The increasing penetration of second-life battery energy storage systems(SLBESS)in power grids presents substantial challenges to system operation and control due to the heterogeneous characteristics and uncertain deg...The increasing penetration of second-life battery energy storage systems(SLBESS)in power grids presents substantial challenges to system operation and control due to the heterogeneous characteristics and uncertain degradation patterns of repurposed batteries.This paper presents a novel model-free adaptive voltage controlembedded dung beetle-inspired heuristic optimization algorithmfor optimal SLBESS capacity configuration and power dispatch.To simultaneously address the computational complexity and ensure system stability,this paper develops a comprehensive bilevel optimization framework.At the upper level,a dung beetle optimization algorithmdetermines the optimal SLBESS capacity configuration byminimizing total lifecycle costswhile incorporating the charging/discharging power trajectories derived from the model-free adaptive voltage control strategy.At the lower level,a health-priority power dispatch optimization model intelligently allocates power demands among heterogeneous battery groups based on their real-time operational states,state-of-health variations,and degradation constraints.The proposed model-free approach circumvents the need for complex battery charging/discharging power controlmodels and extensive historical data requirements whilemaintaining system stability through adaptive controlmechanisms.A novel cycle life degradation model is developed to quantify the relationship between remaining useful life,depth of discharge,and operational patterns.The integrated framework enables simultaneous strategic planning and operational control,ensuring both economic efficiency and extended battery lifespan.The effectiveness of the proposed method is validated through comprehensive case studies on hybrid energy storage systems,demonstrating superior computational efficiency,robust performance across different network configurations,and significant improvements in battery utilization compared to conventional approaches.展开更多
In this paper,an asymmetric bipartite consensus problem for the nonlinear multi-agent systems with cooperative and antagonistic interactions is studied under the event-triggered mechanism.For the agents described by a...In this paper,an asymmetric bipartite consensus problem for the nonlinear multi-agent systems with cooperative and antagonistic interactions is studied under the event-triggered mechanism.For the agents described by a structurally balanced signed digraph,the asymmetric bipartite consensus objective is firstly defined,assigning the agents'output to different signs and module values.Considering with the completely unknown dynamics of the agents,a novel event-triggered model-free adaptive bipartite control protocol is designed based on the agents'triggered outputs and an equivalent compact form data model.By utilizing the Lyapunov analysis method,the threshold of the triggering condition is obtained.Subsequently,the asymptotic convergence of the tracking error is deduced and a sufficient condition is obtained based on the contraction mapping principle.Finally,the simulation example further demonstrates the effectiveness of the protocol.展开更多
This paper provides an improved model-free adaptive control(IMFAC)strategy for solving the surface vessel trajectory tracking issue with time delay and restricted disturbance.Firstly,the original nonlinear time-delay ...This paper provides an improved model-free adaptive control(IMFAC)strategy for solving the surface vessel trajectory tracking issue with time delay and restricted disturbance.Firstly,the original nonlinear time-delay system is transformed into a structure consisting of an unknown residual term and a parameter term with control inputs using a local compact form dynamic linearization(local-CFDL).To take advantage of the resulting structure,use a discrete-time extended state observer(DESO)to estimate the unknown residual factor.Then,according to the study,the inclusion of a time delay has no effect on the linearization structure,and an improved control approach is provided,in which DESO is used to adjust for uncertainties.Furthermore,a DESO-based event-triggered model-free adaptive control(ET-DESO-MFAC)is established by designing event-triggered conditions to assure Lyapunov stability.Only when the system’s indicator fulfills the provided event-triggered condition will the control input signal be updated;otherwise,the control input will stay the same as it is at the last trigger moment.A coordinate compensation approach is developed to reduce the steady-state inaccuracy of trajectory tracking.Finally,simulation experiments are used to assess the effectiveness of the proposed technique for trajectory tracking.展开更多
Polyvinyl chloride (PVC) polymerizing process is a typical complicated industrial process with the characteristics of large inertia, big time delay and nonlinearity. Firstly, for the general nonlinear and discrete t...Polyvinyl chloride (PVC) polymerizing process is a typical complicated industrial process with the characteristics of large inertia, big time delay and nonlinearity. Firstly, for the general nonlinear and discrete time system, a design scheme of model-free adaptive (MFA) controller is given. Then, particle swarm optimization (PSO) algorithm is applied to optimizing and setting the key parameters for controller tuning. After that, the MFA controller is used to control the system of polymerizing temperature. Finally, simulation results are given to show that the MAC strategy based on PSO obtains a good controlling performance index.展开更多
In order to solve the problems of dynamic modeling and complicated parameters identification of trajectory tracking control of the quadrotor,a data driven model-free adaptive control method based on the improved slidi...In order to solve the problems of dynamic modeling and complicated parameters identification of trajectory tracking control of the quadrotor,a data driven model-free adaptive control method based on the improved sliding mode control(ISMC)algorithm is designed,which does not depend on the precise dynamic model of the quadrotor.The design of the general sliding mode control(SMC)algorithm depends on the mathematical model of the quadrotor and has chattering problems.In this paper,according to the dynamic characteristics of the quadrotor,an adaptive update law is introduced and a saturation function is used to improve the SMC.The proposed control strategy has an inner and an outer loop control structures.The outer loop position control provides the required reference attitude angle for the inner loop.The inner loop attitude control ensures rapid convergence of the attitude angle.The effectiveness and feasibility of the algorithm are verified by mathematical simulation.The mathematical simulation results show that the designed model-free adaptive control method of the quadrotor is effective,and it can effectively realize the trajectory tracking control of the quadrotor.The design of the controller does not depend on the kinematic and dynamic models of the unmanned aerial vehicle(UAV),and has high control accuracy,stability,and robustness.展开更多
A model-free adaptive control method is proposed for the spacecrafts whose dynamical parameters change over time and cannot be acquired accurately. The algorithm is based on full form dynamic linearization.A dimension...A model-free adaptive control method is proposed for the spacecrafts whose dynamical parameters change over time and cannot be acquired accurately. The algorithm is based on full form dynamic linearization.A dimension reduction matrix is introduced to construct an augmented system with the same dimension input and output. The design of the controller depends on the system input and output data rather than the knowledge of the controlled plant. The numerical simulation results show that the improved controller can deal with different models with the same set of controller parameters,and the controller performance is better than that of PD controller for the time-varying system with disturbance.展开更多
Due to the release of gravity in the space environment, the dynamic characteristics of the space manipulator have changed compared with that of the ground, which results in the change of its tracking precision. This p...Due to the release of gravity in the space environment, the dynamic characteristics of the space manipulator have changed compared with that of the ground, which results in the change of its tracking precision. This paper presents a model-free adaptive control(MFAC) strategy to track the desired trajectory under different gravity environment. A dynamic transformation method and full form dynamic linearization(FFDL) approach are selected to dynamicly linearize the system, which can better eliminate the complex dynamics that may exist in the original system. The controlled object uses the two degrees of freedom of space manipulator and the controller only depends on the desired angle and torque of each joint of the space manipulator. Moreover, the proof of stability is also provided. Finally, simulation results are presented to demonstrate the effectiveness of the proposed strategy. It is shown that the proposed approach can achieve better trajectory tracking performance under different gravity environment without changing the control parameters, and the tracking precision can be significantly improved as compared with the proportional differential(PD) control results.展开更多
When the controlled system is strongly nonlinear,the estimated pseudo partial derivatives in the general compact-format model-free adaptive control(CFDL-MFAC)may significantly deviate from actual values,affecting cont...When the controlled system is strongly nonlinear,the estimated pseudo partial derivatives in the general compact-format model-free adaptive control(CFDL-MFAC)may significantly deviate from actual values,affecting control performance.To address this,this paper proposes a modelfree adaptive control method based on BP networks and LSTM neural network optimization for a class of discrete-time nonlinear systems.The method uses a BP neural network to fit the controlled system and an LSTM to fit the output of the controlled system to the biased derivatives of the inputs,bypassing the estimation of the(k)value to avoid estimation errors.The stability of this method is derived and proved,and its effectiveness and feasibility are verified using both reversible and irreversible systems.Results show that this method achieves higher accuracy in control performance.展开更多
In this paper, the containment control problem in nonlinear multi-agent systems(NMASs) under denial-of-service(DoS) attacks is addressed. Firstly, a prediction model is obtained using the broad learning technique to t...In this paper, the containment control problem in nonlinear multi-agent systems(NMASs) under denial-of-service(DoS) attacks is addressed. Firstly, a prediction model is obtained using the broad learning technique to train historical data generated by the system offline without DoS attacks. Secondly, the dynamic linearization method is used to obtain the equivalent linearization model of NMASs. Then, a novel model-free adaptive predictive control(MFAPC) framework based on historical and online data generated by the system is proposed, which combines the trained prediction model with the model-free adaptive control method. The development of the MFAPC method motivates a much simpler robust predictive control solution that is convenient to use in the case of DoS attacks. Meanwhile, the MFAPC algorithm provides a unified predictive framework for solving consensus tracking and containment control problems. The boundedness of the containment error can be proven by using the contraction mapping principle and the mathematical induction method. Finally, the proposed MFAPC is assessed through comparative experiments.展开更多
Mathematical models are disappointing due to uneven distribution of the air gap magnetic field and significant un-modeled dynamics in magnetic bearing systems.The effectiveness of control deteriorates based on an inac...Mathematical models are disappointing due to uneven distribution of the air gap magnetic field and significant un-modeled dynamics in magnetic bearing systems.The effectiveness of control deteriorates based on an inaccurate mathematical model,creating slow response speed and high jitter.To solve these problems,a model-free adaptive control(MFAC)scheme is proposed for a three-degree-of-freedom hybrid magnetic bearing(3-DoF HMB)control system.The scheme for 3-DoF HMB depends only on the control current and the objective balanced position,and it does not involve any model information.The design process of a parameter estimation algorithm is model-free,based directly on pseudo-partial-derivative(PPD)derived online from the input and output data information.The rotor start-of-suspension position of the HMB is regulated by auxiliary bearings with different inner diameters,and two kinds of operation situations(linear and nonlinear areas)are present to analyze the validity of MFAC in detail.Both simulations and experiments demonstrate that the proposed MFAC scheme handles the 3-DoF HMB control system with start-of-suspension response speed,smaller steady state error,and higher stability.展开更多
In this article,a novel model-free coordinated optimal regulation design methodology is proposed for the rigidly connected dual permanent magnet synchronous motor(PMSM)system via adaptive dynamic programming(ADP).Firs...In this article,a novel model-free coordinated optimal regulation design methodology is proposed for the rigidly connected dual permanent magnet synchronous motor(PMSM)system via adaptive dynamic programming(ADP).First,we adopt the classical master-slave structure to maintain torque synchronization by virtue of field-oriented control.Then,a reducedorder model of the dual-PMSM system is established through the application of singular perturbation theory(SPT),which is of significance to decrease the learning time and computational complexity in the outer speed loop design.Afterwards,we design a coordinated adaptive optimal regulator in framework of ADP to drive the speed of girth gear asymptotic tracking the reference signal and accommodate the load torque disturbance,which is independent of the knowledge of model parameters of the system.According to SPT,we analyze the suboptimality,closed-loop stability,and robustness properties of the obtained controller under mild conditions.Finally,comprehensive experimental studies are provided to verify that the proposed control strategy can achieve the speed regulation and the torque synchronization,as well as ameliorate the transient response.展开更多
An adaptive optimal trajectory tracking controller is presented for the Solid-RocketPowered Vehicle(SRPV)with uncertain nonlinear non-affine dynamics in the framework of adaptive dynamic programming.First,considering ...An adaptive optimal trajectory tracking controller is presented for the Solid-RocketPowered Vehicle(SRPV)with uncertain nonlinear non-affine dynamics in the framework of adaptive dynamic programming.First,considering that the ascent model of the SRPV is non-affine,a model-free Single Network Adaptive Critic(SNAC)method is developed based on the dynamic neural network and the traditional SNAC method.This developed model-free SNAC method overcomes the limitation of the traditional SNAC method that can only be applied to affine systems.Then,a closed-form adaptive optimal controller is designed for the non-affine dynamics of SRPVs.This controller can adjust its parameters under different flight conditions and converge to the approximate optimal controller through online self-learning.Finally,the convergence to the approximate optimal controller is proved.The theoretical analysis of the uniformly ultimate boundedness of the tracking error is also presented.Simulation results demonstrate the effectiveness of the proposed controller.展开更多
The operating frequency accuracy of the local oscillators is critical for the overall system performance in the communication systems.However,the high-precision oscillators could be too expensive for civil application...The operating frequency accuracy of the local oscillators is critical for the overall system performance in the communication systems.However,the high-precision oscillators could be too expensive for civil applications.In this paper,we propose a model-free adaptive frequency calibration framework for a voltage-controlled crystal oscillator(VCO)equipped with a time to digital converter(TDC),which can significantly improve the frequency accuracy of the VCO thus calibrated.The idea is to utilize a high-precision TDC to directly measure the VCO period which is then passed to a model-free method for working frequency calibration.One advantage of this method is that the working frequency calibration employs the system history of input/output(I/O)data,instead of establishing an accurate VCO voltagecontrolled oscillator model.Another advantage is the lightweight calibration method with low complexity such that it can be implemented on an MCU with limited computation capabilities.Experimental results show that the proposed calibration method can improve the frequency accuracy of a VCO from±20 ppm to±10 ppb,which indicates the promise of the modelfree adaptive frequency calibrator for VCOs.展开更多
This paper develops a novel hierarchical control strategy for improving the trajectory tracking capability of aerial robots under parameter uncertainties.The hierarchical control strategy is composed of an adaptive sl...This paper develops a novel hierarchical control strategy for improving the trajectory tracking capability of aerial robots under parameter uncertainties.The hierarchical control strategy is composed of an adaptive sliding mode controller and a model-free iterative sliding mode controller(MFISMC).A position controller is designed based on adaptive sliding mode control(SMC)to safely drive the aerial robot and ensure fast state convergence under external disturbances.Additionally,the MFISMC acts as an attitude controller to estimate the unmodeled dynamics without detailed knowledge of aerial robots.Then,the adaption laws are derived with the Lyapunov theory to guarantee the asymptotic tracking of the system state.Finally,to demonstrate the performance and robustness of the proposed control strategy,numerical simulations are carried out,which are also compared with other conventional strategies,such as proportional-integralderivative(PID),backstepping(BS),and SMC.The simulation results indicate that the proposed hierarchical control strategy can fulfill zero steady-state error and achieve faster convergence compared with conventional strategies.展开更多
The development of the adaptive cycle engine is a crucial direction of advanced fighter power sources in the near future.However,this new technology brings more uncertainty to the design of the control system.To addre...The development of the adaptive cycle engine is a crucial direction of advanced fighter power sources in the near future.However,this new technology brings more uncertainty to the design of the control system.To address the versatile thrust demand under complex dynamic characteristics of the adaptive cycle engine,this paper proposes a direct thrust estimation and control method based on the Model-Free Adaptive Control(MFAC)algorithm.First,an improved Sliding Mode Control-MFAC(SMC-MFAC)algorithm has been developed by introducing a sliding mode variable structure into the standard Full Format Dynamic Linearization-MFAC(FFDL-MFAC)and designing self-adaptive weight coefficients.Then a trivariate double-loop direct thrust control structure with a controller-based thrust estimator and an outer command compensation loop has been established.Through thrust feedback and command correction,accurate control under multi-mode and operation conditions is achieved.The main contribution of this paper is the improved algorithm that combines the tracking capability of the MFAC and the robustness of the SMC,thus enhancing the dynamic performance.Considering the requirements of the online thrust feedback,the designed MFAC-based thrust estimator significantly speeds up the calculation.Additionally,the proposed command correction module can achieve the adaptive thrust control without affecting the operation of the inner loop.Simulations and Hardware-in-Loop(HIL)experiments have been performed on an adaptive cycle engine component-level model to investigate the estimation and control effect under different modes and health conditions.The results demonstrate that both the thrust estimation precision and operation speed are significantly improved compared with Extended Kalman Filter(EKF).Furthermore,the system can accelerate the response of the controlled plant,reduce the overshoot,and realize the thrust recovery within the safety range when the engine encounters the degradation.展开更多
A kind of adaptive sliding model control algorithm is developed to solve and improve the mathematical model dependency and un-modeled dynamics of a controlled system. The control strategy derived from a kind of data-d...A kind of adaptive sliding model control algorithm is developed to solve and improve the mathematical model dependency and un-modeled dynamics of a controlled system. The control strategy derived from a kind of data-driven control method in essence, thereby the input and output data are utilized by the controller with no information about the control system model. Theoretical analysis proves that this proposed control algorithm can improve the utilization of the estimated pseudo partial derivative information and accelerate the velocity of the convergence. The stability of the control system is further verified by rigorous mathematical analysis. This new discrete-time nonlinear systems model-free control algorithm obtained better control performance through the simulations for the linear motor position and the information tracking speed, which also achieved robust and accurate traceability.展开更多
In this paper,an adaptive disturbance-rejection proportional–integral–differential(PID)control method is proposed for a class of nonlinear systems.First,PID-type criterion is introduced in a model-free adaptive cont...In this paper,an adaptive disturbance-rejection proportional–integral–differential(PID)control method is proposed for a class of nonlinear systems.First,PID-type criterion is introduced in a model-free adaptive control(MFAC)framework,which gives an optimal control interpretation for PID controller.Then,the design of adaptive disturbance rejection PID is proposed based on this new interpretation to realize controller gain auto-tuning.Due to the ingenious integration of active disturbance rejection and adaptive mechanism,the proposed adaptive disturbance rejection PID control scheme exhibits better control performance than MFAC case.Furthermore,the boundedness of controller gain,the convergence of tracking error and the bounded-input–bounded-output stability are proved for the proposed control system.Finally,the effectiveness of the proposed method is verified by numerical simulation.展开更多
Model predictive control(MPC)has been deemed as an attractive control method in motor drives by virtue of its simple structure,convenient multi-objective optimization,and satisfactory dynamic performance.However,the s...Model predictive control(MPC)has been deemed as an attractive control method in motor drives by virtue of its simple structure,convenient multi-objective optimization,and satisfactory dynamic performance.However,the strong reliance on mathematical models seriously restrains its practical application.Therefore,improving the robustness of MPC has attained significant attentions in the last two decades,followed by which,model-free predictive control(MFPC)comes into existence.This article aims to reveal the current state of MFPC strategies for motor drives and give the categorization from the perspective of implementation.Based on this review,the principles of the reported MFPC strategies are introduced in detail,as well as the challenges encountered in technology realization.In addition,some of typical and important concepts are experimentally validated via case studies to evaluate the performance and highlight their features.Finally,the future trends of MFPC are discussed based on the current state and reported developments.展开更多
This study examines the adaptive boundary control problem of flexible marine riser with internal flow coupling.The dynamic model of the flexible marine riser system with internal flow coupling is derived using the Ham...This study examines the adaptive boundary control problem of flexible marine riser with internal flow coupling.The dynamic model of the flexible marine riser system with internal flow coupling is derived using the Hamiltonian principle.An analysis of internal flow’s influence on the vibration characteristics of flexible marine risers is conducted.Then,for the uncertain environmental disturbance,the adaptive fuzzy logic system is introduced to dynamically approximate the boundary disturbance,and a robust adaptive fuzzy boundary control is proposed.The uniform boundedness of the closed-loop system is proved based on Lyapunov theory.The well-posedness of the closed-loop system is proved by operator semigroup theory.The proposed control’s effectiveness is validated through comparison with existing control methods.展开更多
基金Financial support was provided by the State Grid Sichuan Electric Power Company Science and Technology Project“Key Research on Development Path Planning and Key Operation Technologies of New Rural Electrification Construction”under Grant No.52199623000G.
文摘The increasing penetration of second-life battery energy storage systems(SLBESS)in power grids presents substantial challenges to system operation and control due to the heterogeneous characteristics and uncertain degradation patterns of repurposed batteries.This paper presents a novel model-free adaptive voltage controlembedded dung beetle-inspired heuristic optimization algorithmfor optimal SLBESS capacity configuration and power dispatch.To simultaneously address the computational complexity and ensure system stability,this paper develops a comprehensive bilevel optimization framework.At the upper level,a dung beetle optimization algorithmdetermines the optimal SLBESS capacity configuration byminimizing total lifecycle costswhile incorporating the charging/discharging power trajectories derived from the model-free adaptive voltage control strategy.At the lower level,a health-priority power dispatch optimization model intelligently allocates power demands among heterogeneous battery groups based on their real-time operational states,state-of-health variations,and degradation constraints.The proposed model-free approach circumvents the need for complex battery charging/discharging power controlmodels and extensive historical data requirements whilemaintaining system stability through adaptive controlmechanisms.A novel cycle life degradation model is developed to quantify the relationship between remaining useful life,depth of discharge,and operational patterns.The integrated framework enables simultaneous strategic planning and operational control,ensuring both economic efficiency and extended battery lifespan.The effectiveness of the proposed method is validated through comprehensive case studies on hybrid energy storage systems,demonstrating superior computational efficiency,robust performance across different network configurations,and significant improvements in battery utilization compared to conventional approaches.
基金supported in part by the National Natural Science Foundation of China(U1804147,61833001,61873139,61573129)the Innovative Scientists and Technicians Team of Henan Polytechnic University(T2019-2)the Innovative Scientists and Technicians Team of Henan Provincial High Education(20IRTSTHN019)。
文摘In this paper,an asymmetric bipartite consensus problem for the nonlinear multi-agent systems with cooperative and antagonistic interactions is studied under the event-triggered mechanism.For the agents described by a structurally balanced signed digraph,the asymmetric bipartite consensus objective is firstly defined,assigning the agents'output to different signs and module values.Considering with the completely unknown dynamics of the agents,a novel event-triggered model-free adaptive bipartite control protocol is designed based on the agents'triggered outputs and an equivalent compact form data model.By utilizing the Lyapunov analysis method,the threshold of the triggering condition is obtained.Subsequently,the asymptotic convergence of the tracking error is deduced and a sufficient condition is obtained based on the contraction mapping principle.Finally,the simulation example further demonstrates the effectiveness of the protocol.
基金supported by the Natural Science Foundation of Jiangsu Province(BK20201159).
文摘This paper provides an improved model-free adaptive control(IMFAC)strategy for solving the surface vessel trajectory tracking issue with time delay and restricted disturbance.Firstly,the original nonlinear time-delay system is transformed into a structure consisting of an unknown residual term and a parameter term with control inputs using a local compact form dynamic linearization(local-CFDL).To take advantage of the resulting structure,use a discrete-time extended state observer(DESO)to estimate the unknown residual factor.Then,according to the study,the inclusion of a time delay has no effect on the linearization structure,and an improved control approach is provided,in which DESO is used to adjust for uncertainties.Furthermore,a DESO-based event-triggered model-free adaptive control(ET-DESO-MFAC)is established by designing event-triggered conditions to assure Lyapunov stability.Only when the system’s indicator fulfills the provided event-triggered condition will the control input signal be updated;otherwise,the control input will stay the same as it is at the last trigger moment.A coordinate compensation approach is developed to reduce the steady-state inaccuracy of trajectory tracking.Finally,simulation experiments are used to assess the effectiveness of the proposed technique for trajectory tracking.
基金supported by University of Science and Technology Liaoning,National Financial Security and System Equipment Engineering Research Center(No.USTLKFGJ201502)
文摘Polyvinyl chloride (PVC) polymerizing process is a typical complicated industrial process with the characteristics of large inertia, big time delay and nonlinearity. Firstly, for the general nonlinear and discrete time system, a design scheme of model-free adaptive (MFA) controller is given. Then, particle swarm optimization (PSO) algorithm is applied to optimizing and setting the key parameters for controller tuning. After that, the MFA controller is used to control the system of polymerizing temperature. Finally, simulation results are given to show that the MAC strategy based on PSO obtains a good controlling performance index.
文摘In order to solve the problems of dynamic modeling and complicated parameters identification of trajectory tracking control of the quadrotor,a data driven model-free adaptive control method based on the improved sliding mode control(ISMC)algorithm is designed,which does not depend on the precise dynamic model of the quadrotor.The design of the general sliding mode control(SMC)algorithm depends on the mathematical model of the quadrotor and has chattering problems.In this paper,according to the dynamic characteristics of the quadrotor,an adaptive update law is introduced and a saturation function is used to improve the SMC.The proposed control strategy has an inner and an outer loop control structures.The outer loop position control provides the required reference attitude angle for the inner loop.The inner loop attitude control ensures rapid convergence of the attitude angle.The effectiveness and feasibility of the algorithm are verified by mathematical simulation.The mathematical simulation results show that the designed model-free adaptive control method of the quadrotor is effective,and it can effectively realize the trajectory tracking control of the quadrotor.The design of the controller does not depend on the kinematic and dynamic models of the unmanned aerial vehicle(UAV),and has high control accuracy,stability,and robustness.
基金Sponsored by the National Natural Science Foundation of China(Grant No.11102007)the Fundamental Research Fund for the Central Universities(Grant No.YWF-14-YHXY-012)
文摘A model-free adaptive control method is proposed for the spacecrafts whose dynamical parameters change over time and cannot be acquired accurately. The algorithm is based on full form dynamic linearization.A dimension reduction matrix is introduced to construct an augmented system with the same dimension input and output. The design of the controller depends on the system input and output data rather than the knowledge of the controlled plant. The numerical simulation results show that the improved controller can deal with different models with the same set of controller parameters,and the controller performance is better than that of PD controller for the time-varying system with disturbance.
基金Sponsored by the National Natural Science Foundation of China(No.51605415)Natural Science Foundation of Hebei Province(No.F2016203494,E2017203240)。
文摘Due to the release of gravity in the space environment, the dynamic characteristics of the space manipulator have changed compared with that of the ground, which results in the change of its tracking precision. This paper presents a model-free adaptive control(MFAC) strategy to track the desired trajectory under different gravity environment. A dynamic transformation method and full form dynamic linearization(FFDL) approach are selected to dynamicly linearize the system, which can better eliminate the complex dynamics that may exist in the original system. The controlled object uses the two degrees of freedom of space manipulator and the controller only depends on the desired angle and torque of each joint of the space manipulator. Moreover, the proof of stability is also provided. Finally, simulation results are presented to demonstrate the effectiveness of the proposed strategy. It is shown that the proposed approach can achieve better trajectory tracking performance under different gravity environment without changing the control parameters, and the tracking precision can be significantly improved as compared with the proportional differential(PD) control results.
基金funded by the project of State Grid Shaanxi Electric Power Company LimitedThis research is supported by the Open Fund Project of the Key Laboratory of Intelligent Building and Building Energy Efficiency in Anhui Province,Anhui Jianzhu University。
文摘When the controlled system is strongly nonlinear,the estimated pseudo partial derivatives in the general compact-format model-free adaptive control(CFDL-MFAC)may significantly deviate from actual values,affecting control performance.To address this,this paper proposes a modelfree adaptive control method based on BP networks and LSTM neural network optimization for a class of discrete-time nonlinear systems.The method uses a BP neural network to fit the controlled system and an LSTM to fit the output of the controlled system to the biased derivatives of the inputs,bypassing the estimation of the(k)value to avoid estimation errors.The stability of this method is derived and proved,and its effectiveness and feasibility are verified using both reversible and irreversible systems.Results show that this method achieves higher accuracy in control performance.
基金supported in part by the National Natural Science Foundation of China(62403396,62433018,62373113)the Guangdong Basic and Applied Basic Research Foundation(2023A1515011527,2023B1515120010)the Postdoctoral Fellowship Program of CPSF(GZB20240621)
文摘In this paper, the containment control problem in nonlinear multi-agent systems(NMASs) under denial-of-service(DoS) attacks is addressed. Firstly, a prediction model is obtained using the broad learning technique to train historical data generated by the system offline without DoS attacks. Secondly, the dynamic linearization method is used to obtain the equivalent linearization model of NMASs. Then, a novel model-free adaptive predictive control(MFAPC) framework based on historical and online data generated by the system is proposed, which combines the trained prediction model with the model-free adaptive control method. The development of the MFAPC method motivates a much simpler robust predictive control solution that is convenient to use in the case of DoS attacks. Meanwhile, the MFAPC algorithm provides a unified predictive framework for solving consensus tracking and containment control problems. The boundedness of the containment error can be proven by using the contraction mapping principle and the mathematical induction method. Finally, the proposed MFAPC is assessed through comparative experiments.
基金Project supported by the National Natural Science Foundation of China(Nos.51707082 and 51607080),the Natural Science Foundation of Jiangsu Province,China(Nos.BK20170546 and BK20150510),the China Postdoctoral Science Foundation(No.2017M620192),and the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Mathematical models are disappointing due to uneven distribution of the air gap magnetic field and significant un-modeled dynamics in magnetic bearing systems.The effectiveness of control deteriorates based on an inaccurate mathematical model,creating slow response speed and high jitter.To solve these problems,a model-free adaptive control(MFAC)scheme is proposed for a three-degree-of-freedom hybrid magnetic bearing(3-DoF HMB)control system.The scheme for 3-DoF HMB depends only on the control current and the objective balanced position,and it does not involve any model information.The design process of a parameter estimation algorithm is model-free,based directly on pseudo-partial-derivative(PPD)derived online from the input and output data information.The rotor start-of-suspension position of the HMB is regulated by auxiliary bearings with different inner diameters,and two kinds of operation situations(linear and nonlinear areas)are present to analyze the validity of MFAC in detail.Both simulations and experiments demonstrate that the proposed MFAC scheme handles the 3-DoF HMB control system with start-of-suspension response speed,smaller steady state error,and higher stability.
基金supported by the National Natural Science Foundation of China(62073327,62403467,62373090,62273350,62521001)the Natural Science Foundation of Jiangsu Province(BK20241635)+2 种基金the Postdoctoral Fellowship Program of China Postdoctoral Science Foundation(CPSF)(GZB20240827)Jiangsu Funding Program for Excellent Postdoctoral Talent(2024ZB604)the China Postdoctoral Science Foundation(2024M763545,2025T054ZGMK).
文摘In this article,a novel model-free coordinated optimal regulation design methodology is proposed for the rigidly connected dual permanent magnet synchronous motor(PMSM)system via adaptive dynamic programming(ADP).First,we adopt the classical master-slave structure to maintain torque synchronization by virtue of field-oriented control.Then,a reducedorder model of the dual-PMSM system is established through the application of singular perturbation theory(SPT),which is of significance to decrease the learning time and computational complexity in the outer speed loop design.Afterwards,we design a coordinated adaptive optimal regulator in framework of ADP to drive the speed of girth gear asymptotic tracking the reference signal and accommodate the load torque disturbance,which is independent of the knowledge of model parameters of the system.According to SPT,we analyze the suboptimality,closed-loop stability,and robustness properties of the obtained controller under mild conditions.Finally,comprehensive experimental studies are provided to verify that the proposed control strategy can achieve the speed regulation and the torque synchronization,as well as ameliorate the transient response.
基金supported by the National Key R&D Program of China(No.2016YFB1200100)。
文摘An adaptive optimal trajectory tracking controller is presented for the Solid-RocketPowered Vehicle(SRPV)with uncertain nonlinear non-affine dynamics in the framework of adaptive dynamic programming.First,considering that the ascent model of the SRPV is non-affine,a model-free Single Network Adaptive Critic(SNAC)method is developed based on the dynamic neural network and the traditional SNAC method.This developed model-free SNAC method overcomes the limitation of the traditional SNAC method that can only be applied to affine systems.Then,a closed-form adaptive optimal controller is designed for the non-affine dynamics of SRPVs.This controller can adjust its parameters under different flight conditions and converge to the approximate optimal controller through online self-learning.Finally,the convergence to the approximate optimal controller is proved.The theoretical analysis of the uniformly ultimate boundedness of the tracking error is also presented.Simulation results demonstrate the effectiveness of the proposed controller.
文摘The operating frequency accuracy of the local oscillators is critical for the overall system performance in the communication systems.However,the high-precision oscillators could be too expensive for civil applications.In this paper,we propose a model-free adaptive frequency calibration framework for a voltage-controlled crystal oscillator(VCO)equipped with a time to digital converter(TDC),which can significantly improve the frequency accuracy of the VCO thus calibrated.The idea is to utilize a high-precision TDC to directly measure the VCO period which is then passed to a model-free method for working frequency calibration.One advantage of this method is that the working frequency calibration employs the system history of input/output(I/O)data,instead of establishing an accurate VCO voltagecontrolled oscillator model.Another advantage is the lightweight calibration method with low complexity such that it can be implemented on an MCU with limited computation capabilities.Experimental results show that the proposed calibration method can improve the frequency accuracy of a VCO from±20 ppm to±10 ppb,which indicates the promise of the modelfree adaptive frequency calibrator for VCOs.
文摘This paper develops a novel hierarchical control strategy for improving the trajectory tracking capability of aerial robots under parameter uncertainties.The hierarchical control strategy is composed of an adaptive sliding mode controller and a model-free iterative sliding mode controller(MFISMC).A position controller is designed based on adaptive sliding mode control(SMC)to safely drive the aerial robot and ensure fast state convergence under external disturbances.Additionally,the MFISMC acts as an attitude controller to estimate the unmodeled dynamics without detailed knowledge of aerial robots.Then,the adaption laws are derived with the Lyapunov theory to guarantee the asymptotic tracking of the system state.Finally,to demonstrate the performance and robustness of the proposed control strategy,numerical simulations are carried out,which are also compared with other conventional strategies,such as proportional-integralderivative(PID),backstepping(BS),and SMC.The simulation results indicate that the proposed hierarchical control strategy can fulfill zero steady-state error and achieve faster convergence compared with conventional strategies.
基金supported by National Natural Science Foundation of China(No.52302472)。
文摘The development of the adaptive cycle engine is a crucial direction of advanced fighter power sources in the near future.However,this new technology brings more uncertainty to the design of the control system.To address the versatile thrust demand under complex dynamic characteristics of the adaptive cycle engine,this paper proposes a direct thrust estimation and control method based on the Model-Free Adaptive Control(MFAC)algorithm.First,an improved Sliding Mode Control-MFAC(SMC-MFAC)algorithm has been developed by introducing a sliding mode variable structure into the standard Full Format Dynamic Linearization-MFAC(FFDL-MFAC)and designing self-adaptive weight coefficients.Then a trivariate double-loop direct thrust control structure with a controller-based thrust estimator and an outer command compensation loop has been established.Through thrust feedback and command correction,accurate control under multi-mode and operation conditions is achieved.The main contribution of this paper is the improved algorithm that combines the tracking capability of the MFAC and the robustness of the SMC,thus enhancing the dynamic performance.Considering the requirements of the online thrust feedback,the designed MFAC-based thrust estimator significantly speeds up the calculation.Additionally,the proposed command correction module can achieve the adaptive thrust control without affecting the operation of the inner loop.Simulations and Hardware-in-Loop(HIL)experiments have been performed on an adaptive cycle engine component-level model to investigate the estimation and control effect under different modes and health conditions.The results demonstrate that both the thrust estimation precision and operation speed are significantly improved compared with Extended Kalman Filter(EKF).Furthermore,the system can accelerate the response of the controlled plant,reduce the overshoot,and realize the thrust recovery within the safety range when the engine encounters the degradation.
基金supported by Key Programs for Science and Technology Development of Henan Province(No.102102210197)the Opening Project of Key Laboratory of Mine Informatization,Henan Polytechnic University and the Doctoral Foundation of Henan Polytechnic University(No.B2010-23)
文摘A kind of adaptive sliding model control algorithm is developed to solve and improve the mathematical model dependency and un-modeled dynamics of a controlled system. The control strategy derived from a kind of data-driven control method in essence, thereby the input and output data are utilized by the controller with no information about the control system model. Theoretical analysis proves that this proposed control algorithm can improve the utilization of the estimated pseudo partial derivative information and accelerate the velocity of the convergence. The stability of the control system is further verified by rigorous mathematical analysis. This new discrete-time nonlinear systems model-free control algorithm obtained better control performance through the simulations for the linear motor position and the information tracking speed, which also achieved robust and accurate traceability.
基金This work was supported in part by Huaqiao University(Z14Y0002)in part by the Natural Science Foundation of Fujian Province(2019J01053)+4 种基金Qing-Guo Wang acknowledges the financial support of BNU Talent seed fund,UIC Start-up Fund(R72021115)Guangdong Key Lab of AI and Multi-modal Data Processing(2020KSYS007)the Guangdong Provincial Key Laboratory of Interdisciplinary Research and Application for Data Science(2022B1212010006)Guangdong Higher Education Upgrading Plan 2021-2025(R0400001-22,R0400025-21)UIC,China,which partially funded his research on thiswork.
文摘In this paper,an adaptive disturbance-rejection proportional–integral–differential(PID)control method is proposed for a class of nonlinear systems.First,PID-type criterion is introduced in a model-free adaptive control(MFAC)framework,which gives an optimal control interpretation for PID controller.Then,the design of adaptive disturbance rejection PID is proposed based on this new interpretation to realize controller gain auto-tuning.Due to the ingenious integration of active disturbance rejection and adaptive mechanism,the proposed adaptive disturbance rejection PID control scheme exhibits better control performance than MFAC case.Furthermore,the boundedness of controller gain,the convergence of tracking error and the bounded-input–bounded-output stability are proved for the proposed control system.Finally,the effectiveness of the proposed method is verified by numerical simulation.
基金supported in part by the National Natural Science Foundation of China under Grant 52077002。
文摘Model predictive control(MPC)has been deemed as an attractive control method in motor drives by virtue of its simple structure,convenient multi-objective optimization,and satisfactory dynamic performance.However,the strong reliance on mathematical models seriously restrains its practical application.Therefore,improving the robustness of MPC has attained significant attentions in the last two decades,followed by which,model-free predictive control(MFPC)comes into existence.This article aims to reveal the current state of MFPC strategies for motor drives and give the categorization from the perspective of implementation.Based on this review,the principles of the reported MFPC strategies are introduced in detail,as well as the challenges encountered in technology realization.In addition,some of typical and important concepts are experimentally validated via case studies to evaluate the performance and highlight their features.Finally,the future trends of MFPC are discussed based on the current state and reported developments.
基金financially supported by Sichuan Science and Technology Program(Grant No.2023NSFSC1980).
文摘This study examines the adaptive boundary control problem of flexible marine riser with internal flow coupling.The dynamic model of the flexible marine riser system with internal flow coupling is derived using the Hamiltonian principle.An analysis of internal flow’s influence on the vibration characteristics of flexible marine risers is conducted.Then,for the uncertain environmental disturbance,the adaptive fuzzy logic system is introduced to dynamically approximate the boundary disturbance,and a robust adaptive fuzzy boundary control is proposed.The uniform boundedness of the closed-loop system is proved based on Lyapunov theory.The well-posedness of the closed-loop system is proved by operator semigroup theory.The proposed control’s effectiveness is validated through comparison with existing control methods.