Influenced by complex external factors,the displacement-time curve of reservoir landslides demonstrates both short-term and long-term diversity and dynamic complexity.It is difficult for existing methods,including Reg...Influenced by complex external factors,the displacement-time curve of reservoir landslides demonstrates both short-term and long-term diversity and dynamic complexity.It is difficult for existing methods,including Regression models and Neural network models,to perform multi-characteristic coupled displacement prediction because they fail to consider landslide creep characteristics.This paper integrates the creep characteristics of landslides with non-linear intelligent algorithms and proposes a dynamic intelligent landslide displacement prediction method based on a combination of the Biological Growth model(BG),Convolutional Neural Network(CNN),and Long ShortTerm Memory Network(LSTM).This prediction approach improves three different biological growth models,thereby effectively extracting landslide creep characteristic parameters.Simultaneously,it integrates external factors(rainfall and reservoir water level)to construct an internal and external comprehensive dataset for data augmentation,which is input into the improved CNN-LSTM model.Thereafter,harnessing the robust feature extraction capabilities and spatial translation invariance of CNN,the model autonomously captures short-term local fluctuation characteristics of landslide displacement,and combines LSTM's efficient handling of long-term nonlinear temporal data to improve prediction performance.An evaluation of the Liangshuijing landslide in the Three Gorges Reservoir Area indicates that BG-CNN-LSTM exhibits high prediction accuracy,excellent generalization capabilities when dealing with various types of landslides.The research provides an innovative approach to achieving the whole-process,realtime,high-precision displacement predictions for multicharacteristic coupled landslides.展开更多
Microwave radiation has been widely used in various fields,such as communication,industry,medical treatment,and military applications.Microwave radiation may cause injuries to both the structures and functions of vari...Microwave radiation has been widely used in various fields,such as communication,industry,medical treatment,and military applications.Microwave radiation may cause injuries to both the structures and functions of various organs,such as the brain,heart,reproductive organs,and endocrine organs,which endanger human health.Therefore,it is both theoretically and clinically important to conduct studies on the biological effects induced by microwave radiation.The successful establishment of injury models is of great importance to the reliability and reproducibility of these studies.In this article,we review the microwave exposure conditions,subjects used to establish injury models,the methods used for the assessment of the injuries,and the indicators implemented to evaluate the success of injury model establishment in studies on biological effects induced by microwave radiation.展开更多
Inferring gene regulatory networks from large-scale expression data is an important topic in both cellular systems and computational biology. The inference of regulators might be the core factor for understanding actu...Inferring gene regulatory networks from large-scale expression data is an important topic in both cellular systems and computational biology. The inference of regulators might be the core factor for understanding actual regulatory conditions in gene regulatory networks, especially when strong regulators do work significantly. In this paper, we propose a novel approach based on combining neuro-fu^zy network models with biological knowledge to infer strong regulators and interrelated fuzzy rules. The hybrid neuro-fuzzy architecture can not only infer the fuzzy rules, which are suitable for describing the regulatory conditions in regulatory nctworks+ but also explain the meaning of nodes and weight value in the neural network. It can get useful rules automatically without lhctitious judgments. At the same time, it does not add recursive layers to the model, and the model can also strengthen the relationships among genes and reduce calculation. We use the proposed approach to reconstruct a partial gene regulatory network of yeast, The results show that this approach can work effectively.展开更多
[Objective]The aim was to establish the linear regression prediction models between sowing time and plant productivity, biological yield of forage sorghum in autumn idle land.[Method]The relationships between sowing t...[Objective]The aim was to establish the linear regression prediction models between sowing time and plant productivity, biological yield of forage sorghum in autumn idle land.[Method]The relationships between sowing time and plant productivity, biological yield of forage sorghum were simulated and compared by using field experiment and linear regression analysis.[Result] The sowing time had an important influence on the plant productivity and biological yield of forage sorghum in autumn idle land. The plant productivity and biological yield of forage sorghum both decreased with the delay of sowing time.The regression model between plant fresh weight and sowing time was ?fresh=0.618-0.015x; the regression model between plant dry weight and sowing time was ?dry=0.184-0.005x; and the regression model between biological yield and sowing time was yield=29 126.461-711.448x. During July 23rd to August 30th, when the sowing time was delayed by 1 day, the plant fresh weight of forage sorghum was reduced by 0.015 g, the plant dry weight was reduced by 0.005 g, and the yield was reduced by 711.448 kg/hm2. [Conclusion] The three regression models established in this study will provide theoretical support for the production of forage sorghum.展开更多
This article considers three types of biological systems:the dengue fever disease model,the COVID-19 virus model,and the transmission of Tuberculosis model.The new technique of creating the integration matrix for the ...This article considers three types of biological systems:the dengue fever disease model,the COVID-19 virus model,and the transmission of Tuberculosis model.The new technique of creating the integration matrix for the Bernoulli wavelets is applied.Also,the novel method proposed in this paper is called the Bernoulli wavelet collocation scheme(BWCM).All three models are in the form system of coupled ordinary differential equations without an exact solution.These systems are converted into a system of algebraic equations using the Bernoulli wavelet collocation scheme.The numerical wave distributions of these governing models are obtained by solving the algebraic equations via the Newton-Raphson method.The results obtained from the developed strategy are compared to several schemes such as the Runge Kutta method,and ND solver in mathematical software.The convergence analyses are discussed through theorems.The newly implemented Bernoulli wavelet method improves the accuracy and converges when it is compared with the existing methods in the literature.展开更多
Background: Calotropis procera (C. procera), is an authentic plant naturally grown in the flora of Dead Sea region. Despite its toxicity, C. procera presents healing properties. However, it has not been implemented ye...Background: Calotropis procera (C. procera), is an authentic plant naturally grown in the flora of Dead Sea region. Despite its toxicity, C. procera presents healing properties. However, it has not been implemented yet in cosmetics as an active ingredient. Objective: The biological effects of C. procera callus extract on skin were elucidated solely and in combination with Dead Sea water (DSW). Methods: The capability of C. procera extract to protect against skin inflammation and irritation was tested on ex vivo human skin organ culture by LPS and SDS addition respectively. Viability and cytokine secretion were evaluated. The combination of C. procera extract with Dead Sea water was tested on full thickness skin equivalents. Gene expression and relevant biochemical markers for glycolysis, hypoxia and extracellular matrix balance were tested. Results: C. procera extract exhibits a protective biological activity against skin irritation and inflammation at the biochemical level. Furthermore, a combination of C. procera extract and DSW demonstrates a potential contribution for skin wellbeing via enhance energy production, resistance to hypoxia and extracellular matrix balance. Conclusions: Topical application of C. procera callus extract might support skin balance and wellbeing at the molecular level. Hence, it is recommended for new cosmetic formulae as standalone or in combination with Dead Sea water, in the effort to achieve anti-aging bio-activity that is working beyond skin aging symptoms, especially via skin calming effects and skin energy enhancement.展开更多
The oil spill impact analysis (OSIA) software system has been developed to supply a tool for comprehensive, quantitative environmental impact assessments resulting from oil spills. In the system, a biological componen...The oil spill impact analysis (OSIA) software system has been developed to supply a tool for comprehensive, quantitative environmental impact assessments resulting from oil spills. In the system, a biological component evaluates potential effects on exposed organisms based on results from a physico chemical fates component, including the extent and characteristics of the surface slick, and dissolved and total concentrations of hydrocarbons in the water column. The component includes a particle based exposure model for migratory adult fish populations, a particle based exposure model for spawning planktonic organisms (eggs and larvae), and an exposure model for wildlife species (sea birds or marine mammals). The exposure model for migratory adult fish populations simulates the migration behaviors of fish populations migrating to or staying in their feeding areas, over wintering areas or spawning areas, and determines the acute effects (mortality) and chronic accumulation (body burdens) from the dissolved contaminant. The exposure model for spawning planktonic organisms simulates the release of eggs and larvae, also as particles, from specific spawning areas during the spawning period, and determines their potential exposure to contaminants in the water or sediment. The exposure model for wild species calculates the exposure to surface oil of wildlife (bird and marine mammal) categories inhabiting the contaminated area. Compared with the earlier models in which all kinds of organisms are assumed evenly and randomly distributed, the updated biological exposure models can more realistically estimate potential effects on marine ecological system from oil spill pollution events.展开更多
The application of visual-language large models in the field of medical health has gradually become a research focus.The models combine the capability for image understanding and natural language processing,and can si...The application of visual-language large models in the field of medical health has gradually become a research focus.The models combine the capability for image understanding and natural language processing,and can simultaneously process multi-modality data such as medical images and medical reports.These models can not only recognize images,but also understand the semantic relationship between images and texts,effectively realize the integration of medical information,and provide strong support for clinical decision-making and disease diagnosis.The visual-language large model has good performance for specific medical tasks,and also shows strong potential and high intelligence in the general task models.This paper provides a comprehensive review of the visual-language large model in the field of medical health.Specifically,this paper first introduces the basic theoretical basis and technical principles.Then,this paper introduces the specific application scenarios in the field of medical health,including modality fusion,semi-supervised learning,weakly supervised learning,unsupervised learning,cross-domain model and general models.Finally,the challenges including insufficient data,interpretability,and practical deployment are discussed.According to the existing challenges,four potential future development directions are given.展开更多
In the era of AI,especially large models,the importance of open source has become increasingly prominent.First,open source allows innovation to avoid starting from scratch.Through iterative innovation,it promotes tech...In the era of AI,especially large models,the importance of open source has become increasingly prominent.First,open source allows innovation to avoid starting from scratch.Through iterative innovation,it promotes technical exchanges and learning globally.Second,resources required for large model R&D are difficult for a single institution to obtain.The evaluation of general large models also requires the participation of experts from various industries.Third,without open source collaboration,it is difficult to form a unified upper-layer software ecosystem.Therefore,open source has become an important cooperation mechanism to promote the development of AI and large models.There are two cases to illustrate how open source and international standards interact with each other.展开更多
Lung cancer has one of the highest rates of incidence and mortality worldwide,mak-ing research on its mechanisms and treatments crucial.Animal models are essential in lung cancer research as they accurately replicate ...Lung cancer has one of the highest rates of incidence and mortality worldwide,mak-ing research on its mechanisms and treatments crucial.Animal models are essential in lung cancer research as they accurately replicate the biological characteristics and treatment outcomes seen in human diseases.Currently,various lung cancer models have been established,including chemical induction models,orthotopic transplan-tation models,ectopic transplantation models,metastasis models,and gene editing mouse models.Additionally,lung cancer grafts can be categorized into two types:tissue-based and cell-based grafts.This paper summarizes the phenotypes,advan-tages,and disadvantages of various induction methods based on their modeling tech-niques.The goal is to enhance the simulation of clinical lung cancer characteristics and to establish a solid foundation for future clinical research.展开更多
Large models,such as large language models(LLMs),vision-language models(VLMs),and multimodal agents,have become key elements in artificial intelli⁃gence(AI)systems.Their rapid development has greatly improved percepti...Large models,such as large language models(LLMs),vision-language models(VLMs),and multimodal agents,have become key elements in artificial intelli⁃gence(AI)systems.Their rapid development has greatly improved perception,generation,and decision-making in various fields.However,their vast scale and complexity bring about new security challenges.Issues such as backdoor vulnerabilities during training,jailbreaking in multimodal rea⁃soning,and data provenance and copyright auditing have made security a critical focus for both academia and industry.展开更多
Background: Positron emission tomography(PET) is a noninvasive method to characterize different metabolic activities of tumors, providing information for staging, prognosis, and therapeutic response of patients with c...Background: Positron emission tomography(PET) is a noninvasive method to characterize different metabolic activities of tumors, providing information for staging, prognosis, and therapeutic response of patients with cancer. The aim of this study was to evaluate the feasibility of18F-fludeoxyglucose(18F-FDG) and 3’-deoxy-3’-18F-fluorothymidine(18F-FLT) PET in predicting tumor biological characteristics of colorectal cancer liver metastasis.Methods: The uptake rate of18F-FDG and18F-FLT in SW480 and SW620 cells was measured via an in vitro cell uptake assay. The region of interest was drawn over the tumor and liver to calculate the maximum standardized uptake value ratio(tumor/liver) from PET images in liver metastasis model. The correlation between tracer uptake in liver metastases and VEGF, Ki67 and CD44 expression was evaluated by linear regression.Results: Compared to SW620 tumor-bearing mice, SW480 tumor-bearing mice presented a higher rate of liver metastases. The uptake rate of18F-FDG in SW480 and SW620 cells was 6.07% ± 1.19% and2.82% ± 0.15%, respectively(t = 4.69, P = 0.04); that of18F-FLT was 24.81% ± 0.45% and 15.57% ± 0.66%, respectively(t = 19.99, P < 0.001). Micro-PET scan showed that all parameters of FLT were significantly higher in SW480 tumors than those in SW620 tumors. A moderate relationship was detected between metastases in the liver and18F-FLT uptake in primary tumors(r = 0.73, P = 0.0019).18F-FLT uptake was also positively correlated with the expression of CD44 in liver metastases(r = 0.81, P = 0.0049).Conclusions: The uptake of18F-FLT in metastatic tumor reflects different biological behaviors of colon cancer cells.18F-FLT can be used to evaluate the metastatic potential of colorectal cancer in nude mice.展开更多
Myasthenia gravis is a chronic autoimmune disorder that affects the neuromuscular junction leading to fluctuating skeletal muscle fatigability. The majority of myasthenia gravis patients have detectable antibodies in ...Myasthenia gravis is a chronic autoimmune disorder that affects the neuromuscular junction leading to fluctuating skeletal muscle fatigability. The majority of myasthenia gravis patients have detectable antibodies in their serum, targeting acetylcholine receptor, muscle-specific kinase, or related proteins. Current treatment for myasthenia gravis involves symptomatic therapy, immunosuppressive drugs such as corticosteroids, azathioprine, and mycophenolate mofetil, and thymectomy, which is primarily indicated in patients with thymoma or thymic hyperplasia. However, this condition continues to pose significant challenges including an unpredictable and variable disease progression, differing response to individual therapies, and substantial longterm side effects associated with standard treatments(including an increased risk of infections, osteoporosis, and diabetes), underscoring the necessity for a more personalized approach to treatment. Furthermore, about fifteen percent of patients, called “refractory myasthenia gravis patients”, do not respond adequately to standard therapies. In this context, the introduction of molecular therapies has marked a significant advance in myasthenia gravis management. Advances in understanding myasthenia gravis pathogenesis, especially the role of pathogenic antibodies, have driven the development of these biological drugs, which offer more selective, rapid, and safer alternatives to traditional immunosuppressants. This review aims to provide a comprehensive overview of emerging therapeutic strategies targeting specific immune pathways in myasthenia gravis, with a particular focus on preclinical evidence, therapeutic rationale, and clinical translation of B-cell depletion therapies, neonatal Fc receptor inhibitors, and complement inhibitors.展开更多
1.Introduction Since the Industrial Revolution,oceans have absorbed approximately one-third of the carbon dioxide(CO_(2)) released by human activities and have maintained their capacity for CO_(2) uptake.The biologica...1.Introduction Since the Industrial Revolution,oceans have absorbed approximately one-third of the carbon dioxide(CO_(2)) released by human activities and have maintained their capacity for CO_(2) uptake.The biological carbon pump(BCP)(Volk and Hoffert,1985)drives particulate organic carbon(POC),which is generated in the surface ocean by phytoplankton photosynthesis,into the interior of the ocean through the gravitational settling of POC and vertical migration of zooplankton.展开更多
Extracting data from visually rich documents and charts using traditional methods that rely on OCR-based parsing poses multiple challenges,including layout complexity in unstructured formats,limitations in recognizing...Extracting data from visually rich documents and charts using traditional methods that rely on OCR-based parsing poses multiple challenges,including layout complexity in unstructured formats,limitations in recognizing visual elements,and the correlation between different parts of the documents,as well as domain-specific semantics.Simply extracting text is not sufficient;advanced reasoning capabilities are proving to be essential to analyze content and answer questions accurately.This paper aims to evaluate the ability of the Large Language Models(LLMs)to correctly answer questions about various types of charts,comparing their performance when using images as input versus directly parsing PDF files.To retrieve the images from the PDF,ColPali,a model leveraging state-of-the-art visual languagemodels,is used to identify the relevant page containing the appropriate chart for each question.Google’s Gemini multimodal models were used to answer a set of questions through two approaches:1)processing images derived from PDF documents and 2)directly utilizing the content of the same PDFs.Our findings underscore the limitations of traditional OCR-based approaches in visual document understanding(VrDU)and demonstrate the advantages of multimodal methods in both data extraction and reasoning tasks.Through structured benchmarking of chart question answering(CQA)across input formats,our work contributes to the advancement of chart understanding(CU)and the broader field of multimodal document analysis.Using two diverse and information-rich sources:the World Health Statistics 2024 report by theWorld Health Organisation and the Global Banking Annual Review 2024 by McKinsey&Company,we examine the performance ofmultimodal LLMs across different input modalities,comparing their effectiveness in processing charts as images versus parsing directly from PDF content.These documents were selected due to their multimodal nature,combining dense textual analysis with varied visual representations,thus presenting realistic challenges for vision-language models.This comparison is aimed at assessing how advanced models perform with different input formats and to determine if an image-based approach enhances chart comprehension in terms of accurate data extraction and reasoning capabilities.展开更多
Dengue virus(DENV)is a single-stranded RNA virus transmitted by mosquitoes in tropical and subtropical regions.It causes dengue fever,dengue hemorrhagic fever and dengue shock syndrome in patients.Each year,390 millio...Dengue virus(DENV)is a single-stranded RNA virus transmitted by mosquitoes in tropical and subtropical regions.It causes dengue fever,dengue hemorrhagic fever and dengue shock syndrome in patients.Each year,390 million people are estimated to be infected by four serotypes of dengue virus,creating a great burden on global public health and local economy.So far,no antiviral drug is available for dengue disease,and the newly licensed vaccine is far from satisfactory.One large obstacle for dengue vaccine and drug development is the lack of suitable small animal models.Although some DENV infection models have been developed,only a small number of viral strains can infect immunodeficient mice.In this study,with biologically cloned viruses from a single clinical isolate,we have established two mouse models of DENV infection,one is severe lethal infection in immunocompromised mice,and the other resembles self-limited disease manifestations in Balb/c mice with transient blockage of type I IFN responses.This study not only offers new small animal models of dengue viral infection,but also provides new viral variants for further investigations on dengue viral pathogenesis.展开更多
The application of generative artificial intelligence(AI)is bringing about notable changes in anime creation.This paper surveys recent advancements and applications of diffusion and language models in anime generation...The application of generative artificial intelligence(AI)is bringing about notable changes in anime creation.This paper surveys recent advancements and applications of diffusion and language models in anime generation,focusing on their demonstrated potential to enhance production efficiency through automation and personalization.Despite these benefits,it is crucial to acknowledge the substantial initial computational investments required for training and deploying these models.We conduct an in-depth survey of cutting-edge generative AI technologies,encompassing models such as Stable Diffusion and GPT,and appraise pivotal large-scale datasets alongside quantifiable evaluation metrics.Review of the surveyed literature indicates the achievement of considerable maturity in the capacity of AI models to synthesize high-quality,aesthetically compelling anime visual images from textual prompts,alongside discernible progress in the generation of coherent narratives.However,achieving perfect long-form consistency,mitigating artifacts like flickering in video sequences,and enabling fine-grained artistic control remain critical ongoing challenges.Building upon these advancements,research efforts have increasingly pivoted towards the synthesis of higher-dimensional content,such as video and three-dimensional assets,with recent studies demonstrating significant progress in this burgeoning field.Nevertheless,formidable challenges endure amidst these advancements.Foremost among these are the substantial computational exigencies requisite for training and deploying these sophisticated models,particularly pronounced in the realm of high-dimensional generation such as video synthesis.Additional persistent hurdles include maintaining spatial-temporal consistency across complex scenes and mitigating ethical considerations surrounding bias and the preservation of human creative autonomy.This research underscores the transformative potential and inherent complexities of AI-driven synergy within the creative industries.We posit that future research should be dedicated to the synergistic fusion of diffusion and autoregressive models,the integration of multimodal inputs,and the balanced consideration of ethical implications,particularly regarding bias and the preservation of human creative autonomy,thereby establishing a robust foundation for the advancement of anime creation and the broader landscape of AI-driven content generation.展开更多
The unprecedented scale of large models,such as large language models(LLMs)and text-to-image diffusion models,has raised critical concerns about the unauthorized use of copyrighted data during model training.These con...The unprecedented scale of large models,such as large language models(LLMs)and text-to-image diffusion models,has raised critical concerns about the unauthorized use of copyrighted data during model training.These concerns have spurred a growing demand for dataset copyright auditing techniques,which aim to detect and verify potential infringements in the training data of commercial AI systems.This paper presents a survey of existing auditing solutions,categorizing them across key dimensions:data modality,model training stage,data overlap scenarios,and model access levels.We highlight major trends,including the prevalence of black-box auditing methods and the emphasis on fine-tuning rather than pre-training.Through an in-depth analysis of 12 representative works,we extract four key observations that reveal the limitations of current methods.Furthermore,we identify three open challenges and propose future directions for robust,multimodal,and scalable auditing solutions.Our findings underscore the urgent need to establish standardized benchmarks and develop auditing frameworks that are resilient to low watermark densities and applicable in diverse deployment settings.展开更多
Background Cotton is one of the most important commercial crops after food crops,especially in countries like India,where it’s grown extensively under rainfed conditions.Because of its usage in multiple industries,su...Background Cotton is one of the most important commercial crops after food crops,especially in countries like India,where it’s grown extensively under rainfed conditions.Because of its usage in multiple industries,such as textile,medicine,and automobile industries,it has greater commercial importance.The crop’s performance is greatly influenced by prevailing weather dynamics.As climate changes,assessing how weather changes affect crop performance is essential.Among various techniques that are available,crop models are the most effective and widely used tools for predicting yields.Results This study compares statistical and machine learning models to assess their ability to predict cotton yield across major producing districts of Karnataka,India,utilizing a long-term dataset spanning from 1990 to 2023 that includes yield and weather factors.The artificial neural networks(ANNs)performed superiorly with acceptable yield deviations ranging within±10%during both vegetative stage(F1)and mid stage(F2)for cotton.The model evaluation metrics such as root mean square error(RMSE),normalized root mean square error(nRMSE),and modelling efficiency(EF)were also within the acceptance limits in most districts.Furthermore,the tested ANN model was used to assess the importance of the dominant weather factors influencing crop yield in each district.Specifically,the use of morning relative humidity as an individual parameter and its interaction with maximum and minimum tempera-ture had a major influence on cotton yield in most of the yield predicted districts.These differences highlighted the differential interactions of weather factors in each district for cotton yield formation,highlighting individual response of each weather factor under different soils and management conditions over the major cotton growing districts of Karnataka.Conclusions Compared with statistical models,machine learning models such as ANNs proved higher efficiency in forecasting the cotton yield due to their ability to consider the interactive effects of weather factors on yield forma-tion at different growth stages.This highlights the best suitability of ANNs for yield forecasting in rainfed conditions and for the study on relative impacts of weather factors on yield.Thus,the study aims to provide valuable insights to support stakeholders in planning effective crop management strategies and formulating relevant policies.展开更多
In recent years,large vision-language models(VLMs)have achieved significant breakthroughs in cross-modal understanding and generation.However,the safety issues arising from their multimodal interactions become promine...In recent years,large vision-language models(VLMs)have achieved significant breakthroughs in cross-modal understanding and generation.However,the safety issues arising from their multimodal interactions become prominent.VLMs are vulnerable to jailbreak attacks,where attackers craft carefully designed prompts to bypass safety mechanisms,leading them to generate harmful content.To address this,we investigate the alignment between visual inputs and task execution,uncovering locality defects and attention biases in VLMs.Based on these findings,we propose VOTI,a novel jailbreak framework leveraging visual obfuscation and task induction.VOTI subtly embeds malicious keywords within neutral image layouts to evade detection,and breaks down harmful queries into a sequence of subtasks.This approach disperses malicious intent across modalities,exploiting VLMs’over-reliance on local visual cues and their fragility in multi-step reasoning to bypass global safety mechanisms.Implemented as an automated framework,VOTI integrates large language models as red-team assistants to generate and iteratively optimize jailbreak strategies.Extensive experiments across seven mainstream VLMs demonstrate VOTI’s effectiveness,achieving a 73.46%attack success rate on GPT-4o-mini.These results reveal critical vulnerabilities in VLMs,highlighting the urgent need for improving robust defenses and multimodal alignment.展开更多
基金the funding support from the National Natural Science Foundation of China(Grant No.52308340)Chongqing Talent Innovation and Entrepreneurship Demonstration Team Project(Grant No.cstc2024ycjh-bgzxm0012)the Science and Technology Projects supported by China Coal Technology and Engineering Chongqing Design and Research Institute(Group)Co.,Ltd..(Grant No.H20230317)。
文摘Influenced by complex external factors,the displacement-time curve of reservoir landslides demonstrates both short-term and long-term diversity and dynamic complexity.It is difficult for existing methods,including Regression models and Neural network models,to perform multi-characteristic coupled displacement prediction because they fail to consider landslide creep characteristics.This paper integrates the creep characteristics of landslides with non-linear intelligent algorithms and proposes a dynamic intelligent landslide displacement prediction method based on a combination of the Biological Growth model(BG),Convolutional Neural Network(CNN),and Long ShortTerm Memory Network(LSTM).This prediction approach improves three different biological growth models,thereby effectively extracting landslide creep characteristic parameters.Simultaneously,it integrates external factors(rainfall and reservoir water level)to construct an internal and external comprehensive dataset for data augmentation,which is input into the improved CNN-LSTM model.Thereafter,harnessing the robust feature extraction capabilities and spatial translation invariance of CNN,the model autonomously captures short-term local fluctuation characteristics of landslide displacement,and combines LSTM's efficient handling of long-term nonlinear temporal data to improve prediction performance.An evaluation of the Liangshuijing landslide in the Three Gorges Reservoir Area indicates that BG-CNN-LSTM exhibits high prediction accuracy,excellent generalization capabilities when dealing with various types of landslides.The research provides an innovative approach to achieving the whole-process,realtime,high-precision displacement predictions for multicharacteristic coupled landslides.
基金supported by the National Natural Science Foundation of China(61801506)。
文摘Microwave radiation has been widely used in various fields,such as communication,industry,medical treatment,and military applications.Microwave radiation may cause injuries to both the structures and functions of various organs,such as the brain,heart,reproductive organs,and endocrine organs,which endanger human health.Therefore,it is both theoretically and clinically important to conduct studies on the biological effects induced by microwave radiation.The successful establishment of injury models is of great importance to the reliability and reproducibility of these studies.In this article,we review the microwave exposure conditions,subjects used to establish injury models,the methods used for the assessment of the injuries,and the indicators implemented to evaluate the success of injury model establishment in studies on biological effects induced by microwave radiation.
基金Acknowledgement This paper is supported by National Natural Science Foundation of China (Grant No. 60973092 and No. 60873146), the National High Technology Research and Development Program of China (Grant No.2009 AA02Z307), the "211 Project" of Jilin University, the Key Laboratory for Symbol Computation and Knowledge Engineering (Ministry of Education, China), and the Key Laboratory for New Technology of Biological Recognition of Jilin Province (No. 20082209).
文摘Inferring gene regulatory networks from large-scale expression data is an important topic in both cellular systems and computational biology. The inference of regulators might be the core factor for understanding actual regulatory conditions in gene regulatory networks, especially when strong regulators do work significantly. In this paper, we propose a novel approach based on combining neuro-fu^zy network models with biological knowledge to infer strong regulators and interrelated fuzzy rules. The hybrid neuro-fuzzy architecture can not only infer the fuzzy rules, which are suitable for describing the regulatory conditions in regulatory nctworks+ but also explain the meaning of nodes and weight value in the neural network. It can get useful rules automatically without lhctitious judgments. At the same time, it does not add recursive layers to the model, and the model can also strengthen the relationships among genes and reduce calculation. We use the proposed approach to reconstruct a partial gene regulatory network of yeast, The results show that this approach can work effectively.
文摘[Objective]The aim was to establish the linear regression prediction models between sowing time and plant productivity, biological yield of forage sorghum in autumn idle land.[Method]The relationships between sowing time and plant productivity, biological yield of forage sorghum were simulated and compared by using field experiment and linear regression analysis.[Result] The sowing time had an important influence on the plant productivity and biological yield of forage sorghum in autumn idle land. The plant productivity and biological yield of forage sorghum both decreased with the delay of sowing time.The regression model between plant fresh weight and sowing time was ?fresh=0.618-0.015x; the regression model between plant dry weight and sowing time was ?dry=0.184-0.005x; and the regression model between biological yield and sowing time was yield=29 126.461-711.448x. During July 23rd to August 30th, when the sowing time was delayed by 1 day, the plant fresh weight of forage sorghum was reduced by 0.015 g, the plant dry weight was reduced by 0.005 g, and the yield was reduced by 711.448 kg/hm2. [Conclusion] The three regression models established in this study will provide theoretical support for the production of forage sorghum.
文摘This article considers three types of biological systems:the dengue fever disease model,the COVID-19 virus model,and the transmission of Tuberculosis model.The new technique of creating the integration matrix for the Bernoulli wavelets is applied.Also,the novel method proposed in this paper is called the Bernoulli wavelet collocation scheme(BWCM).All three models are in the form system of coupled ordinary differential equations without an exact solution.These systems are converted into a system of algebraic equations using the Bernoulli wavelet collocation scheme.The numerical wave distributions of these governing models are obtained by solving the algebraic equations via the Newton-Raphson method.The results obtained from the developed strategy are compared to several schemes such as the Runge Kutta method,and ND solver in mathematical software.The convergence analyses are discussed through theorems.The newly implemented Bernoulli wavelet method improves the accuracy and converges when it is compared with the existing methods in the literature.
文摘Background: Calotropis procera (C. procera), is an authentic plant naturally grown in the flora of Dead Sea region. Despite its toxicity, C. procera presents healing properties. However, it has not been implemented yet in cosmetics as an active ingredient. Objective: The biological effects of C. procera callus extract on skin were elucidated solely and in combination with Dead Sea water (DSW). Methods: The capability of C. procera extract to protect against skin inflammation and irritation was tested on ex vivo human skin organ culture by LPS and SDS addition respectively. Viability and cytokine secretion were evaluated. The combination of C. procera extract with Dead Sea water was tested on full thickness skin equivalents. Gene expression and relevant biochemical markers for glycolysis, hypoxia and extracellular matrix balance were tested. Results: C. procera extract exhibits a protective biological activity against skin irritation and inflammation at the biochemical level. Furthermore, a combination of C. procera extract and DSW demonstrates a potential contribution for skin wellbeing via enhance energy production, resistance to hypoxia and extracellular matrix balance. Conclusions: Topical application of C. procera callus extract might support skin balance and wellbeing at the molecular level. Hence, it is recommended for new cosmetic formulae as standalone or in combination with Dead Sea water, in the effort to achieve anti-aging bio-activity that is working beyond skin aging symptoms, especially via skin calming effects and skin energy enhancement.
基金theChinaScholarshipCouncil (CSC)andOceanographicScientificFundsforYouthfromtheStateOceanographicAdministration (No .96 80 1)
文摘The oil spill impact analysis (OSIA) software system has been developed to supply a tool for comprehensive, quantitative environmental impact assessments resulting from oil spills. In the system, a biological component evaluates potential effects on exposed organisms based on results from a physico chemical fates component, including the extent and characteristics of the surface slick, and dissolved and total concentrations of hydrocarbons in the water column. The component includes a particle based exposure model for migratory adult fish populations, a particle based exposure model for spawning planktonic organisms (eggs and larvae), and an exposure model for wildlife species (sea birds or marine mammals). The exposure model for migratory adult fish populations simulates the migration behaviors of fish populations migrating to or staying in their feeding areas, over wintering areas or spawning areas, and determines the acute effects (mortality) and chronic accumulation (body burdens) from the dissolved contaminant. The exposure model for spawning planktonic organisms simulates the release of eggs and larvae, also as particles, from specific spawning areas during the spawning period, and determines their potential exposure to contaminants in the water or sediment. The exposure model for wild species calculates the exposure to surface oil of wildlife (bird and marine mammal) categories inhabiting the contaminated area. Compared with the earlier models in which all kinds of organisms are assumed evenly and randomly distributed, the updated biological exposure models can more realistically estimate potential effects on marine ecological system from oil spill pollution events.
基金The Natural Science Foundation of Hebei Province(F2024501044).
文摘The application of visual-language large models in the field of medical health has gradually become a research focus.The models combine the capability for image understanding and natural language processing,and can simultaneously process multi-modality data such as medical images and medical reports.These models can not only recognize images,but also understand the semantic relationship between images and texts,effectively realize the integration of medical information,and provide strong support for clinical decision-making and disease diagnosis.The visual-language large model has good performance for specific medical tasks,and also shows strong potential and high intelligence in the general task models.This paper provides a comprehensive review of the visual-language large model in the field of medical health.Specifically,this paper first introduces the basic theoretical basis and technical principles.Then,this paper introduces the specific application scenarios in the field of medical health,including modality fusion,semi-supervised learning,weakly supervised learning,unsupervised learning,cross-domain model and general models.Finally,the challenges including insufficient data,interpretability,and practical deployment are discussed.According to the existing challenges,four potential future development directions are given.
文摘In the era of AI,especially large models,the importance of open source has become increasingly prominent.First,open source allows innovation to avoid starting from scratch.Through iterative innovation,it promotes technical exchanges and learning globally.Second,resources required for large model R&D are difficult for a single institution to obtain.The evaluation of general large models also requires the participation of experts from various industries.Third,without open source collaboration,it is difficult to form a unified upper-layer software ecosystem.Therefore,open source has become an important cooperation mechanism to promote the development of AI and large models.There are two cases to illustrate how open source and international standards interact with each other.
基金Sichuan Provincial Administration of Traditional Chinese Medicine,Grant/Award Number:2023MS564National Natural Science Foundation of China,Grant/Award Number:82474436。
文摘Lung cancer has one of the highest rates of incidence and mortality worldwide,mak-ing research on its mechanisms and treatments crucial.Animal models are essential in lung cancer research as they accurately replicate the biological characteristics and treatment outcomes seen in human diseases.Currently,various lung cancer models have been established,including chemical induction models,orthotopic transplan-tation models,ectopic transplantation models,metastasis models,and gene editing mouse models.Additionally,lung cancer grafts can be categorized into two types:tissue-based and cell-based grafts.This paper summarizes the phenotypes,advan-tages,and disadvantages of various induction methods based on their modeling tech-niques.The goal is to enhance the simulation of clinical lung cancer characteristics and to establish a solid foundation for future clinical research.
文摘Large models,such as large language models(LLMs),vision-language models(VLMs),and multimodal agents,have become key elements in artificial intelli⁃gence(AI)systems.Their rapid development has greatly improved perception,generation,and decision-making in various fields.However,their vast scale and complexity bring about new security challenges.Issues such as backdoor vulnerabilities during training,jailbreaking in multimodal rea⁃soning,and data provenance and copyright auditing have made security a critical focus for both academia and industry.
基金supported by grants from the National Natural Science Foundation of China(81471736 and 81671760)the National Science and Technology Pillar Program during the Twelfth Five-Year Plan Period(2015BAI01B09)Project of Research Foundation of the Talent of Scientific and Technical Innovation of Harbin City(2016RAXYJ063)
文摘Background: Positron emission tomography(PET) is a noninvasive method to characterize different metabolic activities of tumors, providing information for staging, prognosis, and therapeutic response of patients with cancer. The aim of this study was to evaluate the feasibility of18F-fludeoxyglucose(18F-FDG) and 3’-deoxy-3’-18F-fluorothymidine(18F-FLT) PET in predicting tumor biological characteristics of colorectal cancer liver metastasis.Methods: The uptake rate of18F-FDG and18F-FLT in SW480 and SW620 cells was measured via an in vitro cell uptake assay. The region of interest was drawn over the tumor and liver to calculate the maximum standardized uptake value ratio(tumor/liver) from PET images in liver metastasis model. The correlation between tracer uptake in liver metastases and VEGF, Ki67 and CD44 expression was evaluated by linear regression.Results: Compared to SW620 tumor-bearing mice, SW480 tumor-bearing mice presented a higher rate of liver metastases. The uptake rate of18F-FDG in SW480 and SW620 cells was 6.07% ± 1.19% and2.82% ± 0.15%, respectively(t = 4.69, P = 0.04); that of18F-FLT was 24.81% ± 0.45% and 15.57% ± 0.66%, respectively(t = 19.99, P < 0.001). Micro-PET scan showed that all parameters of FLT were significantly higher in SW480 tumors than those in SW620 tumors. A moderate relationship was detected between metastases in the liver and18F-FLT uptake in primary tumors(r = 0.73, P = 0.0019).18F-FLT uptake was also positively correlated with the expression of CD44 in liver metastases(r = 0.81, P = 0.0049).Conclusions: The uptake of18F-FLT in metastatic tumor reflects different biological behaviors of colon cancer cells.18F-FLT can be used to evaluate the metastatic potential of colorectal cancer in nude mice.
文摘Myasthenia gravis is a chronic autoimmune disorder that affects the neuromuscular junction leading to fluctuating skeletal muscle fatigability. The majority of myasthenia gravis patients have detectable antibodies in their serum, targeting acetylcholine receptor, muscle-specific kinase, or related proteins. Current treatment for myasthenia gravis involves symptomatic therapy, immunosuppressive drugs such as corticosteroids, azathioprine, and mycophenolate mofetil, and thymectomy, which is primarily indicated in patients with thymoma or thymic hyperplasia. However, this condition continues to pose significant challenges including an unpredictable and variable disease progression, differing response to individual therapies, and substantial longterm side effects associated with standard treatments(including an increased risk of infections, osteoporosis, and diabetes), underscoring the necessity for a more personalized approach to treatment. Furthermore, about fifteen percent of patients, called “refractory myasthenia gravis patients”, do not respond adequately to standard therapies. In this context, the introduction of molecular therapies has marked a significant advance in myasthenia gravis management. Advances in understanding myasthenia gravis pathogenesis, especially the role of pathogenic antibodies, have driven the development of these biological drugs, which offer more selective, rapid, and safer alternatives to traditional immunosuppressants. This review aims to provide a comprehensive overview of emerging therapeutic strategies targeting specific immune pathways in myasthenia gravis, with a particular focus on preclinical evidence, therapeutic rationale, and clinical translation of B-cell depletion therapies, neonatal Fc receptor inhibitors, and complement inhibitors.
基金supported by the National Natural Science Foundation of China(Grant Nos.42188102&42206120)the Guangdong Major Project of Basic and Applied Basic Research(Grant No.2023B0303000017)+1 种基金the Innovation Team Project of Universities in Guangdong Province(Grant No.2023KCXTD028)the Ocean Negative Carbon Emissions(ONCE)program。
文摘1.Introduction Since the Industrial Revolution,oceans have absorbed approximately one-third of the carbon dioxide(CO_(2)) released by human activities and have maintained their capacity for CO_(2) uptake.The biological carbon pump(BCP)(Volk and Hoffert,1985)drives particulate organic carbon(POC),which is generated in the surface ocean by phytoplankton photosynthesis,into the interior of the ocean through the gravitational settling of POC and vertical migration of zooplankton.
基金supported by a grant from the Ministry of Research,Innovation and Digitization,CNCS/CCCDI-UEFISCDI,project number COFUND-CETP-SMART-LEM-1,within PNCDI Ⅳ.
文摘Extracting data from visually rich documents and charts using traditional methods that rely on OCR-based parsing poses multiple challenges,including layout complexity in unstructured formats,limitations in recognizing visual elements,and the correlation between different parts of the documents,as well as domain-specific semantics.Simply extracting text is not sufficient;advanced reasoning capabilities are proving to be essential to analyze content and answer questions accurately.This paper aims to evaluate the ability of the Large Language Models(LLMs)to correctly answer questions about various types of charts,comparing their performance when using images as input versus directly parsing PDF files.To retrieve the images from the PDF,ColPali,a model leveraging state-of-the-art visual languagemodels,is used to identify the relevant page containing the appropriate chart for each question.Google’s Gemini multimodal models were used to answer a set of questions through two approaches:1)processing images derived from PDF documents and 2)directly utilizing the content of the same PDFs.Our findings underscore the limitations of traditional OCR-based approaches in visual document understanding(VrDU)and demonstrate the advantages of multimodal methods in both data extraction and reasoning tasks.Through structured benchmarking of chart question answering(CQA)across input formats,our work contributes to the advancement of chart understanding(CU)and the broader field of multimodal document analysis.Using two diverse and information-rich sources:the World Health Statistics 2024 report by theWorld Health Organisation and the Global Banking Annual Review 2024 by McKinsey&Company,we examine the performance ofmultimodal LLMs across different input modalities,comparing their effectiveness in processing charts as images versus parsing directly from PDF content.These documents were selected due to their multimodal nature,combining dense textual analysis with varied visual representations,thus presenting realistic challenges for vision-language models.This comparison is aimed at assessing how advanced models perform with different input formats and to determine if an image-based approach enhances chart comprehension in terms of accurate data extraction and reasoning capabilities.
基金supported in part by Science and Technology Commission of Shanghai Municipality(Grant No.19ZR1462900)the National Science Foundation of China(Grant No.31300757)the National Science Foundation of China(Grant No.31870916 and No.31670941)
文摘Dengue virus(DENV)is a single-stranded RNA virus transmitted by mosquitoes in tropical and subtropical regions.It causes dengue fever,dengue hemorrhagic fever and dengue shock syndrome in patients.Each year,390 million people are estimated to be infected by four serotypes of dengue virus,creating a great burden on global public health and local economy.So far,no antiviral drug is available for dengue disease,and the newly licensed vaccine is far from satisfactory.One large obstacle for dengue vaccine and drug development is the lack of suitable small animal models.Although some DENV infection models have been developed,only a small number of viral strains can infect immunodeficient mice.In this study,with biologically cloned viruses from a single clinical isolate,we have established two mouse models of DENV infection,one is severe lethal infection in immunocompromised mice,and the other resembles self-limited disease manifestations in Balb/c mice with transient blockage of type I IFN responses.This study not only offers new small animal models of dengue viral infection,but also provides new viral variants for further investigations on dengue viral pathogenesis.
基金supported by the National Natural Science Foundation of China(Grant No.62202210).
文摘The application of generative artificial intelligence(AI)is bringing about notable changes in anime creation.This paper surveys recent advancements and applications of diffusion and language models in anime generation,focusing on their demonstrated potential to enhance production efficiency through automation and personalization.Despite these benefits,it is crucial to acknowledge the substantial initial computational investments required for training and deploying these models.We conduct an in-depth survey of cutting-edge generative AI technologies,encompassing models such as Stable Diffusion and GPT,and appraise pivotal large-scale datasets alongside quantifiable evaluation metrics.Review of the surveyed literature indicates the achievement of considerable maturity in the capacity of AI models to synthesize high-quality,aesthetically compelling anime visual images from textual prompts,alongside discernible progress in the generation of coherent narratives.However,achieving perfect long-form consistency,mitigating artifacts like flickering in video sequences,and enabling fine-grained artistic control remain critical ongoing challenges.Building upon these advancements,research efforts have increasingly pivoted towards the synthesis of higher-dimensional content,such as video and three-dimensional assets,with recent studies demonstrating significant progress in this burgeoning field.Nevertheless,formidable challenges endure amidst these advancements.Foremost among these are the substantial computational exigencies requisite for training and deploying these sophisticated models,particularly pronounced in the realm of high-dimensional generation such as video synthesis.Additional persistent hurdles include maintaining spatial-temporal consistency across complex scenes and mitigating ethical considerations surrounding bias and the preservation of human creative autonomy.This research underscores the transformative potential and inherent complexities of AI-driven synergy within the creative industries.We posit that future research should be dedicated to the synergistic fusion of diffusion and autoregressive models,the integration of multimodal inputs,and the balanced consideration of ethical implications,particularly regarding bias and the preservation of human creative autonomy,thereby establishing a robust foundation for the advancement of anime creation and the broader landscape of AI-driven content generation.
基金supported in part by NSFC under Grant Nos.62402379,U22A2029 and U24A20237.
文摘The unprecedented scale of large models,such as large language models(LLMs)and text-to-image diffusion models,has raised critical concerns about the unauthorized use of copyrighted data during model training.These concerns have spurred a growing demand for dataset copyright auditing techniques,which aim to detect and verify potential infringements in the training data of commercial AI systems.This paper presents a survey of existing auditing solutions,categorizing them across key dimensions:data modality,model training stage,data overlap scenarios,and model access levels.We highlight major trends,including the prevalence of black-box auditing methods and the emphasis on fine-tuning rather than pre-training.Through an in-depth analysis of 12 representative works,we extract four key observations that reveal the limitations of current methods.Furthermore,we identify three open challenges and propose future directions for robust,multimodal,and scalable auditing solutions.Our findings underscore the urgent need to establish standardized benchmarks and develop auditing frameworks that are resilient to low watermark densities and applicable in diverse deployment settings.
基金funded through India Meteorological Department,New Delhi,India under the Forecasting Agricultural output using Space,Agrometeorol ogy and Land based observations(FASAL)project and fund number:No.ASC/FASAL/KT-11/01/HQ-2010.
文摘Background Cotton is one of the most important commercial crops after food crops,especially in countries like India,where it’s grown extensively under rainfed conditions.Because of its usage in multiple industries,such as textile,medicine,and automobile industries,it has greater commercial importance.The crop’s performance is greatly influenced by prevailing weather dynamics.As climate changes,assessing how weather changes affect crop performance is essential.Among various techniques that are available,crop models are the most effective and widely used tools for predicting yields.Results This study compares statistical and machine learning models to assess their ability to predict cotton yield across major producing districts of Karnataka,India,utilizing a long-term dataset spanning from 1990 to 2023 that includes yield and weather factors.The artificial neural networks(ANNs)performed superiorly with acceptable yield deviations ranging within±10%during both vegetative stage(F1)and mid stage(F2)for cotton.The model evaluation metrics such as root mean square error(RMSE),normalized root mean square error(nRMSE),and modelling efficiency(EF)were also within the acceptance limits in most districts.Furthermore,the tested ANN model was used to assess the importance of the dominant weather factors influencing crop yield in each district.Specifically,the use of morning relative humidity as an individual parameter and its interaction with maximum and minimum tempera-ture had a major influence on cotton yield in most of the yield predicted districts.These differences highlighted the differential interactions of weather factors in each district for cotton yield formation,highlighting individual response of each weather factor under different soils and management conditions over the major cotton growing districts of Karnataka.Conclusions Compared with statistical models,machine learning models such as ANNs proved higher efficiency in forecasting the cotton yield due to their ability to consider the interactive effects of weather factors on yield forma-tion at different growth stages.This highlights the best suitability of ANNs for yield forecasting in rainfed conditions and for the study on relative impacts of weather factors on yield.Thus,the study aims to provide valuable insights to support stakeholders in planning effective crop management strategies and formulating relevant policies.
文摘In recent years,large vision-language models(VLMs)have achieved significant breakthroughs in cross-modal understanding and generation.However,the safety issues arising from their multimodal interactions become prominent.VLMs are vulnerable to jailbreak attacks,where attackers craft carefully designed prompts to bypass safety mechanisms,leading them to generate harmful content.To address this,we investigate the alignment between visual inputs and task execution,uncovering locality defects and attention biases in VLMs.Based on these findings,we propose VOTI,a novel jailbreak framework leveraging visual obfuscation and task induction.VOTI subtly embeds malicious keywords within neutral image layouts to evade detection,and breaks down harmful queries into a sequence of subtasks.This approach disperses malicious intent across modalities,exploiting VLMs’over-reliance on local visual cues and their fragility in multi-step reasoning to bypass global safety mechanisms.Implemented as an automated framework,VOTI integrates large language models as red-team assistants to generate and iteratively optimize jailbreak strategies.Extensive experiments across seven mainstream VLMs demonstrate VOTI’s effectiveness,achieving a 73.46%attack success rate on GPT-4o-mini.These results reveal critical vulnerabilities in VLMs,highlighting the urgent need for improving robust defenses and multimodal alignment.