a maximum of approximately 39020.63 km^2.2)The average growth rate of Ulva prolifera was positive in May and June but negative in July.During the outbreak of Ulva prolifera,the SST in the southern Yellow Sea tended to increase each month.The SST anomaly and average growth rate of Ulva prolifera were positively correlated in May(R^2=0.62),but not significantly correlated in June or July.3)The variation trends of PAR and SST were approximately the same,and the PAR during this time period maintained a range of 40–50 mol/(m^2·d),providing sufficient illumination for the growth and outbreak of Ulva prolifera.In addition,the abundant nutrients and suitable temperature in the sea area near northern Jiangsu shoal resulted in a high growth rate of Ulva prolifera in May.In summary,the outbreak of Ulva prolifera was closely related to the environmental factors including SST,nutrients,and PAR.Sufficient nutrients and suitable temperatures resulted in a fast growth rate of Ulva prolifera.However,under poor nutrient conditions,even more suitable temperatures were not sufficient to trigger an outbreak of Ulva prolifera.展开更多
With the objective of reducing the large uncertainties in the estimations of emissions from crop residue open burning, an improved method for establishing emission inventories of crop residue open burning at a high sp...With the objective of reducing the large uncertainties in the estimations of emissions from crop residue open burning, an improved method for establishing emission inventories of crop residue open burning at a high spatial resolution of 0.25°× 0.25° and a temporal resolution of1 month was established based on the moderate resolution imaging spectroradiometer(MODIS) Thermal Anomalies/Fire Daily Level3 Global Product(MOD/MYD14A1). Agriculture mechanization ratios and regional crop-specific grain-to-straw ratios were introduced to improve the accuracy of related activity data. Locally observed emission factors were used to calculate the primary pollutant emissions. MODIS satellite data were modified by combining them with county-level agricultural statistical data, which reduced the influence of missing fire counts caused by their small size and cloud cover. The annual emissions of CO2, CO, CH4,nonmethane volatile organic compounds(NMVOCs), N2O, NOx, NH3, SO2, fine particles(PM2.5),organic carbon(OC), and black carbon(BC) were 150.40, 6.70, 0.51, 0.88, 0.01, 0.13, 0.07, 0.43,1.09, 0.34, and 0.06 Tg, respectively, in 2012. Crop residue open burning emissions displayed typical seasonal and spatial variation. The highest emission regions were the Yellow-Huai River and Yangtse-Huai River areas, and the monthly emissions were highest in June(37%).Uncertainties in the emission estimates, measured as 95% confidence intervals, range from a low of within ±126% for N2O to a high of within ± 169% for NH3.展开更多
MODIS (Moderate Resolution Imaging Spectroradiometer) is a key instrument aboard the Terra (EOS AM) and Aqua (EOS PM) satellites. Linear spectral mixture models are applied to MOIDS data for the sub-pixel classi...MODIS (Moderate Resolution Imaging Spectroradiometer) is a key instrument aboard the Terra (EOS AM) and Aqua (EOS PM) satellites. Linear spectral mixture models are applied to MOIDS data for the sub-pixel classification of land covers. Shaoxing county of Zhejiang Province in China was chosen to be the study site and early rice was selected as the study crop. The derived proportions of land covers from MODIS pixel using linear spectral mixture models were compared with unsupervised classification derived from TM data acquired on the same day, which implies that MODIS data could be used as satellite data source for rice cultivation area estimation, possibly rice growth monitoring and yield forecasting on the regional scale.展开更多
Over recent decades, the global demand for food has continued to grow, owing to population growth and the loss of arable land. Rice ratooning offers new opportunities for increasing rice production and has received re...Over recent decades, the global demand for food has continued to grow, owing to population growth and the loss of arable land. Rice ratooning offers new opportunities for increasing rice production and has received renewed interest because of the minimal additional labor input required for its adoption. Regular, regional-scale monitoring of the spatial patterns of both traditional and ratoon rice cropping systems provides essential information for agricultural resource management and food security studies. However, the similar phenological characteristics of traditional double rice and ratoon rice cropping systems make it challenging to accurately classify these cropping practices based on satellite observations alone. In this study, we first proposed an improved phenology-based rice cropping area detection algorithm using moderate resolution imaging spectroradiometer (MODIS) normalized difference vegetation index (NDVI) imagery. A new index, ratoon rice index, was then developed to automatically delineate ratoon rice cropping areas with the aid of a base map of rice in Hubei Province, China. The accuracy assessment using ground truth data showed that our approach could map both traditional and ratoon rice cropping areas with high user accuracy (91.25% and 91.43%, respectively). The MODIS-retrieved rice cropping areas were validated using annual agricultural census data, and coefficient of determination (R2) values of 0.60 and 0.41 were recorded for traditional and ratoon rice cropping systems, respectively. The total area of ratoon rice was estimated to be 1 283.6 km2, 5.0% of the total rice cropping area, in Hubei Province in 2016. These demonstrated the feasibility of extracting the spatial patterns of both traditional and ratoon rice cropping systems solely from time-series NDVI and field survey data and strides made in facilitating the timely and routine monitoring of traditional and ratoon rice distribution at subnational level. Given sufficient historical satellite and phenology records, the proposed algorithm had the potential to enhance rice cropping area mapping efforts across a broad temporal scale (e.g., from the 1980s to the present).展开更多
Based on the 16d-composite MODIS (moderate resolution imaging spectroradiometer)-NDVI(normalized difference vegetation index) time-series data in 2004, vegetation in North Tibet Plateau was classified and seasonal...Based on the 16d-composite MODIS (moderate resolution imaging spectroradiometer)-NDVI(normalized difference vegetation index) time-series data in 2004, vegetation in North Tibet Plateau was classified and seasonal variations on the pixels selected from different vegetation type were analyzed. The Savitzky-Golay filtering algorithm was applied to perform a filtration processing for MODIS-NDVI time-series data. The processed time-series curves can reflect a real variation trend of vegetation growth. The NDVI time-series curves of coniferous forest, high-cold meadow, high-cold meadow steppe and high-cold steppe all appear a mono-peak model during vegetation growth with the maximum peak occurring in August. A decision-tree classification model was established according to either NDVI time-series data or land surface temperature data. And then, both classifying and processing for vegetations were carried out through the model based on NDVI time-series curves. An accuracy test illustrates that classification results are of high accuracy and credibility and the model is conducive for studying a climate variation and estimating a vegetation production at regional even global scale.展开更多
The method to estimate NSSR (net surface shortwave radiation) from LST (land surface temperature) in regional scale is discussed. First, an elliptical model between the time series of normalized LST and NSSR was d...The method to estimate NSSR (net surface shortwave radiation) from LST (land surface temperature) in regional scale is discussed. First, an elliptical model between the time series of normalized LST and NSSR was developed using the daily evolution of LST and NSSR. Second, time series of LST and NSSR were simulated by common land model (CoLM) and were proved to be of high accuracy. On the basis of these, a non-linear least square ellipse fitting using the genetic algorithm method was used to fit the normalized LST and NSSR. Finally, LST was inverted using MODIS (moderate resolution imaging spectroradiometer) data with the split-window algorithm, and the regional NSSR was then estimated with LST and an elliptical model. The validation result shows that the derived average NSSR of 50×50 pixels of MODIS data was quite close to the observed data, and the distribution was reasonable, which indicates that the proposed method was capable of estimating NSSR on a regional scale.展开更多
基金part of the Areas of Forest Innovation Climate Smart Forestry(Project No.101726),Work Package Modeling,funded by the Austrian Ministry of Agriculture,Forestry,Regions,and Water Management.
文摘Leaf area index(LAI)is a key measure of forest stand physiology and biomass production,and is essential within ecosystem modeling.There are two common approaches to obtaining LAI:(i)terrestrial forest inventory-based“bottom-up”,and(ii)satellite-based“top-down”techniques.The purpose of this study is to compare terrestrial LAI from allometric functions applied to more than 30,000 trees of the Austrian National Forest Inventory(NFI)vs.satellite-based LAI estimates obtained from moderate resolution imaging spectroradiometer(MODIS)and Sentinel(Sentinel-3 TOC reflectance and PROBA-V)data across Austrian forests.We analyzed a satellite pixelto-plot aggregation and obtained the full inventory data set for the LAI comparison.The results suggest that terrestrial vs.satellite(MODIS and Sentinel)driven LAI estimates are consistent,but(i)the variation of the terrestrial forest inventory LAI is larger vs.the pixel average LAI from satellite data,and(ii)any satellite LAI estimation needs a forest stand density correction if the crown competition factor(CCF),a measure for stand density,is<250 to avoid an overestimation in LAI.
基金Under the auspices of the National Key Research and Development Program of China(No.2019YFA0606603)。
文摘Fire season affects the dynamic changes of post-fire vegetation communities and carbon emissions.Analyzing its global patterns supports understanding of the ecological impacts of fires and responses of fires to climate change.Meteorological variables have been widely used to quantify fire season in current studies.However,their results can not be used to assess climate impacts on the seasonality of fire activities.Here we utilized satellite-based Moderate Resolution Imaging Spectroradiometer(MODIS)burned area data from 2001 to 2022 to identify global fire season types based on the number of peaks within a year.Using satellite data and innovatively processing the data to obtain a more accurate length of the fire season.We divided fire season types and examined the spatial distribution of fire season types across the Koppen-Geiger climate(KGC)zones.At a global scale,we identified three major fire season types,including unimodal(31.25%),bimodal(52.07%),and random(16.69%).The unimodal fire season primarily occurs in boreal and tropical regions lasting about 2.7 mon.In comparison,temperate ecosystems tend to have a longer fire season(3 mon)with two peaks throughout the year.The KGC zones show divergent contributions from the fire season types,indicating potential impacts of the climatic conditions on fire seasonality in these regions.
基金funded by the First-Class Discipline Research Special Project of Inner Mongolia(YLXKZX-NSD-040)the Natural Science Foundation of Inner Mongolia(2022LHQN04003,2023QN04009)+1 种基金the Fundamental Research Funds for the Inner Mongolia University of Finance and Economics(NCXKY25019,NCYWZ22003)the National Social Science Fund of China(22BZS134).
文摘Fires are one of the most destructive natural disasters and have serious long-term effects on the environment,economy,and human health.In Inner Mongolia Autonomous Region,China,frequent fire disturbance occurs due to the intensification of climate change and human activities.It is crucial to understand the fire regime and estimate the probability of regional fire occurrence and reducing fire losses.However,most studies have primarily focused on the dynamic changes,probability of occurrence,and driving mechanisms of wildfires in the grassland and forest land ecosystems in Inner Mongolia,while insufficient research has been conducted on the spatiotemporal variations in active fires and their impact on the wildfire risk in forest land and grassland.Therefore,in this study,we analyzed the active fire regime based on Moderate Resolution Imaging Spectroradiometer(MODIS)thermal anomalies and burned area products from 2000 to 2022.Combined with climate,topographic,landscape,anthropogenic,and vegetation datasets,logistic regression(LR),support vector machine(SVM),random forest(RF),and convolutional neural network(CNN)models were chosen to estimate the probability of active fire occurrence at the seasonal timescale.The results revealed that:(1)a total of 100,343 active fires occurred in Inner Mongolia and the burned area reached 6.59×104 km².The number of ignition point exhibited a significant increasing trend,while the burned area exhibited a nonsignificant decreasing trend;(2)four active fire belts were detected,namely,the Hetao-Tumochuan Plain fire belt,Xiliao River Plain fire belt,Songnen Plain fire belt,and Hailar River Eroded Plain fire belt.The centroid of the active fires has shifted 456.4 km toward the southwest;(3)RF model achieved the highest accuracy in estimating the probability of active fire occurrence,followed by CNN,and LR and SVM models had lower accuracies;and(4)the distribution of the high and extremely high fire risk areas largely aligned with the four fire belts.The probability of active fire occurrence was the highest in spring,followed by that in autumn,and it gradually decreased in summer and winter.Our results revealed active fires migrated to the southwest and ignition sources increased,despite reduction of the burned area was not significant.The RF model outperformed the other models in predicting the probability of active fire occurrence.These findings contribute to future fire prevention and prediction in Inner Mongolia.
基金supported by the National Natural Science Foundation of China[grant number 42101342]Third Comprehensive Scientific Expedition to Xinjiang[grant number 2021XJKK1403].
文摘Cotton is one of the most significant cash crops in the world,and it is also the main source of natural fiber for textiles.It is crucial for cotton management to identify the spatiotemporal distribution of cotton planting areas timely and accurately on a fine scale.However,previous research studies have predominantly concentrated on specific years using remote sensing data.Challenges still exist in the extraction of cotton areas for long time series with high accuracy.To address this issue,a novel cotton sample selection method was proposed and the machine learning method is employed to effectively identify the long time series cotton planting areas at a 30-m resolution scale.Bortala and Shuanghe in Xinjiang,China,were selected as the study cases to demonstrate the approach.Specifically,the cropland in this study was extracted by using an object-oriented classification method with Landsat images and the results were optimized as the vectorized boundary of croplands.Then,the cotton samples were selected using the Normalized Difference Vegetation Index(NDVI)series of Moderate Resolution Imaging Spectroradiometer(MODIS)based on its phenological characteristics.Next,cotton was identified based on the croplands from 2000 to 2020 by using the machine learning model.Finally,the performance was evaluated,and the spatiotemporal distribution characteristics of cotton planting areas were analyzed.The results showed that the proposed approach can achieve high accuracy at a fine spatial resolution.The performance evaluation indicated the applicability and suitability of the method,there is a good correlation between the extracted cotton areas and statistical data,and the cotton area of the study area showed an increasing trend.The cotton spatial distribution pattern developed from dispersion to agglomeration.The proposed approach and the derived 30-m cotton maps can provide a scientific reference for the optimization of agricultural management.
基金Under the auspices of Strategic Priority Research Program-Climate Change:Carbon Budget and Relevant Issues of Chinese Academy of Sciences(No.XDA05050602)Major State Basic Research Development Program of China(No.2010CB950904)+1 种基金National Natural Science Foundation of China(No.40921140410,41071344)Land Cover and Land Use Change Program of National Aeronautics and Space Administration,USA(No.NAG5-11160,NNG05GH80G)
文摘Double-and triple-cropping in a year have played a very important role in meeting the rising need for food in China.However,the intensified agricultural practices have significantly altered biogeochemical cycles and soil quality.Understanding and mapping cropping intensity in China′s agricultural systems are therefore necessary to better estimate carbon,nitrogen and water fluxes within agro-ecosystems on the national scale.In this study,we investigated the spatial pattern of crop calendar and multiple cropping rotations in China using phenological records from 394 agro-meteorological stations(AMSs)across China.The results from the analysis of in situ field observations were used to develop a new algorithm that identifies the spatial distribution of multiple cropping in China from moderate resolution imaging spectroradiometer(MODIS)time series data with a 500 m spatial resolution and an 8-day temporal resolution.According to the MODIS-derived multiple cropping distribution in 2002,the proportion of cropland cultivated with multiple crops reached 34%in China.Double-cropping accounted for approximately 94.6%and triple-cropping for 5.4%.The results demonstrat that MODIS EVI(Enhanced Vegetation Index)time series data have the capability and potential to delineate the dynamics of double-and triple-cropping practices.The resultant multiple cropping map could be used to evaluate the impacts of agricultural intensification on biogeochemical cycles.
基金This work was funded by the National Natural Science Foundation of China(U1603242)the Major Science and Technology Projects in Inner Mongolia,China(ZDZX2018054).
文摘The Aral Sea Basin in Central Asia is an important geographical environment unit in the center of Eurasia.It is of great significance to the ecological protection and sustainable development of Central Asia to carry out dynamic monitoring and effective evaluation of the eco-environmental quality of the Aral Sea Basin.In this study,the arid remote sensing ecological index(ARSEI)for large-scale arid areas was developed,which coupled the information of the greenness index,the salinity index,the humidity index,the heat index,and the land degradation index of arid areas.The ARSEI was used to monitor and evaluate the eco-environmental quality of the Aral Sea Basin from 2000 to 2019.The results show that the greenness index,the humidity index and the land degradation index had a positive impact on the quality of the ecological environment in the Aral Sea Basin,while the salinity index and the heat index exerted a negative impact on the quality of the ecological environment.The eco-environmental quality of the Aral Sea Basin demonstrated a trend of initial improvement,followed by deterioration,and finally further improvement.The spatial variation of these changes was significant.From 2000 to 2019,grassland and wasteland(saline alkali land and sandy land)in the central and western parts of the basin had the worst ecological environment quality.The areas with poor ecological environment quality are mainly distributed in rivers,wetlands,and cultivated land around lakes.During the period from 2000 to 2019,except for the surrounding areas of the Aral Sea,the ecological environment quality in other areas of the Aral Sea Basin has been improved in general.The correlation coefficients between the change in the eco-environmental quality and the heat index and between the change in the eco-environmental quality and the humidity index were–0.593 and 0.524,respectively.Climate conditions and human activities have led to different combinations of heat and humidity changes in the eco-environmental quality of the Aral Sea Basin.However,human activities had a greater impact.The ARSEI can quantitatively and intuitively reflect the scale and causes of large-scale and long-time period changes of the eco-environmental quality in arid areas;it is very suitable for the study of the eco-environmental quality in arid areas.
基金Under the auspices of Knowledge Innovation Programs of Chinese Academy of Sciences (No.KZCX2-YW-449,KSCX-YW-09)National Natural Science Foundation of China (No.40971025,40901030,50969003)
文摘Time-series Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) data have been widely used for large area crop mapping.However,the temporal crop signatures generated from these data were always accompanied by noise.In this study,a denoising method combined with Time series Inverse Distance Weighted (T-IDW) interpolating and Discrete Wavelet Transform (DWT) was presented.The detail crop planting patterns in Hebei Plain,China were classified using denoised time-series MODIS NDVI data at 250 m resolution.The denoising approach improved original MODIS NDVI product significantly in several periods,which may affect the accuracy of classification.The MODIS NDVI-derived crop map of the Hebei Plain achieved satisfactory classification accuracies through validation with field observation,statistical data and high resolution image.The field investigation accuracy was 85% at pixel level.At county-level,for winter wheat,there is relatively more significant correlation between the estimated area derived from satellite data with noise reduction and the statistical area (R2 = 0.814,p < 0.01).Moreover,the MODIS-derived crop patterns were highly consistent with the map generated by high resolution Landsat image in the same period.The overall accuracy achieved 91.01%.The results indicate that the method combining T-IDW and DWT can provide a gain in time-series MODIS NDVI data noise reduction and crop classification.
基金Under the auspices of the National Natural Science Foundation of China(No.41306091)Public Science and Technology Research Funds Projects of Ocean(No.201505019-2)
文摘Sea ice thickness is one of the most important input parameters in the studies on sea ice disaster prevention and mitigation. It is also the most important content in remote sensing monitoring of sea ice. In this study, a practical model of sea ice thickness(PMSIT) was proposed based on the Moderate Resolution Imaging Spectroradiometer(MODIS) data. In the proposed model, the MODIS data of the first band were used to estimate sea ice thickness and the difference between the second-band reflectance and the fifth-band reflectance in the MODIS data was calculated to obtain the difference attenuation index(DAI) of each pixel. The obtained DAI was used to estimate the integrated attenuation coefficient of the first band of the MODIS at the pixel level. Then the model was used to estimate sea ice thickness in the Bohai Sea with the MODIS data and then validated with the actual sea ice survey data. The validation results showed that the proposed model and corresponding parameterization scheme could largely avoid the estimation error of sea ice thickness caused by the spatial and temporal heterogeneity of sea ice extinction and allowed the error of 18.7% compared with the measured sea ice thickness.
基金Project supported by the National High-Tech R&D Program (863) of China(No.2012AA12A30703)the Meteorology Industry Special Project of China Meteorological Administration(CMA)(No.GYHY 201306036)the Ph.D Programs Foundation of the Ministry of Education of China(No.20100101110035)
文摘e The objective of this study was to investigate the tempo-spatial distribution of paddy rice in Northeast China using moderate resolution imaging spectroradiometer (MODIS) data. We developed an algorithm for detection and estimation of the transplanting and flooding periods of paddy rice with a combination of enhanced vegetation index (EVI) and land surface water index with a central wavelength at 2130 nm (LSW12130). In two intensive sites in Northeast China, fine resolution satellite imagery was used to validate the performance of the algorithm at pixel and 3x3 pixel window levels, respectively. The commission and omission errors in both of the intensive sites were approximately less than 20%. Based on the algorithm, annual distribution of paddy rice in Northeast China from 2001 to 2009 was mapped and analyzed. The results demonstrated that the MODIS-derived area was highly correlated with published agricultural statistical data with a coefficient of determination (R^2) value of 0.847. It also revealed a sharp decline in 2003, especially in the Sanjiang Plain located in the northeast of Heilongjiang Province, due to the oversupply and price decline of rice in 2002. These results suggest that the approaches are available for accurate and reliable monitoring of rice cultivated areas and variation on a large scale.
基金financially supported by the Strategic Priority Research Program of Chinese Academy of Sciences—Climate Change:Carbon Budget and Relevant Issues(No.XDA05020200)the Startup Foundation for Introducing Talent of Nanjing University of Information Science and Technology(NUIST),China(No.2016r036)the Innovation and Entrepreneurship Training Program for College Students of Jiangsu Provincial Department of Education,China(No.2017103000165)
文摘The spatial pattern of rice paddies is an essential parameter used for studies of greenhouse gas emissions,agricultural resource management,and environmental monitoring.On large spatial scales,previous studies have usually mapped rice paddies using a single vegetation index product based on a traditional classification method,or a combined analysis of various vegetation and water indices derived from the moderate resolution imaging spectroradiometer(MODIS)satellite data.However,different indices increase the computational cost and constrain the satellite data sources,and traditional classification methods(e.g.,maximum likelihood classification)may be time-consuming and difficult to carry out over a large area like China.In this study,we designed an auto-thresholding and single vegetation index(normalized difference vegetation index(NDVI))-based procedure to estimate the spatial distribution of rice paddies in China.The MOD09Q1 product,which was available at MODIS’s highest spatial resolution(250 m),was taken as the input source.An auto-threshold function was also introduced into the change detection process to distinguish rice paddies from other croplands.Our MODIS-derived maps were validated with ground surveys and then compared with China national statistical data of rice paddy areas.The results indicated that the best classification result was achieved for plain regions,and that the accuracy declined for hilly regions,where the complex landscape could lead to an underestimation of the rice paddy area.A comparison between the modeled results and other analyses using 500-m MODIS data suggests that rice paddies may be identified routinely using a single vegetation index with finer resolution on large spatial scales.
基金Under the auspices of National Nature Science Foundation of China(No.40901231,41101517)
文摘In this paper,a thin cloud removal method was put forward based on the linear relationships between the thin cloud reflectance in the channels from 0.4 μm to 1.0 μm and 1.38 μm.Channels of 0.66 μm,0.86 μm and 1.38 μm were chosen to extract the water body information under the thin cloud.Two study cases were selected to validate the thin cloud removal method.One case was applied with the Earth Observation System Moderate Resolution Imaging Spectroradiometer(EOS/MODIS) data,and the other with the Medium Resolution Spectral Imager(MERSI) and Visible and Infrared Radiometer(VIRR) data from Fengyun-3A(FY-3A).The test results showed that thin cloud removal method did not change the reflectivity of the ground surface under the clear sky.To the area contaminated by the thin cloud,the reflectance decreased to be closer to the reference reflectance under the clear sky after the thin cloud removal.The spatial distribution of the water body area could not be extracted before the thin cloud removal,while water information could be easily identified by using proper near infrared channel threshold after removing the thin cloud.The thin cloud removal method could improve the image quality and water body extraction precision effectively.
基金Supported by the National Key Research and Development Program of China(No.2017YFC0405804)the National Natural Science Foundation of China(Nos.41971318,41701402,41901272)the Science and Technology Service Network Initiative,Chinese Academy of Sciences(No.KFJ-STS-ZDTP-077)。
文摘The Moderate Resolution Imaging Spectroradiometer(MODIS)surface reflectance data were used to analyze the temporal and spatial distribution characteristics of water clarity(Z_(sd))in the Jiaozhou Bay,Qingdao,China,in the Yellow Sea from 2000 to 2018.Z_(sd)retrieval models were regionally optimized using in-situ data with coincident MODIS images,and then were used to retrieve the Z_(sd) products in Jiaozhou Bay from 2000-2018.The analysis of the Z_(sd) results suggests that the spatial distribution of relative Z_(sd) spatial characteristics in Jiaozhou Bay was stable,being higher Z_(sd) in the southeast and a lower Z_(sd) in the northwest.The annual mean Z_(sd) in Jiaozhou Bay showed a significant upward trend,with an annual increase of approximately 0.02 m.Water depth and wind speed were important factors affecting the spatial distribution and annual variation of Z_(sd) in Jiaozhou Bay,respectively.
基金National Natural Science Foundation of China(No.41171285)Research and Development Special Fund for Public Welfare Industry(Meteorology)of China(No.GYHY201106014)
文摘Distribution of monsoon forests is important for the research of carbon and water cycles in the tropical regions. In this paper, a simple approach is proposed to map monsoon forests using the Normalized Difference Vegetation lndex (NDVI) derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) data. Owing to the high contrast of greenness between wet season and dry season, the monsoon forest can be easily discriminated from other forests by combining the maximum and minimum annual NDVI. The MODIS-based monsoon forest maps (MODMF) from 2000 to 2009 are derived and evaluated using the ground-truth dataset. The MODMF achieves an average producer accuracy of 80.0% and the Kappa statistic of 0.719. The variability of MODMF among different years is compared with that calculated from MODIS land cover products (MCD 12Q 1). The results show that the coefficient of variation of total monsoon forest area in MODMF is 7.3%, which is far lower than that in MCD12Q1 with 24.3%. Moreover, the pixels in MODMv which can be identified for 7 to 9 times between 200l and 2009 account for 53.1%, while only 7.9% ofMCD12QI pixels have this frequency. Additionally, the monsoon forest areas estimated in MODMF, Global Land Cover 2000 (GLC2000), MCDI2Q1 and University of Maryland (UMD) products are compared with the statistical dataset at national level, which reveals that MODMv has the highest R^2 of 0.95 and the lowest RMSE of 14 014 km^2. This algorithm is simple but reliable for mapping the monsoon forests without complex classification techniques.
基金the National Natural Science Foundation of China (40461001)
文摘Moderate resolution imaging spectroradiometer (MODIS) data are very suitable for vast extent, long term and dynamic drought monitoring for its high temporal resolution, high spectral resolution and moderate spatial resolution. The composite Enhanced Vegetation Index (EVI) and composite land surface temperature (Ts) obtained from MODIS data MOD11A2 and MOD13A2 were used to construct the EVI-Ts space. And Temperature Vegetation Dryness Index (TVDI) was calculated to evaluate the agriculture drought in Guangxi province, China in October of 2006. The results showed that the drought area in Guangxi was evidently increasing and continuously deteriorating from the middle of September to the middle of November. The TVDI, coming from the EVI-Ts space, could effectively indicate the spatial distribution and temporal evolution of drought, so that it could provide a strong technical support for the forecasting agricultural drought in south China.
基金Under the auspices of Natural Science Foundation of Shandong(No.ZR2019MD041)National Natural Science Foundation of China(No.41676171)+2 种基金Qingdao National Laboratory for Marine Science and Technology of China(No.2016ASKJ02)Natural Science Foundation of Shandong(No.ZR2015DM015)Development and Construction Funds Project of National Independent Innovation Demonstration Zone in Shandong Peninsula(No.ZCQ17117)。
文摘In this study,using Moderate Resolution Imaging Spectroradiometer(MODIS)satellite images and environmental satellite CCD images,the spatio-temporal distribution of Ulva prolifera in the southern Yellow Sea during the period of 2011–2018 was extracted and combined with MODIS Level3 Photosynthetically Active Radiation(PAR)product data and Earth System Research Laboratory(ESRL)Sea Surface Temperature(SST)data to analyze their influences on the growth and outbreak of Ulva prolifera.The following conclusions were drawn:1)comprehensive analysis of Ulva prolifera distribution during the eight-year period revealed that the coverage area of Ulva prolifera typically exhibited a gradually increasing trend.The coverage area of Ulva prolifera reached a maximum of approximately 1714.21 km^2 during the eight-year period in late June 2015.The area affected by Ulva prolifera fluctuated.In mid-July 2014,the area affected by Ulva prolifera reached a maximum of approximately 39020.63 km^2.2)The average growth rate of Ulva prolifera was positive in May and June but negative in July.During the outbreak of Ulva prolifera,the SST in the southern Yellow Sea tended to increase each month.The SST anomaly and average growth rate of Ulva prolifera were positively correlated in May(R^2=0.62),but not significantly correlated in June or July.3)The variation trends of PAR and SST were approximately the same,and the PAR during this time period maintained a range of 40–50 mol/(m^2·d),providing sufficient illumination for the growth and outbreak of Ulva prolifera.In addition,the abundant nutrients and suitable temperature in the sea area near northern Jiangsu shoal resulted in a high growth rate of Ulva prolifera in May.In summary,the outbreak of Ulva prolifera was closely related to the environmental factors including SST,nutrients,and PAR.Sufficient nutrients and suitable temperatures resulted in a fast growth rate of Ulva prolifera.However,under poor nutrient conditions,even more suitable temperatures were not sufficient to trigger an outbreak of Ulva prolifera.
基金supported by the Environmental Protection Ministry of China for Research of Characteristics and Controlling Measures of VOCs Emissions from Typical Anthropogenic Sources (No. 2011467003)the Natural Science Foundation key project (grant no. 91544106)
文摘With the objective of reducing the large uncertainties in the estimations of emissions from crop residue open burning, an improved method for establishing emission inventories of crop residue open burning at a high spatial resolution of 0.25°× 0.25° and a temporal resolution of1 month was established based on the moderate resolution imaging spectroradiometer(MODIS) Thermal Anomalies/Fire Daily Level3 Global Product(MOD/MYD14A1). Agriculture mechanization ratios and regional crop-specific grain-to-straw ratios were introduced to improve the accuracy of related activity data. Locally observed emission factors were used to calculate the primary pollutant emissions. MODIS satellite data were modified by combining them with county-level agricultural statistical data, which reduced the influence of missing fire counts caused by their small size and cloud cover. The annual emissions of CO2, CO, CH4,nonmethane volatile organic compounds(NMVOCs), N2O, NOx, NH3, SO2, fine particles(PM2.5),organic carbon(OC), and black carbon(BC) were 150.40, 6.70, 0.51, 0.88, 0.01, 0.13, 0.07, 0.43,1.09, 0.34, and 0.06 Tg, respectively, in 2012. Crop residue open burning emissions displayed typical seasonal and spatial variation. The highest emission regions were the Yellow-Huai River and Yangtse-Huai River areas, and the monthly emissions were highest in June(37%).Uncertainties in the emission estimates, measured as 95% confidence intervals, range from a low of within ±126% for N2O to a high of within ± 169% for NH3.
文摘MODIS (Moderate Resolution Imaging Spectroradiometer) is a key instrument aboard the Terra (EOS AM) and Aqua (EOS PM) satellites. Linear spectral mixture models are applied to MOIDS data for the sub-pixel classification of land covers. Shaoxing county of Zhejiang Province in China was chosen to be the study site and early rice was selected as the study crop. The derived proportions of land covers from MODIS pixel using linear spectral mixture models were compared with unsupervised classification derived from TM data acquired on the same day, which implies that MODIS data could be used as satellite data source for rice cultivation area estimation, possibly rice growth monitoring and yield forecasting on the regional scale.
基金funded by the Youth Innovation Promotion Association of Chinese Academy of Sciences(No.2018349)the Startup Foundation for Introducing Talent of Nanjing University of Information Science and Technology(No.2016r036)+2 种基金the Irmovation and Entrepreneurship Training Program Project for the Jiangsu College Students(No.2017103000165)the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDA05020200)the National Natural Science Foundation of China(No.91437220).
文摘Over recent decades, the global demand for food has continued to grow, owing to population growth and the loss of arable land. Rice ratooning offers new opportunities for increasing rice production and has received renewed interest because of the minimal additional labor input required for its adoption. Regular, regional-scale monitoring of the spatial patterns of both traditional and ratoon rice cropping systems provides essential information for agricultural resource management and food security studies. However, the similar phenological characteristics of traditional double rice and ratoon rice cropping systems make it challenging to accurately classify these cropping practices based on satellite observations alone. In this study, we first proposed an improved phenology-based rice cropping area detection algorithm using moderate resolution imaging spectroradiometer (MODIS) normalized difference vegetation index (NDVI) imagery. A new index, ratoon rice index, was then developed to automatically delineate ratoon rice cropping areas with the aid of a base map of rice in Hubei Province, China. The accuracy assessment using ground truth data showed that our approach could map both traditional and ratoon rice cropping areas with high user accuracy (91.25% and 91.43%, respectively). The MODIS-retrieved rice cropping areas were validated using annual agricultural census data, and coefficient of determination (R2) values of 0.60 and 0.41 were recorded for traditional and ratoon rice cropping systems, respectively. The total area of ratoon rice was estimated to be 1 283.6 km2, 5.0% of the total rice cropping area, in Hubei Province in 2016. These demonstrated the feasibility of extracting the spatial patterns of both traditional and ratoon rice cropping systems solely from time-series NDVI and field survey data and strides made in facilitating the timely and routine monitoring of traditional and ratoon rice distribution at subnational level. Given sufficient historical satellite and phenology records, the proposed algorithm had the potential to enhance rice cropping area mapping efforts across a broad temporal scale (e.g., from the 1980s to the present).
基金the Frontier Program of the Knowledge Innovation Program of Chinese Academy of Sciences
文摘Based on the 16d-composite MODIS (moderate resolution imaging spectroradiometer)-NDVI(normalized difference vegetation index) time-series data in 2004, vegetation in North Tibet Plateau was classified and seasonal variations on the pixels selected from different vegetation type were analyzed. The Savitzky-Golay filtering algorithm was applied to perform a filtration processing for MODIS-NDVI time-series data. The processed time-series curves can reflect a real variation trend of vegetation growth. The NDVI time-series curves of coniferous forest, high-cold meadow, high-cold meadow steppe and high-cold steppe all appear a mono-peak model during vegetation growth with the maximum peak occurring in August. A decision-tree classification model was established according to either NDVI time-series data or land surface temperature data. And then, both classifying and processing for vegetations were carried out through the model based on NDVI time-series curves. An accuracy test illustrates that classification results are of high accuracy and credibility and the model is conducive for studying a climate variation and estimating a vegetation production at regional even global scale.
基金Supported by the Knowledge Innovation Programs of Chinese Academy of Sciences (XMXX280722)China International Science and Technology Cooperation Project (0819)+1 种基金National Program on Key Basic Research Project (2010CB428800)Wong K C Education Foundation, Hong Kong
文摘The method to estimate NSSR (net surface shortwave radiation) from LST (land surface temperature) in regional scale is discussed. First, an elliptical model between the time series of normalized LST and NSSR was developed using the daily evolution of LST and NSSR. Second, time series of LST and NSSR were simulated by common land model (CoLM) and were proved to be of high accuracy. On the basis of these, a non-linear least square ellipse fitting using the genetic algorithm method was used to fit the normalized LST and NSSR. Finally, LST was inverted using MODIS (moderate resolution imaging spectroradiometer) data with the split-window algorithm, and the regional NSSR was then estimated with LST and an elliptical model. The validation result shows that the derived average NSSR of 50×50 pixels of MODIS data was quite close to the observed data, and the distribution was reasonable, which indicates that the proposed method was capable of estimating NSSR on a regional scale.