为了保证运维阶段桥梁结构安全,提升桥梁运维工作的效率,开展公路混凝土梁式桥运维阶段建筑信息模型(building information modeling,BIM)技术应用研究。在对公路桥梁现行编码体系进行扩展的基础上,提出1种参数化快速建模方法,以快速完...为了保证运维阶段桥梁结构安全,提升桥梁运维工作的效率,开展公路混凝土梁式桥运维阶段建筑信息模型(building information modeling,BIM)技术应用研究。在对公路桥梁现行编码体系进行扩展的基础上,提出1种参数化快速建模方法,以快速完成桥梁构件族的创建与整体模型的集成。借助Autodesk Revit软件应用程序编程接口(application programming interface,API),采用C#语言,开发公路混凝土梁式桥智慧运维状态评估系统,以实际工程应用进行验证分析。研究结果表明:全面统一的桥梁信息编码体系,能够提高桥梁信息统计与检索效率;提出的快速建模方法能够显著减少建模工作量,建模时间较传统建模方法可减少60%,并保证模型的准确性与规范性;运维状态评估系统能够实现养护数据的充分利用与桥梁评定工作的自动化,通过对桥梁运维信息的有效组织,实现服役性能的长期追踪,从而确保运营期桥梁结构状态安全稳定。研究结果可为公路混凝土梁式桥运维管理提供技术支撑,提升桥梁运维的数字化水平。展开更多
为更精确地预测航班过站时间,将全国机场按照规模差异及不同地理位置所导致的客流量差异和天气差异对航班过站时间造成的不同影响进行分类,基于各类机场航班数据,构建混合轻量级梯度提升机算法(LightGBM)模型对航班过站时间分类预测。...为更精确地预测航班过站时间,将全国机场按照规模差异及不同地理位置所导致的客流量差异和天气差异对航班过站时间造成的不同影响进行分类,基于各类机场航班数据,构建混合轻量级梯度提升机算法(LightGBM)模型对航班过站时间分类预测。引入自适应鲁棒损失函数(adaptive robust loss function,ARLF)改进LightGBM模型损失函数,降低航班数据中存在离群值的影响;通过改进的麻雀搜索算法对改进后的LightGBM模型进行参数寻优,形成混合LightGBM模型。采用全国2019年全年航班数据进行验证,实验结果验证了方法的可行性。展开更多
文摘为更精确地预测航班过站时间,将全国机场按照规模差异及不同地理位置所导致的客流量差异和天气差异对航班过站时间造成的不同影响进行分类,基于各类机场航班数据,构建混合轻量级梯度提升机算法(LightGBM)模型对航班过站时间分类预测。引入自适应鲁棒损失函数(adaptive robust loss function,ARLF)改进LightGBM模型损失函数,降低航班数据中存在离群值的影响;通过改进的麻雀搜索算法对改进后的LightGBM模型进行参数寻优,形成混合LightGBM模型。采用全国2019年全年航班数据进行验证,实验结果验证了方法的可行性。