As a key node of modern transportation network,the informationization management of road tunnels is crucial to ensure the operation safety and traffic efficiency.However,the existing tunnel vehicle modeling methods ge...As a key node of modern transportation network,the informationization management of road tunnels is crucial to ensure the operation safety and traffic efficiency.However,the existing tunnel vehicle modeling methods generally have problems such as insufficient 3D scene description capability and low dynamic update efficiency,which are difficult to meet the demand of real-time accurate management.For this reason,this paper proposes a vehicle twin modeling method for road tunnels.This approach starts from the actual management needs,and supports multi-level dynamic modeling from vehicle type,size to color by constructing a vehicle model library that can be flexibly invoked;at the same time,semantic constraint rules with geometric layout,behavioral attributes,and spatial relationships are designed to ensure that the virtual model matches with the real model with a high degree of similarity;ultimately,the prototype system is constructed and the case region is selected for the case study,and the dynamic vehicle status in the tunnel is realized by integrating real-time monitoring data with semantic constraints for precise virtual-real mapping.Finally,the prototype system is constructed and case experiments are conducted in selected case areas,which are combined with real-time monitoring data to realize dynamic updating and three-dimensional visualization of vehicle states in tunnels.The experiments show that the proposed method can run smoothly with an average rendering efficiency of 17.70 ms while guaranteeing the modeling accuracy(composite similarity of 0.867),which significantly improves the real-time and intuitive tunnel management.The research results provide reliable technical support for intelligent operation and emergency response of road tunnels,and offer new ideas for digital twin modeling of complex scenes.展开更多
The Electro–Hydrostatic Actuator(EHA)is applied to drive the control surface in flightcontrol system of more electric aircraft.In EHA,the Oil-Immersed Motor Pump(OMP)serves asthe core as a power assembly.However,the ...The Electro–Hydrostatic Actuator(EHA)is applied to drive the control surface in flightcontrol system of more electric aircraft.In EHA,the Oil-Immersed Motor Pump(OMP)serves asthe core as a power assembly.However,the compact integration of the OMP presents challenges inefficiently dissipating internal heat,leading to a performance degradation of the EHA due to ele-vated temperatures.Therefore,accurately modeling and predicting the internal thermal dynamicsof the OMP hold considerable significance for monitoring the operational condition of the EHA.In view of this,a modeling method considering cumulative thermal coupling was hereby proposed.Based on the proposed method,the thermal models of the motor and the pump were established,taking into account heat accumulation and transfer.Taking the leakage oil as the heat couplingpoint between the motor and the pump,the dynamic thermal coupling model of the OMP wasdeveloped,with the thermal characteristics of the oil considered.Additionally,the comparativeexperiments were conducted to illustrate the efficiency of the proposed model.The experimentalresults demonstrate that the proposed dynamic thermal coupling model accurately captured thethermal behavior of OMP,outperforming the static thermal parameter model.Overall,thisadvancement is crucial for effectively monitoring the health of EHA and ensuring flight safety.展开更多
Semi-crystalline polymer laser powder bed fusion(L-PBF)has recently attracted increasing interest due to its potential for fabricating complex geometry.However,a more comprehensive understanding of the underlying phys...Semi-crystalline polymer laser powder bed fusion(L-PBF)has recently attracted increasing interest due to its potential for fabricating complex geometry.However,a more comprehensive understanding of the underlying physics during L-PBF is required to better control the properties of the final part.This work proposed a multi-layer numerical model to study the temperature and phase evolution during the polyamide-12(PA12)L-PBF process.The Descend and Parallel Chord methods were introduced to improve the convergence of the non-linear thermal solver.The level-set-based mesh adaptation strategy,governed by multi-physical fields,was applied to alleviate the calculation and accurately track the phase evolution.The processing simulation on the dog-bone model revealed that preheating temperature significantly influences the crystallization behavior.Finally,the multi-layer simulation demonstrated that such a developed numerical model can be used to study the phase transformation during powder layer updating and the cyclic laser sintering phenomena.Moreover,the numerical study suggested that crystallization occurs slowly during the L-PBF process.展开更多
In recent years,there has been an increasing need for climate information across diverse sectors of society.This demand has arisen from the necessity to adapt to and mitigate the impacts of climate variability and cha...In recent years,there has been an increasing need for climate information across diverse sectors of society.This demand has arisen from the necessity to adapt to and mitigate the impacts of climate variability and change.Likewise,this period has seen a significant increase in our understanding of the physical processes and mechanisms that drive precipitation and its variability across different regions of Africa.By leveraging a large volume of climate model outputs,numerous studies have investigated the model representation of African precipitation as well as underlying physical processes.These studies have assessed whether the physical processes are well depicted and whether the models are fit for informing mitigation and adaptation strategies.This paper provides a review of the progress in precipitation simulation overAfrica in state-of-the-science climate models and discusses the major issues and challenges that remain.展开更多
The surge in smishing attacks underscores the urgent need for robust,real-time detection systems powered by advanced deep learning models.This paper introduces PhishNet,a novel ensemble learning framework that integra...The surge in smishing attacks underscores the urgent need for robust,real-time detection systems powered by advanced deep learning models.This paper introduces PhishNet,a novel ensemble learning framework that integrates transformer-based models(RoBERTa)and large language models(LLMs)(GPT-OSS 120B,LLaMA3.370B,and Qwen332B)to enhance smishing detection performance significantly.To mitigate class imbalance,we apply synthetic data augmentation using T5 and leverage various text preprocessing techniques.Our system employs a duallayer voting mechanism:weighted majority voting among LLMs and a final ensemble vote to classify messages as ham,spam,or smishing.Experimental results show an average accuracy improvement from 96%to 98.5%compared to the best standalone transformer,and from 93%to 98.5%when compared to LLMs across datasets.Furthermore,we present a real-time,user-friendly application to operationalize our detection model for practical use.PhishNet demonstrates superior scalability,usability,and detection accuracy,filling critical gaps in current smishing detection methodologies.展开更多
Kinetic impact is the most practical planetary-defense technique,with momentum-transfer efficiency central to deflection design.We present a Monte Carlo photometric framework that couples ejecta sampling,dynamical evo...Kinetic impact is the most practical planetary-defense technique,with momentum-transfer efficiency central to deflection design.We present a Monte Carlo photometric framework that couples ejecta sampling,dynamical evolution,and image synthesis to compare directly with HST,LICIACube,ground-based and Lucy observations of the DART impact.Decomposing ejecta into(1)a highvelocity(~1600 m/s)plume exhibiting Na/K resonance,(2)a low-velocity(~1 m/s)conical component shaped by binary gravity and solar radiation pressure,and(3)meter-scale boulders,we quantify each component’s mass and momentum.Fitting photometric decay curves and morphological evolution yields size-velocity distributions and,via scaling laws,estimates of Dimorphos’bulk density,cratering parameters,and cohesive strength that agree with dynamical constraints.Photometric ejecta modeling therefore provides a robust route to constrain momentum enhancement and target properties,improving predictive capability for kinetic-deflection missions.展开更多
Automation and intelligence have become the primary trends in the design of investment casting processes.However,the design of gating and riser systems still lacks precise quantitative evaluation criteria.Numerical si...Automation and intelligence have become the primary trends in the design of investment casting processes.However,the design of gating and riser systems still lacks precise quantitative evaluation criteria.Numerical simulation plays a significant role in quantitatively evaluating current processes and making targeted improvements,but its limitations lie in the inability to dynamically reflect the formation outcomes of castings under varying process conditions,making real-time adjustments to gating and riser designs challenging.In this study,an automated design model for gating and riser systems based on integrated parametric 3D modeling-simulation framework is proposed,which enhances the flexibility and usability of evaluating the casting process by simulation.Firstly,geometric feature extraction technology is employed to obtain the geometric information of the target casting.Based on this information,an automated design framework for gating and riser systems is established,incorporating multiple structural parameters for real-time process control.Subsequently,the simulation results for various structural parameters are analyzed,and the influence of these parameters on casting formation is thoroughly investigated.Finally,the optimal design scheme is generated and validated through experimental verification.Simulation analysis and experimental results show that using a larger gate neck(24 mm in side length) and external risers promotes a more uniform temperature distribution and a more stable flow state,effectively eliminating shrinkage cavities and enhancing process yield by 15%.展开更多
To address the issues of frequent identity switches(IDs)and degraded identification accuracy in multi object tracking(MOT)under complex occlusion scenarios,this study proposes an occlusion-robust tracking framework ba...To address the issues of frequent identity switches(IDs)and degraded identification accuracy in multi object tracking(MOT)under complex occlusion scenarios,this study proposes an occlusion-robust tracking framework based on face-pedestrian joint feature modeling.By constructing a joint tracking model centered on“intra-class independent tracking+cross-category dynamic binding”,designing a multi-modal matching metric with spatio-temporal and appearance constraints,and innovatively introducing a cross-category feature mutual verification mechanism and a dual matching strategy,this work effectively resolves performance degradation in traditional single-category tracking methods caused by short-term occlusion,cross-camera tracking,and crowded environments.Experiments on the Chokepoint_Face_Pedestrian_Track test set demonstrate that in complex scenes,the proposed method improves Face-Pedestrian Matching F1 area under the curve(F1 AUC)by approximately 4 to 43 percentage points compared to several traditional methods.The joint tracking model achieves overall performance metrics of IDF1:85.1825%and MOTA:86.5956%,representing improvements of 0.91 and 0.06 percentage points,respectively,over the baseline model.Ablation studies confirm the effectiveness of key modules such as the Intersection over Area(IoA)/Intersection over Union(IoU)joint metric and dynamic threshold adjustment,validating the significant role of the cross-category identity matching mechanism in enhancing tracking stability.Our_model shows a 16.7%frame per second(FPS)drop vs.fairness of detection and re-identification in multiple object tracking(FairMOT),with its cross-category binding module adding aboute 10%overhead,yet maintains near-real-time performance for essential face-pedestrian tracking at small resolutions.展开更多
The intracontinental subduction of a>200-km-long section of the Tajik-Tarim lithosphere beneath the Pamir Mountains is proposed to explain nearly 30 km of shortening in the Tajik fold-thrust belt and the Pamir upli...The intracontinental subduction of a>200-km-long section of the Tajik-Tarim lithosphere beneath the Pamir Mountains is proposed to explain nearly 30 km of shortening in the Tajik fold-thrust belt and the Pamir uplift.Seismic imaging revealed that the upper slab was scraped and that the lower slab had subducted to a depth of>150 km.These features constitute the tectonic complexity of the Pamirs,as well as the thermal subduction mechanism involved,which remains poorly understood.Hence,in this study,high-resolution three-dimensional(3D)kinematic modeling is applied to investigate the thermal structure and geometry of the subducting slab beneath the Pamirs.The modeled slab configuration reveals distinct along-strike variations,with a steeply dipping slab beneath the southern Pamirs,a more gently inclined slab beneath the northern Pamirs,and apparent upper slab termination at shallow depths beneath the Pamirs.The thermal field reveals a cold slab core after delamination,with temperatures ranging from 400℃to 800℃,enveloped by a hotter mantle reaching~1400℃.The occurrence of intermediate-depth earthquakes aligns primarily with colder slab regions,particularly near the slab tear-off below the southwestern Pamirs,indicating a strong correlation between slab temperature and seismicity.In contrast,the northern Pamirs exhibit reduced seismicity at depth,which is likely associated with thermal weakening and delamination.The central Pamirs show a significant thermal anomaly caused by a concave slab,where the coldest crust does not descend deeply,further suggesting crustal detachment or mechanical failure.The lateral asymmetry in slab temperature possibly explains the mechanism of lateral tearing and differential slab-mantle coupling.展开更多
In order to solve the problem of modeling product configuration knowledge at the semantic level to successfully implement the mass customization strategy, an approach of ontology-based configuration knowledge modeling...In order to solve the problem of modeling product configuration knowledge at the semantic level to successfully implement the mass customization strategy, an approach of ontology-based configuration knowledge modeling, combining semantic web technologies, was proposed. A general configuration ontology was developed to provide a common concept structure for modeling configuration knowledge and rules of specific product domains. The OWL web ontology language and semantic web rule language (SWRL) were used to formally represent the configuration ontology, domain configuration knowledge and rules to enhance the consistency, maintainability and reusability of all the configuration knowledge. The configuration knowledge modeling of a customizable personal computer family shows that the approach can provide explicit, computerunderstandable knowledge semantics for specific product configuration domains and can efficiently support automatic configuration tasks of complex products.展开更多
基金National Natural Science Foundation of China(Nos.42301473,42271424,42171397)Chinese Postdoctoral Innovation Talents Support Program(No.BX20230299)+2 种基金China Postdoctoral Science Foundation(No.2023M742884)Natural Science Foundation of Sichuan Province(Nos.24NSFSC2264,2025ZNSFSC0322)Key Research and Development Project of Sichuan Province(No.24ZDYF0633).
文摘As a key node of modern transportation network,the informationization management of road tunnels is crucial to ensure the operation safety and traffic efficiency.However,the existing tunnel vehicle modeling methods generally have problems such as insufficient 3D scene description capability and low dynamic update efficiency,which are difficult to meet the demand of real-time accurate management.For this reason,this paper proposes a vehicle twin modeling method for road tunnels.This approach starts from the actual management needs,and supports multi-level dynamic modeling from vehicle type,size to color by constructing a vehicle model library that can be flexibly invoked;at the same time,semantic constraint rules with geometric layout,behavioral attributes,and spatial relationships are designed to ensure that the virtual model matches with the real model with a high degree of similarity;ultimately,the prototype system is constructed and the case region is selected for the case study,and the dynamic vehicle status in the tunnel is realized by integrating real-time monitoring data with semantic constraints for precise virtual-real mapping.Finally,the prototype system is constructed and case experiments are conducted in selected case areas,which are combined with real-time monitoring data to realize dynamic updating and three-dimensional visualization of vehicle states in tunnels.The experiments show that the proposed method can run smoothly with an average rendering efficiency of 17.70 ms while guaranteeing the modeling accuracy(composite similarity of 0.867),which significantly improves the real-time and intuitive tunnel management.The research results provide reliable technical support for intelligent operation and emergency response of road tunnels,and offer new ideas for digital twin modeling of complex scenes.
基金supported by the National Key R&D Program of China(No.2021YFB2011300)the National Natural Science Foundation of China(Nos.52275044,U2233212)。
文摘The Electro–Hydrostatic Actuator(EHA)is applied to drive the control surface in flightcontrol system of more electric aircraft.In EHA,the Oil-Immersed Motor Pump(OMP)serves asthe core as a power assembly.However,the compact integration of the OMP presents challenges inefficiently dissipating internal heat,leading to a performance degradation of the EHA due to ele-vated temperatures.Therefore,accurately modeling and predicting the internal thermal dynamicsof the OMP hold considerable significance for monitoring the operational condition of the EHA.In view of this,a modeling method considering cumulative thermal coupling was hereby proposed.Based on the proposed method,the thermal models of the motor and the pump were established,taking into account heat accumulation and transfer.Taking the leakage oil as the heat couplingpoint between the motor and the pump,the dynamic thermal coupling model of the OMP wasdeveloped,with the thermal characteristics of the oil considered.Additionally,the comparativeexperiments were conducted to illustrate the efficiency of the proposed model.The experimentalresults demonstrate that the proposed dynamic thermal coupling model accurately captured thethermal behavior of OMP,outperforming the static thermal parameter model.Overall,thisadvancement is crucial for effectively monitoring the health of EHA and ensuring flight safety.
文摘Semi-crystalline polymer laser powder bed fusion(L-PBF)has recently attracted increasing interest due to its potential for fabricating complex geometry.However,a more comprehensive understanding of the underlying physics during L-PBF is required to better control the properties of the final part.This work proposed a multi-layer numerical model to study the temperature and phase evolution during the polyamide-12(PA12)L-PBF process.The Descend and Parallel Chord methods were introduced to improve the convergence of the non-linear thermal solver.The level-set-based mesh adaptation strategy,governed by multi-physical fields,was applied to alleviate the calculation and accurately track the phase evolution.The processing simulation on the dog-bone model revealed that preheating temperature significantly influences the crystallization behavior.Finally,the multi-layer simulation demonstrated that such a developed numerical model can be used to study the phase transformation during powder layer updating and the cyclic laser sintering phenomena.Moreover,the numerical study suggested that crystallization occurs slowly during the L-PBF process.
基金the World Climate Research Programme(WCRP),Climate Variability and Predictability(CLIVAR),and Global Energy and Water Exchanges(GEWEX)for facilitating the coordination of African monsoon researchsupport from the Center for Earth System Modeling,Analysis,and Data at the Pennsylvania State Universitythe support of the Office of Science of the U.S.Department of Energy Biological and Environmental Research as part of the Regional&Global Model Analysis(RGMA)program area。
文摘In recent years,there has been an increasing need for climate information across diverse sectors of society.This demand has arisen from the necessity to adapt to and mitigate the impacts of climate variability and change.Likewise,this period has seen a significant increase in our understanding of the physical processes and mechanisms that drive precipitation and its variability across different regions of Africa.By leveraging a large volume of climate model outputs,numerous studies have investigated the model representation of African precipitation as well as underlying physical processes.These studies have assessed whether the physical processes are well depicted and whether the models are fit for informing mitigation and adaptation strategies.This paper provides a review of the progress in precipitation simulation overAfrica in state-of-the-science climate models and discusses the major issues and challenges that remain.
基金funded by the Deanship of Scientific Research(DSR)at King Abdulaziz University,Jeddah,under Grant No.(GPIP:1074-612-2024).
文摘The surge in smishing attacks underscores the urgent need for robust,real-time detection systems powered by advanced deep learning models.This paper introduces PhishNet,a novel ensemble learning framework that integrates transformer-based models(RoBERTa)and large language models(LLMs)(GPT-OSS 120B,LLaMA3.370B,and Qwen332B)to enhance smishing detection performance significantly.To mitigate class imbalance,we apply synthetic data augmentation using T5 and leverage various text preprocessing techniques.Our system employs a duallayer voting mechanism:weighted majority voting among LLMs and a final ensemble vote to classify messages as ham,spam,or smishing.Experimental results show an average accuracy improvement from 96%to 98.5%compared to the best standalone transformer,and from 93%to 98.5%when compared to LLMs across datasets.Furthermore,we present a real-time,user-friendly application to operationalize our detection model for practical use.PhishNet demonstrates superior scalability,usability,and detection accuracy,filling critical gaps in current smishing detection methodologies.
基金supported by the National Natural Science Foundation of China(Grant No.12272018)the National Key Basic Research Project(2022JCJQZD20600).
文摘Kinetic impact is the most practical planetary-defense technique,with momentum-transfer efficiency central to deflection design.We present a Monte Carlo photometric framework that couples ejecta sampling,dynamical evolution,and image synthesis to compare directly with HST,LICIACube,ground-based and Lucy observations of the DART impact.Decomposing ejecta into(1)a highvelocity(~1600 m/s)plume exhibiting Na/K resonance,(2)a low-velocity(~1 m/s)conical component shaped by binary gravity and solar radiation pressure,and(3)meter-scale boulders,we quantify each component’s mass and momentum.Fitting photometric decay curves and morphological evolution yields size-velocity distributions and,via scaling laws,estimates of Dimorphos’bulk density,cratering parameters,and cohesive strength that agree with dynamical constraints.Photometric ejecta modeling therefore provides a robust route to constrain momentum enhancement and target properties,improving predictive capability for kinetic-deflection missions.
基金financially supported by the National Key Research and Development Program of China (2022YFB3706802)。
文摘Automation and intelligence have become the primary trends in the design of investment casting processes.However,the design of gating and riser systems still lacks precise quantitative evaluation criteria.Numerical simulation plays a significant role in quantitatively evaluating current processes and making targeted improvements,but its limitations lie in the inability to dynamically reflect the formation outcomes of castings under varying process conditions,making real-time adjustments to gating and riser designs challenging.In this study,an automated design model for gating and riser systems based on integrated parametric 3D modeling-simulation framework is proposed,which enhances the flexibility and usability of evaluating the casting process by simulation.Firstly,geometric feature extraction technology is employed to obtain the geometric information of the target casting.Based on this information,an automated design framework for gating and riser systems is established,incorporating multiple structural parameters for real-time process control.Subsequently,the simulation results for various structural parameters are analyzed,and the influence of these parameters on casting formation is thoroughly investigated.Finally,the optimal design scheme is generated and validated through experimental verification.Simulation analysis and experimental results show that using a larger gate neck(24 mm in side length) and external risers promotes a more uniform temperature distribution and a more stable flow state,effectively eliminating shrinkage cavities and enhancing process yield by 15%.
基金supported by the confidential research grant No.a8317。
文摘To address the issues of frequent identity switches(IDs)and degraded identification accuracy in multi object tracking(MOT)under complex occlusion scenarios,this study proposes an occlusion-robust tracking framework based on face-pedestrian joint feature modeling.By constructing a joint tracking model centered on“intra-class independent tracking+cross-category dynamic binding”,designing a multi-modal matching metric with spatio-temporal and appearance constraints,and innovatively introducing a cross-category feature mutual verification mechanism and a dual matching strategy,this work effectively resolves performance degradation in traditional single-category tracking methods caused by short-term occlusion,cross-camera tracking,and crowded environments.Experiments on the Chokepoint_Face_Pedestrian_Track test set demonstrate that in complex scenes,the proposed method improves Face-Pedestrian Matching F1 area under the curve(F1 AUC)by approximately 4 to 43 percentage points compared to several traditional methods.The joint tracking model achieves overall performance metrics of IDF1:85.1825%and MOTA:86.5956%,representing improvements of 0.91 and 0.06 percentage points,respectively,over the baseline model.Ablation studies confirm the effectiveness of key modules such as the Intersection over Area(IoA)/Intersection over Union(IoU)joint metric and dynamic threshold adjustment,validating the significant role of the cross-category identity matching mechanism in enhancing tracking stability.Our_model shows a 16.7%frame per second(FPS)drop vs.fairness of detection and re-identification in multiple object tracking(FairMOT),with its cross-category binding module adding aboute 10%overhead,yet maintains near-real-time performance for essential face-pedestrian tracking at small resolutions.
基金the Chinese Academy of Sciences Pioneer Hundred Talents Program and the Second Tibetan Plateau Scientific Expedition and Research Program(Grant No.2019QZKK0708)supported by a MEXT(Ministry of Education,Culture,Sports,Science and Technology)KAKENHI(Grants-in-Aid for Scientific Research)grant(Grant No.21H05203)Kobe University Strategic International Collaborative Research Grant(Type B Fostering Joint Research).
文摘The intracontinental subduction of a>200-km-long section of the Tajik-Tarim lithosphere beneath the Pamir Mountains is proposed to explain nearly 30 km of shortening in the Tajik fold-thrust belt and the Pamir uplift.Seismic imaging revealed that the upper slab was scraped and that the lower slab had subducted to a depth of>150 km.These features constitute the tectonic complexity of the Pamirs,as well as the thermal subduction mechanism involved,which remains poorly understood.Hence,in this study,high-resolution three-dimensional(3D)kinematic modeling is applied to investigate the thermal structure and geometry of the subducting slab beneath the Pamirs.The modeled slab configuration reveals distinct along-strike variations,with a steeply dipping slab beneath the southern Pamirs,a more gently inclined slab beneath the northern Pamirs,and apparent upper slab termination at shallow depths beneath the Pamirs.The thermal field reveals a cold slab core after delamination,with temperatures ranging from 400℃to 800℃,enveloped by a hotter mantle reaching~1400℃.The occurrence of intermediate-depth earthquakes aligns primarily with colder slab regions,particularly near the slab tear-off below the southwestern Pamirs,indicating a strong correlation between slab temperature and seismicity.In contrast,the northern Pamirs exhibit reduced seismicity at depth,which is likely associated with thermal weakening and delamination.The central Pamirs show a significant thermal anomaly caused by a concave slab,where the coldest crust does not descend deeply,further suggesting crustal detachment or mechanical failure.The lateral asymmetry in slab temperature possibly explains the mechanism of lateral tearing and differential slab-mantle coupling.
基金The National Natural Science Foundation of China(No.70471023).
文摘In order to solve the problem of modeling product configuration knowledge at the semantic level to successfully implement the mass customization strategy, an approach of ontology-based configuration knowledge modeling, combining semantic web technologies, was proposed. A general configuration ontology was developed to provide a common concept structure for modeling configuration knowledge and rules of specific product domains. The OWL web ontology language and semantic web rule language (SWRL) were used to formally represent the configuration ontology, domain configuration knowledge and rules to enhance the consistency, maintainability and reusability of all the configuration knowledge. The configuration knowledge modeling of a customizable personal computer family shows that the approach can provide explicit, computerunderstandable knowledge semantics for specific product configuration domains and can efficiently support automatic configuration tasks of complex products.