期刊文献+
共找到177篇文章
< 1 2 9 >
每页显示 20 50 100
Broad-Learning-System-Based Model-Free Adaptive Predictive Control for Nonlinear MASs Under DoS Attacks
1
作者 Hongxing Xiong Guangdeng Chen +1 位作者 Hongru Ren Hongyi Li 《IEEE/CAA Journal of Automatica Sinica》 2025年第2期381-393,共13页
In this paper, the containment control problem in nonlinear multi-agent systems(NMASs) under denial-of-service(DoS) attacks is addressed. Firstly, a prediction model is obtained using the broad learning technique to t... In this paper, the containment control problem in nonlinear multi-agent systems(NMASs) under denial-of-service(DoS) attacks is addressed. Firstly, a prediction model is obtained using the broad learning technique to train historical data generated by the system offline without DoS attacks. Secondly, the dynamic linearization method is used to obtain the equivalent linearization model of NMASs. Then, a novel model-free adaptive predictive control(MFAPC) framework based on historical and online data generated by the system is proposed, which combines the trained prediction model with the model-free adaptive control method. The development of the MFAPC method motivates a much simpler robust predictive control solution that is convenient to use in the case of DoS attacks. Meanwhile, the MFAPC algorithm provides a unified predictive framework for solving consensus tracking and containment control problems. The boundedness of the containment error can be proven by using the contraction mapping principle and the mathematical induction method. Finally, the proposed MFAPC is assessed through comparative experiments. 展开更多
关键词 Broad learning technique denial-of-service(DoS) model-free adaptive predictive control(MFAPC) nonlinear multiagent systems(NMASs)
在线阅读 下载PDF
Adaptive Iterative Learning Control for Nonlinearly Parameterized Systems with Unknown Time-varying Delay and Unknown Control Direction 被引量:13
2
作者 Dan Li Jun-Min Li Department of Mathematics,Xidian University,Xi an 710071,China 《International Journal of Automation and computing》 EI 2012年第6期578-586,共9页
This paper proposes a new adaptive iterative learning control approach for a class of nonlinearly parameterized systems with unknown time-varying delay and unknown control direction.By employing the parameter separati... This paper proposes a new adaptive iterative learning control approach for a class of nonlinearly parameterized systems with unknown time-varying delay and unknown control direction.By employing the parameter separation technique and signal replacement mechanism,the approach can overcome unknown time-varying parameters and unknown time-varying delay of the nonlinear systems.By incorporating a Nussbaum-type function,the proposed approach can deal with the unknown control direction of the nonlinear systems.Based on a Lyapunov-Krasovskii-like composite energy function,the convergence of tracking error sequence is achieved in the iteration domain.Finally,two simulation examples are provided to illustrate the feasibility of the proposed control method. 展开更多
关键词 Nonlinearly time-varying parameterized systems unknown time-varying delay unknown control direction composite energy function adaptive iterative learning control.
原文传递
Adaptive Iterative Learning Control for Nonlinear Time-delay Systems with Periodic Disturbances Using FSE-neural Network 被引量:4
3
作者 Chun-Li Zhang Jun-Min Li 《International Journal of Automation and computing》 EI 2011年第4期403-410,共8页
An adaptive iterative learning control scheme is presented for a class of strict-feedback nonlinear time-delay systems, with unknown nonlinearly parameterised and time-varying disturbed functions of known periods. Rad... An adaptive iterative learning control scheme is presented for a class of strict-feedback nonlinear time-delay systems, with unknown nonlinearly parameterised and time-varying disturbed functions of known periods. Radial basis function neural network and Fourier series expansion (FSE) are combined into a new function approximator to model each suitable disturbed function in systems. The requirement of the traditional iterative learning control algorithm on the nonlinear functions (such as global Lipschitz condition) is relaxed. Furthermore, by using appropriate Lyapunov-Krasovskii functionals, all signs in the closed loop system are guaranteed to be semiglobally uniformly ultimately bounded, and the output of the system is proved to converge to the desired trajectory. A simulation example is provided to illustrate the effectiveness of the control scheme. 展开更多
关键词 adaptive control iterative learning control (ILC) time-delay systems Fourier series expansion-neural network periodic disturbances.
在线阅读 下载PDF
Observer-based Adaptive Iterative Learning Control for Nonlinear Systems with Time-varying Delays 被引量:10
4
作者 Wei-Sheng Chen Rui-Hong Li Jing Li 《International Journal of Automation and computing》 EI 2010年第4期438-446,共9页
An observer-based adaptive iterative learning control(AILC)scheme is developed for a class of nonlinear systems with unknown time-varying parameters and unknown time-varying delays.The linear matrix inequality(LMI)met... An observer-based adaptive iterative learning control(AILC)scheme is developed for a class of nonlinear systems with unknown time-varying parameters and unknown time-varying delays.The linear matrix inequality(LMI)method is employed to design the nonlinear observer.The designed controller contains a proportional-integral-derivative(PID)feedback term in time domain.The learning law of unknown constant parameter is differential-difference-type,and the learning law of unknown time-varying parameter is difference-type.It is assumed that the unknown delay-dependent uncertainty is nonlinearly parameterized.By constructing a Lyapunov-Krasovskii-like composite energy function(CEF),we prove the boundedness of all closed-loop signals and the convergence of tracking error.A simulation example is provided to illustrate the effectiveness of the control algorithm proposed in this paper. 展开更多
关键词 adaptive iterative learning control(AILC) nonlinearly parameterized systems time-varying delays Lyapunov-Krasovskii-like composite energy function.
在线阅读 下载PDF
Adaptive state-constrained/model-free iterative sliding mode control for aerial robot trajectory tracking 被引量:1
5
作者 Chen AN Jiaxi ZHOU Kai WANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第4期603-618,共16页
This paper develops a novel hierarchical control strategy for improving the trajectory tracking capability of aerial robots under parameter uncertainties.The hierarchical control strategy is composed of an adaptive sl... This paper develops a novel hierarchical control strategy for improving the trajectory tracking capability of aerial robots under parameter uncertainties.The hierarchical control strategy is composed of an adaptive sliding mode controller and a model-free iterative sliding mode controller(MFISMC).A position controller is designed based on adaptive sliding mode control(SMC)to safely drive the aerial robot and ensure fast state convergence under external disturbances.Additionally,the MFISMC acts as an attitude controller to estimate the unmodeled dynamics without detailed knowledge of aerial robots.Then,the adaption laws are derived with the Lyapunov theory to guarantee the asymptotic tracking of the system state.Finally,to demonstrate the performance and robustness of the proposed control strategy,numerical simulations are carried out,which are also compared with other conventional strategies,such as proportional-integralderivative(PID),backstepping(BS),and SMC.The simulation results indicate that the proposed hierarchical control strategy can fulfill zero steady-state error and achieve faster convergence compared with conventional strategies. 展开更多
关键词 aerial robot hierarchical control strategy model-free iterative sliding mode controller(MFISMC) trajectory tracking reinforcement learning
在线阅读 下载PDF
An Exploration on Adaptive Iterative Learning Control for a Class of Commensurate High-order Uncertain Nonlinear Fractional Order Systems 被引量:5
6
作者 Jianming Wei Youan Zhang Hu Bao 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2018年第2期618-627,共10页
This paper explores the adaptive iterative learning control method in the control of fractional order systems for the first time. An adaptive iterative learning control(AILC) scheme is presented for a class of commens... This paper explores the adaptive iterative learning control method in the control of fractional order systems for the first time. An adaptive iterative learning control(AILC) scheme is presented for a class of commensurate high-order uncertain nonlinear fractional order systems in the presence of disturbance.To facilitate the controller design, a sliding mode surface of tracking errors is designed by using sufficient conditions of linear fractional order systems. To relax the assumption of the identical initial condition in iterative learning control(ILC), a new boundary layer function is proposed by employing MittagLeffler function. The uncertainty in the system is compensated for by utilizing radial basis function neural network. Fractional order differential type updating laws and difference type learning law are designed to estimate unknown constant parameters and time-varying parameter, respectively. The hyperbolic tangent function and a convergent series sequence are used to design robust control term for neural network approximation error and bounded disturbance, simultaneously guaranteeing the learning convergence along iteration. The system output is proved to converge to a small neighborhood of the desired trajectory by constructing Lyapnov-like composite energy function(CEF)containing new integral type Lyapunov function, while keeping all the closed-loop signals bounded. Finally, a simulation example is presented to verify the effectiveness of the proposed approach. 展开更多
关键词 Index Terms-adaptive iterative learning control (AILC) boundary layer function composite energy function (CEF) frac-tional order differential learning law fractional order nonlinearsystems Mittag-Leffler function.
在线阅读 下载PDF
Observer-Based Adaptive Neural Iterative Learning Control for a Class of Time-Varying Nonlinear Systems
7
作者 韦建明 张友安 刘京茂 《Journal of Shanghai Jiaotong university(Science)》 EI 2017年第3期303-312,共10页
In this paper an adaptive iterative learning control scheme is presented for the output tracking of a class of nonlinear systems. An observer is designed to estimate the tracking errors. A mixed time domain and s-doma... In this paper an adaptive iterative learning control scheme is presented for the output tracking of a class of nonlinear systems. An observer is designed to estimate the tracking errors. A mixed time domain and s-domain representation is constructed to derive an error model with relative degree one for our purpose. And time-varying radial basis function neural network is employed to deal with system uncertainty. A new signal is constructed by using a first-order filter, which removes the requirement of strict positive real(SPR) condition and identical initial condition of iterative learning control. Based on property of hyperbolic tangent function,the system tracing error is proved to converge to the origin as the iteration tends to infinity by constructing Lyapunov-like composite energy function, while keeping all the closed-loop signals bounded. Finally, a simulation example is presented to verify the effectiveness of the proposed approach. 展开更多
关键词 adaptive iterative learning control(AILC) time-varying nonlinear systems output tracking OBSERVER FILTER
原文传递
Discounted Iterative Adaptive Critic Designs With Novel Stability Analysis for Tracking Control 被引量:10
8
作者 Mingming Ha Ding Wang Derong Liu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2022年第7期1262-1272,共11页
The core task of tracking control is to make the controlled plant track a desired trajectory.The traditional performance index used in previous studies cannot eliminate completely the tracking error as the number of t... The core task of tracking control is to make the controlled plant track a desired trajectory.The traditional performance index used in previous studies cannot eliminate completely the tracking error as the number of time steps increases.In this paper,a new cost function is introduced to develop the value-iteration-based adaptive critic framework to solve the tracking control problem.Unlike the regulator problem,the iterative value function of tracking control problem cannot be regarded as a Lyapunov function.A novel stability analysis method is developed to guarantee that the tracking error converges to zero.The discounted iterative scheme under the new cost function for the special case of linear systems is elaborated.Finally,the tracking performance of the present scheme is demonstrated by numerical results and compared with those of the traditional approaches. 展开更多
关键词 adaptive critic design adaptive dynamic programming(ADP) approximate dynamic programming discrete-time nonlinear systems reinforcement learning stability analysis tracking control value iteration(VI)
在线阅读 下载PDF
Robust Optimization-Based Iterative Learning Control for Nonlinear Systems With Nonrepetitive Uncertainties 被引量:5
9
作者 Deyuan Meng Jingyao Zhang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第5期1001-1014,共14页
This paper aims to solve the robust iterative learning control(ILC)problems for nonlinear time-varying systems in the presence of nonrepetitive uncertainties.A new optimization-based method is proposed to design and a... This paper aims to solve the robust iterative learning control(ILC)problems for nonlinear time-varying systems in the presence of nonrepetitive uncertainties.A new optimization-based method is proposed to design and analyze adaptive ILC,for which robust convergence analysis via a contraction mapping approach is realized by leveraging properties of substochastic matrices.It is shown that robust tracking tasks can be realized for optimization-based adaptive ILC,where the boundedness of system trajectories and estimated parameters can be ensured,regardless of unknown time-varying nonlinearities and nonrepetitive uncertainties.Two simulation tests,especially implemented for an injection molding process,demonstrate the effectiveness of our robust optimization-based ILC results. 展开更多
关键词 adaptive iterative learning control(ILC) nonlinear time-varying system robust convergence substochastic matrix
在线阅读 下载PDF
Neural Network State Learning Based Adaptive Terminal ILC for Tracking Iteration-varying Target Points 被引量:2
10
作者 Yu Liu Rong-Hu Chi Zhong-Sheng Hou 《International Journal of Automation and computing》 EI CSCD 2015年第3期266-272,共7页
Terminal iterative learning control(TILC) is developed to reduce the error between system output and a fixed desired point at the terminal end of operation interval over iterations under strictly identical initial con... Terminal iterative learning control(TILC) is developed to reduce the error between system output and a fixed desired point at the terminal end of operation interval over iterations under strictly identical initial conditions. In this work, the initial states are not required to be identical further but can be varying from iteration to iteration. In addition, the desired terminal point is not fixed any more but is allowed to change run-to-run. Consequently, a new adaptive TILC is proposed with a neural network initial state learning mechanism to achieve the learning objective over iterations. The neural network is used to approximate the effect of iteration-varying initial states on the terminal output and the neural network weights are identified iteratively along the iteration axis.A dead-zone scheme is developed such that both learning and adaptation are performed only if the terminal tracking error is outside a designated error bound. It is shown that the proposed approach is able to track run-varying terminal desired points fast with a specified tracking accuracy beyond the initial state variance. 展开更多
关键词 adaptive terminal iterative learning control neural network initial state learning iteration-varying terminal desired points ini
原文传递
Dual-stage Optimal Iterative Learning Control for Nonlinear Non-affine Discrete-time Systems 被引量:19
11
作者 CHI Rong-Hu HOU Zhong-Sheng 《自动化学报》 EI CSCD 北大核心 2007年第10期1061-1065,共5页
根据沿着重复轴的一种新动态 linearization 技术,双阶段的最佳的反复的学习控制为非线性、非仿射的分离时间的系统被介绍。双阶段显示二个最佳的学习阶段分别地被设计反复地改进控制输入顺序和学习获得。主要特征是控制器设计和集中... 根据沿着重复轴的一种新动态 linearization 技术,双阶段的最佳的反复的学习控制为非线性、非仿射的分离时间的系统被介绍。双阶段显示二个最佳的学习阶段分别地被设计反复地改进控制输入顺序和学习获得。主要特征是控制器设计和集中分析仅仅取决于动态系统的 I/O 数据。换句话说,没有知道系统的任何另外的知识,我们能容易选择控制参数。模拟学习沿着重复轴说明介绍方法的几何集中,在哪个马路的一个例子控制为它的内在的工程重要性是引人注目的交通反复的学习。 展开更多
关键词 非线性系统 离散时间系统 自适应控制 迭代学习控制 匝道交通调节
在线阅读 下载PDF
Noise-Tolerant ZNN-Based Data-Driven Iterative Learning Control for Discrete Nonaffine Nonlinear MIMO Repetitive Systems
12
作者 Yunfeng Hu Chong Zhang +4 位作者 Bo Wang Jing Zhao Xun Gong Jinwu Gao Hong Chen 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第2期344-361,共18页
Aiming at the tracking problem of a class of discrete nonaffine nonlinear multi-input multi-output(MIMO) repetitive systems subjected to separable and nonseparable disturbances, a novel data-driven iterative learning ... Aiming at the tracking problem of a class of discrete nonaffine nonlinear multi-input multi-output(MIMO) repetitive systems subjected to separable and nonseparable disturbances, a novel data-driven iterative learning control(ILC) scheme based on the zeroing neural networks(ZNNs) is proposed. First, the equivalent dynamic linearization data model is obtained by means of dynamic linearization technology, which exists theoretically in the iteration domain. Then, the iterative extended state observer(IESO) is developed to estimate the disturbance and the coupling between systems, and the decoupled dynamic linearization model is obtained for the purpose of controller synthesis. To solve the zero-seeking tracking problem with inherent tolerance of noise,an ILC based on noise-tolerant modified ZNN is proposed. The strict assumptions imposed on the initialization conditions of each iteration in the existing ILC methods can be absolutely removed with our method. In addition, theoretical analysis indicates that the modified ZNN can converge to the exact solution of the zero-seeking tracking problem. Finally, a generalized example and an application-oriented example are presented to verify the effectiveness and superiority of the proposed process. 展开更多
关键词 adaptive control control system synthesis data-driven iterative learning control neurocontroller nonlinear discrete time systems
在线阅读 下载PDF
Repetitive Learning Control for Time-varying Robotic Systems: A Hybrid Learning Scheme 被引量:11
13
作者 SUN Ming-Xuan HE Xiong-Xiong CHEN Bing-Yu 《自动化学报》 EI CSCD 北大核心 2007年第11期1189-1195,共7页
重复学习控制为不明确的变化时间的机器的系统追踪的 finite-time-trajectory 被介绍。在时间函数以一个反复的学习方法被学习的地方,一个混合学习计划被给在系统动力学应付经常、变化时间的 unknowns,没有泰勒表示的帮助,当常规微... 重复学习控制为不明确的变化时间的机器的系统追踪的 finite-time-trajectory 被介绍。在时间函数以一个反复的学习方法被学习的地方,一个混合学习计划被给在系统动力学应付经常、变化时间的 unknowns,没有泰勒表示的帮助,当常规微分学习方法为估计经常的被建议时。介绍重复学习控制为在每个周期的开始的起始的重新定位避免要求,是不同的,并且变化时间的 unknowns 不是必要的周期。随混合学习的采纳,靠近环的系统的州的变量的固定被保证,追踪的错误被保证作为重复增加收敛到零,这被显示出。建议计划的有效性通过数字模拟被表明。 展开更多
关键词 重复学习控制 机器人 时序变化系统 混合学习计划
在线阅读 下载PDF
Adaptive backstepping iteration learning control of nonlinear feedback systems
14
作者 Jinyu LIU Yang LIU Ronghu CHI 《Science China(Technological Sciences)》 2025年第7期261-262,共2页
Nonlinear systems have garnered attention over the past few decades because many practical systems possess nonlinear characteristics.In addition,backstepping is an effective method to address the control problem obser... Nonlinear systems have garnered attention over the past few decades because many practical systems possess nonlinear characteristics.In addition,backstepping is an effective method to address the control problem observed in such systems[1].Iterative learning control(ILC)can be used to solve control problems in repetitive systems[2].Consequently,the combination of the above two methods remains an interesting and open problem. 展开更多
关键词 nonlinear systems repetitive systems consequentlythe adaptive backstepping control problems iteration learning control learning control ilc can practical systems control problem
原文传递
A New Discrete-time Adaptive ILC for Nonlinear Systems with Time-varying Parametric Uncertainties 被引量:8
15
作者 CHI Rong-Hu SUI Shu-Lin HOU Zhong-Sheng 《自动化学报》 EI CSCD 北大核心 2008年第7期805-808,共4页
用在分离时间轴和反复的学习轴之间的类比,一条新分离时间的适应反复的学习控制(AILC ) 途径被开发与变化时间的参量的无常探讨非线性的系统的一个班。类似于适应控制,新 AILC 能合并一个设计算法,因此,学习获得能沿着学习的轴反复... 用在分离时间轴和反复的学习轴之间的类比,一条新分离时间的适应反复的学习控制(AILC ) 途径被开发与变化时间的参量的无常探讨非线性的系统的一个班。类似于适应控制,新 AILC 能合并一个设计算法,因此,学习获得能沿着学习的轴反复地被调节。当起始的状态是随机的,参考轨道是变化重复的时,新 AILC 能沿着反复的学习轴 asymptotically 在有限时间间隔上完成 pointwise 集中。 展开更多
关键词 自动化技术 智能系统 非线性系统 离散时间系统 不确定性
在线阅读 下载PDF
Consensus control for heterogeneous uncertain multi-agent systems with hybrid nonlinear dynamics via iterative learning algorithm 被引量:3
16
作者 XIE Jin CHEN JiaXi +2 位作者 LI JunMin CHEN WeiSheng ZHANG Shuai 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2023年第10期2897-2906,共10页
In this study,We propose a compensated distributed adaptive learning algorithm for heterogeneous multi-agent systems with repetitive motion,where the leader's dynamics are unknown,and the controlled system's p... In this study,We propose a compensated distributed adaptive learning algorithm for heterogeneous multi-agent systems with repetitive motion,where the leader's dynamics are unknown,and the controlled system's parameters are uncertain.The multiagent systems are considered a kind of hybrid order nonlinear systems,which relaxes the strict requirement that all agents are of the same order in some existing work.For theoretical analyses,we design a composite energy function with virtual gain parameters to reduce the restriction that the controller gain depends on global information.Considering the stability of the controller,we introduce a smooth continuous function to improve the piecewise controller to avoid possible chattering.Theoretical analyses prove the convergence of the presented algorithm,and simulation experiments verify the effectiveness of the algorithm. 展开更多
关键词 multi-agent systems adaptive iterative learning control hybrid nonlinear dynamics composite energy function consensus algorithm
原文传递
Neural networks-based iterative learning control consensus for periodically time-varying multi-agent systems
17
作者 CHEN JiaXi LI JunMin +1 位作者 CHEN WeiSheng GAO WeiFeng 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2024年第2期464-474,共11页
In this paper,the problem of adaptive iterative learning based consensus control for periodically time-varying multi-agent systems is studied,in which the dynamics of each follower are driven by nonlinearly parameteri... In this paper,the problem of adaptive iterative learning based consensus control for periodically time-varying multi-agent systems is studied,in which the dynamics of each follower are driven by nonlinearly parameterized terms with periodic disturbances.Neural networks and Fourier base expansions are introduced to describe the periodically time-varying dynamic terms.On this basis,an adaptive learning parameter with a positively convergent series term is constructed,and a distributed control protocol based on local signals between agents is designed to ensure accurate consensus of the closed-loop systems.Furthermore,consensus algorithm is generalized to solve the formation control problem.Finally,simulation experiments are implemented through MATLAB to demonstrate the effectiveness of the method used. 展开更多
关键词 multi-agent systems adaptive iterative learning control nonlinearly parameterized dynamics Fourier series expansion neural networks
原文传递
基于加速迭代学习和超螺旋算法的柔性铰接板系统自适应振动控制
18
作者 袁润 邱志成 李旻 《振动与冲击》 北大核心 2025年第23期21-28,共8页
为了解决航天器太阳能帆板在外部扰动下的振动问题,建立了柔性铰接板系统试验,使用两个激光位移传感器用于振动检测,并使用双通道压电驱动器同时控制弯曲和扭转振动。采用有限元法建模和试验辨识相结合的方法来获得系统的精确模型,并基... 为了解决航天器太阳能帆板在外部扰动下的振动问题,建立了柔性铰接板系统试验,使用两个激光位移传感器用于振动检测,并使用双通道压电驱动器同时控制弯曲和扭转振动。采用有限元法建模和试验辨识相结合的方法来获得系统的精确模型,并基于获得的模型构建仿真环境。使用加速迭代自适应学习算法和自适应超螺旋算法离线设计了模态控制器,并在仿真环境和试验环境中进行了压电主动控制,验证了所应用的振动控制方案和算法的有效性。仿真和试验结果表明,与大增益比例微分控制器相比,自适应控制器具有更好的控制效果,特别是对于小幅值振动。 展开更多
关键词 柔性铰接板系统 振动控制 加速迭代自适应学习算法 自适应超螺旋算法
在线阅读 下载PDF
数据驱动自适应评判控制研究进展
19
作者 王鼎 赵明明 +2 位作者 刘德荣 乔俊飞 宋世杰 《自动化学报》 北大核心 2025年第6期1170-1190,共21页
最优控制与人工智能的融合发展产生了一类以执行−评判设计为主要思想的自适应动态规划(ADP)方法.通过集成动态规划理论、强化学习机制、神经网络技术、函数优化算法,ADP在求解大规模复杂非线性系统的决策和调控问题上取得重要进展.然而... 最优控制与人工智能的融合发展产生了一类以执行−评判设计为主要思想的自适应动态规划(ADP)方法.通过集成动态规划理论、强化学习机制、神经网络技术、函数优化算法,ADP在求解大规模复杂非线性系统的决策和调控问题上取得重要进展.然而,实际系统的未知参数和不确定扰动经常导致难以建立精确的数学模型,对最优控制器的设计提出挑战.近年来,具有强大自学习和自适应能力的数据驱动ADP方法受到广泛关注,它能够在不依赖动态模型的情况下,仅利用系统的输入输出数据为复杂非线性系统设计出稳定、安全、可靠的最优控制器,符合智能自动化的发展潮流.通过对数据驱动ADP方法的算法实现、理论特性、相关应用等方面进行梳理,着重介绍了最新的研究进展,包括在线Q学习、值迭代Q学习、策略迭代Q学习、加速Q学习、迁移Q学习、跟踪Q学习、安全Q学习和博弈Q学习,并涵盖数据学习范式、稳定性、收敛性以及最优性的分析.此外,为提高学习效率和控制性能,设计了一些改进的评判机制和效用函数.最后,以污水处理过程为背景,总结数据驱动ADP方法在实际工业系统中的应用效果和存在问题,并展望一些未来的研究方向. 展开更多
关键词 自适应评判控制 自适应动态规划 数据驱动设计 在线Q学习 迭代Q学习
在线阅读 下载PDF
运行时间区间可变的地铁列车无模型自适应迭代学习控制 被引量:1
20
作者 焦世广 侯忠生 《控制理论与应用》 北大核心 2025年第3期642-648,共7页
针对地铁列车系统非严格重复运行的特性,提出了一种运行时间区间可变的地铁列车无模型自适应迭代学习控制算法.首先,利用紧格式动态线性化方法将地铁列车动力学模型转化为等价的数据模型;其次,仅利用系统输入/输出数据设计了一种适用于... 针对地铁列车系统非严格重复运行的特性,提出了一种运行时间区间可变的地铁列车无模型自适应迭代学习控制算法.首先,利用紧格式动态线性化方法将地铁列车动力学模型转化为等价的数据模型;其次,仅利用系统输入/输出数据设计了一种适用于地铁列车迭代时间长度随机变化的改进无模型自适应迭代学习控制算法;最后,给出了该算法的收敛性分析,并通过仿真验证了所提算法的有效性. 展开更多
关键词 地铁列车 无模型自适应控制 无模型自适应迭代学习控制 迭代时间区间随机变化
在线阅读 下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部