In this paper,a novel control structure called feedback scheduling of model-based networked control systems is proposed to cope with a flexible network load and resource constraints.The state update time is adjusted a...In this paper,a novel control structure called feedback scheduling of model-based networked control systems is proposed to cope with a flexible network load and resource constraints.The state update time is adjusted according to the real-time network congestion situation.State observer is used under the situation where the state of the controlled plant could not be acquired.The stability criterion of the proposed structure is proved with time-varying state update time.On the basis of the stability of the novel system structure,the compromise between the control performance and the network utilization is realized by using feedback scheduler. Examples are provided to show the advantage of the proposed control structure.展开更多
Dear Editor,In this letter,a constrained networked predictive control strategy is proposed for the optimal control problem of complex nonlinear highorder fully actuated(HOFA)systems with noises.The method can effectiv...Dear Editor,In this letter,a constrained networked predictive control strategy is proposed for the optimal control problem of complex nonlinear highorder fully actuated(HOFA)systems with noises.The method can effectively deal with nonlinearities,constraints,and noises in the system,optimize the performance metric,and present an upper bound on the stable output of the system.展开更多
This paper investigates the problem of optimal secure control for networked control systems under hybrid attacks.A control strategy based on the Stackelberg game framework is proposed,which differs from conventional m...This paper investigates the problem of optimal secure control for networked control systems under hybrid attacks.A control strategy based on the Stackelberg game framework is proposed,which differs from conventional methods by considering both denial-of-service(DoS)and false data injection(FDI)attacks simultaneously.Additionally,the stability conditions for the system under these hybrid attacks are established.It is technically challenging to design the control strategy by predicting attacker actions based on Stcakelberg game to ensure the system stability under hybrid attacks.Another technical difficulty lies in establishing the conditions for mean-square asymptotic stability due to the complexity of the attack scenarios Finally,simulations on an unstable batch reactor system under hybrid attacks demonstrate the effectiveness of the proposed strategy.展开更多
To handle input and output time delays that commonly exist in many networked control systems(NCSs), a new robust continuous sliding mode control(CSMC) scheme is proposed for the output tracking in uncertain single inp...To handle input and output time delays that commonly exist in many networked control systems(NCSs), a new robust continuous sliding mode control(CSMC) scheme is proposed for the output tracking in uncertain single input-single-output(SISO) networked control systems. This scheme consists of three consecutive steps. First, although the network-induced delay in those systems can be effectively handled by using Pade approximation(PA), the unmatched disturbance cames out as another difficulty in the control design. Second, to actively estimate this unmatched disturbance, a generalized proportional integral observer(GPIO) technique is utilized based on only one measured state. Third, by constructing a new sliding manifold with the aid of the estimated unmatched disturbance and states, a GPIO-based CSMC is synthesized, which is employed to cope with not only matched and unmatched disturbances, but also networkinduced delays. The stability of the entire closed-loop system under the proposed GPIO-based CSMC is detailedly analyzed.The promising tracking efficiency and feasibility of the proposed control methodology are verified through simulations and experiments on Quanser's servo module for motion control under various test conditions.展开更多
Dear Editor,This letter presents a joint probabilistic scheduling and resource allocation method(PSRA) for 5G-based wireless networked control systems(WNCSs). As a control-aware optimization method, PSRA minimizes the...Dear Editor,This letter presents a joint probabilistic scheduling and resource allocation method(PSRA) for 5G-based wireless networked control systems(WNCSs). As a control-aware optimization method, PSRA minimizes the linear quadratic Gaussian(LQG) control cost of WNCSs by optimizing the activation probability of subsystems, the number of uplink repetitions, and the durations of uplink and downlink phases. Simulation results show that PSRA achieves smaller LQG control costs than existing works.展开更多
In this paper, the control of a two-time-scale plant, where the sensor is connected to a linear controller/ actuator via a network is addressed. The slow and fast systems of singularly perturbed systems are used to pr...In this paper, the control of a two-time-scale plant, where the sensor is connected to a linear controller/ actuator via a network is addressed. The slow and fast systems of singularly perturbed systems are used to produce an estimate of the plant state behavior between transmission times, by which one can reduce the usage of the network. The approximate solutions of the whole systems are derived and it is shown that the whole systems via the network control are generally asymptotically stable as long as their slow and fast systems are both stable. These results are also extended to the case of network delay.展开更多
A composite anti-disturbance predictive control strategy employing a Multi-dimensional Taylor Network(MTN)is presented for unmanned systems subject to time-delay and multi-source disturbances.First,the multi-source di...A composite anti-disturbance predictive control strategy employing a Multi-dimensional Taylor Network(MTN)is presented for unmanned systems subject to time-delay and multi-source disturbances.First,the multi-source disturbances are addressed according to their specific characteristics as follows:(A)an MTN data-driven model,which is used for uncertainty description,is designed accompanied with the mechanism model to represent the unmanned systems;(B)an adaptive MTN filter is used to remove the influence of the internal disturbance;(C)an MTN disturbance observer is constructed to estimate and compensate for the influence of the external disturbance;(D)the Extended Kalman Filter(EKF)algorithm is utilized as the learning mechanism for MTNs.Second,to address the time-delay effect,a recursiveτstep-ahead MTN predictive model is designed utilizing recursive technology,aiming to mitigate the impact of time-delay,and the EKF algorithm is employed as its learning mechanism.Then,the MTN predictive control law is designed based on the quadratic performance index.By implementing the proposed composite controller to unmanned systems,simultaneous feedforward compensation and feedback suppression to the multi-source disturbances are conducted.Finally,the convergence of the MTN and the stability of the closed-loop system are established utilizing the Lyapunov theorem.Two exemplary applications of unmanned systems involving unmanned vehicle and rigid spacecraft are presented to validate the effectiveness of the proposed approach.展开更多
This paper discusses the model-based predictive controller design of networked nonlinear systems with communica- tion delay and data loss. Based on the analysis of the closed-loop networked predictive control systems,...This paper discusses the model-based predictive controller design of networked nonlinear systems with communica- tion delay and data loss. Based on the analysis of the closed-loop networked predictive control systems, the model-based networked predictive control strategy can compensate for communication delay and data loss in an active way. The designed model-based predictive controller can also guarantee the stability of the closed-loop networked system. The simulation re- suits demonstrate the feasibility and efficacy of the proposed model-based predictive controller design scheme.展开更多
In this paper,we investigate the distributed Nash equilibrium(NE)seeking problem for aggregative games with multiple uncertain Euler–Lagrange(EL)systems over jointly connected and weight-balanced switching networks.T...In this paper,we investigate the distributed Nash equilibrium(NE)seeking problem for aggregative games with multiple uncertain Euler–Lagrange(EL)systems over jointly connected and weight-balanced switching networks.The designed distributed controller consists of two parts:a dynamic average consensus part that asymptotically reproduces the unknown NE,and an adaptive reference-tracking module responsible for steering EL systems’positions to track a desired trajectory.The generalized Barbalat’s Lemma is used to overcome the discontinuity of the closed-loop system caused by the switching networks.The proposed algorithm is illustrated by a sensor network deployment problem.展开更多
In this paper, a fault-tolerant-based online critic learning algorithm is developed to solve the optimal tracking control issue for nonaffine nonlinear systems with actuator faults.First, a novel augmented plant is co...In this paper, a fault-tolerant-based online critic learning algorithm is developed to solve the optimal tracking control issue for nonaffine nonlinear systems with actuator faults.First, a novel augmented plant is constructed by fusing the system state and the reference trajectory, which aims to transform the optimal fault-tolerant tracking control design with actuator faults into the optimal regulation problem of the conventional nonlinear error system. Subsequently, in order to ensure the normal execution of the online learning algorithm, a stability criterion condition is created to obtain an initial admissible tracking policy. Then, the constructed model neural network(NN) is pretrained to recognize the system dynamics and calculate trajectory control. The critic and action NNs are constructed to output the approximate cost function and approximate tracking control,respectively. The Hamilton-Jacobi-Bellman equation of the error system is solved online through the action-critic framework. In theoretical analysis, it is proved that all concerned signals are uniformly ultimately bounded according to the Lyapunov principle.The tracking control law can approach the optimal tracking control within a finite approximation error. Finally, two experimental examples are conducted to indicate the effectiveness and superiority of the developed fault-tolerant tracking control scheme.展开更多
This paper studies the problem of time-varying formation control with finite-time prescribed performance for nonstrict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities.To eli...This paper studies the problem of time-varying formation control with finite-time prescribed performance for nonstrict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities.To eliminate nonlinearities,neural networks are applied to approximate the inherent dynamics of the system.In addition,due to the limitations of the actual working conditions,each follower agent can only obtain the locally measurable partial state information of the leader agent.To address this problem,a neural network state observer based on the leader state information is designed.Then,a finite-time prescribed performance adaptive output feedback control strategy is proposed by restricting the sliding mode surface to a prescribed region,which ensures that the closed-loop system has practical finite-time stability and that formation errors of the multi-agent systems converge to the prescribed performance bound in finite time.Finally,a numerical simulation is provided to demonstrate the practicality and effectiveness of the developed algorithm.展开更多
The random delays in a networked control system (NCS) degrade control performance and can even destabilize the control system.To deal with this problem,the time-stamped predictive functional control (PFC) algorithm is...The random delays in a networked control system (NCS) degrade control performance and can even destabilize the control system.To deal with this problem,the time-stamped predictive functional control (PFC) algorithm is proposed,which generalizes the standard PFC algorithm to networked control systems with random delays.The algorithm uses the time-stamp method to estimate the control delay,predicts the future outputs based on a discrete time delay state space model,and drives the control law that applies to an NCS from the idea of a PFC algorithm.A networked control system was constructed based on TrueTime simulator,with which the time-stamped PFC algorithm was compared with the standard PFC algorithm.The response curves show that the proposed algorithm has better control performance.展开更多
Networked control systems are spatially distributed systems in which the communication between sensors, actuators,and controllers occurs through a shared band-limited digital communication network. Several advantages ...Networked control systems are spatially distributed systems in which the communication between sensors, actuators,and controllers occurs through a shared band-limited digital communication network. Several advantages of the network architectures include reduced system wiring, plug and play devices,increased system agility, and ease of system diagnosis and maintenance. Consequently, networked control is the current trend for industrial automation and has ever-increasing applications in a wide range of areas, such as smart grids, manufacturing systems,process control, automobiles, automated highway systems, and unmanned aerial vehicles. The modelling, analysis, and control of networked control systems have received considerable attention in the last two decades. The ‘control over networks’ is one of the key research directions for networked control systems. This paper aims at presenting a survey of trends and techniques in networked control systems from the perspective of ‘control over networks’, providing a snapshot of five control issues: sampled-data control, quantization control, networked control, event-triggered control, and security control. Some challenging issues are suggested to direct the future research.展开更多
For the past decades,networked control systems(NCSs),as an interdisciplinary subject,have been one of the main research highlights and many fruitful results from different aspects have been achieved.With these growing...For the past decades,networked control systems(NCSs),as an interdisciplinary subject,have been one of the main research highlights and many fruitful results from different aspects have been achieved.With these growing research trends,it is significant to consolidate the latest knowledge and information to keep up with the research needs.In this paper,the results of different aspects of NCSs,such as quantization,estimation,fault detection and networked predictive control,are summarized.In addition,with the development of cloud technique,cloud control systems are proposed for the further development of NCSs.展开更多
The guaranteed cost control problem for networked control systems (NCSs) is addressed under communication constraints and varying sampling rate. First of all, a simple information-scheduling scheme is presented to des...The guaranteed cost control problem for networked control systems (NCSs) is addressed under communication constraints and varying sampling rate. First of all, a simple information-scheduling scheme is presented to describe the scheduling approach of system signals in NCSs. Then, based on such a scheme and given sampling method, the design procedure in dynamic output feedback manner is also derived which renders the closed loop system to be asymptotically stable and guarantees an upper bound of the LQ performance cost function.展开更多
Based on bounded network-induced time-delay, the networked control system is modeled as a linear time-variant singular system. Using the Lyapunov theory and the linear matrix inequality approach, the criteria for dela...Based on bounded network-induced time-delay, the networked control system is modeled as a linear time-variant singular system. Using the Lyapunov theory and the linear matrix inequality approach, the criteria for delay-independent stability and delay-dependent stability of singular networked control systems are derived and transformed to a feasibility problem of linear matrix inequality formulation, which can be solved by the Matlab LMI toolbox, and the feasible solutions provide the maximum allowable delay bound that makes the system stable. A numerical example is provided, which shows that the analysis method is valid and the stability criteria are feasible.展开更多
Abstract--This paper provides a survey on modeling and theories of networked control systems (NCS). In the first part, modeling of the different types of imperfections that affect NCS is discussed. These imperfectio...Abstract--This paper provides a survey on modeling and theories of networked control systems (NCS). In the first part, modeling of the different types of imperfections that affect NCS is discussed. These imperfections are quantization errors, packet dropouts, variable sampling/transmission intervals, vari- able transmission delays, and communication constraints. Then follows in the second part a presentation of several theories that have been applied for controlling networked systems. These theories include: input delay system approach, Markovian system approach, switched system approach, stochastic system approach, impulsive system approach, and predictive control approach. In the last part, some advanced issues in NCS including decentral- ized and distributed NCS, cloud control system, and co-design of NCS are reviewed. Index Terms--Decentralized networked control systems (NCS), distributed networked control systems, network constraints, net- worked control system, quantization, time delays.展开更多
A kind of networked control system is studied; the networked control system with noise disturbance is modeled based on information scheduling and control co-design. Augmented state matrix analysis method is introduced...A kind of networked control system is studied; the networked control system with noise disturbance is modeled based on information scheduling and control co-design. Augmented state matrix analysis method is introduced, and robust fault-tolerant control problem of networked control systems with noise disturbance under actuator failures is studied. The parametric expression of the controller under actuator failures is given. Furthermore, the result is analyzed by simulation tests, which not only satisfies the networked control systems stability, but also decreases the data information number in network channel and makes full use of the network resources.展开更多
This paper deals with the problem of switching between an open-loop estimator and a close-loop estimator for compensating transmission error and packet dropout of networked control systems. Switching impulse is consid...This paper deals with the problem of switching between an open-loop estimator and a close-loop estimator for compensating transmission error and packet dropout of networked control systems. Switching impulse is considered in order to reduce the error between theory and application, a sufficient condition for exponential stabilization of networked control systems under a given switching rule is presented by multiple Lyapunov-like functions. These results are presented for both continuous-time and discrete-time domains. Controllers are designed by means of linear matrix inequalities. Sim- ulation results show the feasibility and efficiency of the proposed method.展开更多
In this paper, we present an interval model of networked control systems with time-varying sampling periods and time-varying network-induced delays and discuss the problem of stability of networked control systems usi...In this paper, we present an interval model of networked control systems with time-varying sampling periods and time-varying network-induced delays and discuss the problem of stability of networked control systems using Lyapunov stability theory. A sufficient stability condition is obtained by solving a set of linear matrix inequalities. In the end, the illustrative example demonstrates the correctness and effectiveness of the proposed approach.展开更多
文摘In this paper,a novel control structure called feedback scheduling of model-based networked control systems is proposed to cope with a flexible network load and resource constraints.The state update time is adjusted according to the real-time network congestion situation.State observer is used under the situation where the state of the controlled plant could not be acquired.The stability criterion of the proposed structure is proved with time-varying state update time.On the basis of the stability of the novel system structure,the compromise between the control performance and the network utilization is realized by using feedback scheduler. Examples are provided to show the advantage of the proposed control structure.
基金supported in part by the National Natural Science Foundation of China(62173255,62188101)Shenzhen Key Laboratory of Control Theory and Intelligent Systems(ZDSYS20220330161800001)
文摘Dear Editor,In this letter,a constrained networked predictive control strategy is proposed for the optimal control problem of complex nonlinear highorder fully actuated(HOFA)systems with noises.The method can effectively deal with nonlinearities,constraints,and noises in the system,optimize the performance metric,and present an upper bound on the stable output of the system.
基金supported in part by Shanghai Rising-Star Program,China under grant 22QA1409400in part by National Natural Science Foundation of China under grant 62473287 and 62088101in part by Shanghai Municipal Science and Technology Major Project under grant 2021SHZDZX0100.
文摘This paper investigates the problem of optimal secure control for networked control systems under hybrid attacks.A control strategy based on the Stackelberg game framework is proposed,which differs from conventional methods by considering both denial-of-service(DoS)and false data injection(FDI)attacks simultaneously.Additionally,the stability conditions for the system under these hybrid attacks are established.It is technically challenging to design the control strategy by predicting attacker actions based on Stcakelberg game to ensure the system stability under hybrid attacks.Another technical difficulty lies in establishing the conditions for mean-square asymptotic stability due to the complexity of the attack scenarios Finally,simulations on an unstable batch reactor system under hybrid attacks demonstrate the effectiveness of the proposed strategy.
基金supported in part by the Australian Research Council Discovery Project(DP190101557)
文摘To handle input and output time delays that commonly exist in many networked control systems(NCSs), a new robust continuous sliding mode control(CSMC) scheme is proposed for the output tracking in uncertain single input-single-output(SISO) networked control systems. This scheme consists of three consecutive steps. First, although the network-induced delay in those systems can be effectively handled by using Pade approximation(PA), the unmatched disturbance cames out as another difficulty in the control design. Second, to actively estimate this unmatched disturbance, a generalized proportional integral observer(GPIO) technique is utilized based on only one measured state. Third, by constructing a new sliding manifold with the aid of the estimated unmatched disturbance and states, a GPIO-based CSMC is synthesized, which is employed to cope with not only matched and unmatched disturbances, but also networkinduced delays. The stability of the entire closed-loop system under the proposed GPIO-based CSMC is detailedly analyzed.The promising tracking efficiency and feasibility of the proposed control methodology are verified through simulations and experiments on Quanser's servo module for motion control under various test conditions.
基金supported by the Liaoning Revitalization Talents Program(XLYC2203148)
文摘Dear Editor,This letter presents a joint probabilistic scheduling and resource allocation method(PSRA) for 5G-based wireless networked control systems(WNCSs). As a control-aware optimization method, PSRA minimizes the linear quadratic Gaussian(LQG) control cost of WNCSs by optimizing the activation probability of subsystems, the number of uplink repetitions, and the durations of uplink and downlink phases. Simulation results show that PSRA achieves smaller LQG control costs than existing works.
基金the National Natural Science Foundation of China (No. 10671069, 60674046)
文摘In this paper, the control of a two-time-scale plant, where the sensor is connected to a linear controller/ actuator via a network is addressed. The slow and fast systems of singularly perturbed systems are used to produce an estimate of the plant state behavior between transmission times, by which one can reduce the usage of the network. The approximate solutions of the whole systems are derived and it is shown that the whole systems via the network control are generally asymptotically stable as long as their slow and fast systems are both stable. These results are also extended to the case of network delay.
基金co-supported by the National Key R&D Program of China(No.2023YFB4704400)the Zhejiang Provincial Natural Science Foundation of China(No.LQ24F030012)the National Natural Science Foundation of China General Project(No.62373033)。
文摘A composite anti-disturbance predictive control strategy employing a Multi-dimensional Taylor Network(MTN)is presented for unmanned systems subject to time-delay and multi-source disturbances.First,the multi-source disturbances are addressed according to their specific characteristics as follows:(A)an MTN data-driven model,which is used for uncertainty description,is designed accompanied with the mechanism model to represent the unmanned systems;(B)an adaptive MTN filter is used to remove the influence of the internal disturbance;(C)an MTN disturbance observer is constructed to estimate and compensate for the influence of the external disturbance;(D)the Extended Kalman Filter(EKF)algorithm is utilized as the learning mechanism for MTNs.Second,to address the time-delay effect,a recursiveτstep-ahead MTN predictive model is designed utilizing recursive technology,aiming to mitigate the impact of time-delay,and the EKF algorithm is employed as its learning mechanism.Then,the MTN predictive control law is designed based on the quadratic performance index.By implementing the proposed composite controller to unmanned systems,simultaneous feedforward compensation and feedback suppression to the multi-source disturbances are conducted.Finally,the convergence of the MTN and the stability of the closed-loop system are established utilizing the Lyapunov theorem.Two exemplary applications of unmanned systems involving unmanned vehicle and rigid spacecraft are presented to validate the effectiveness of the proposed approach.
基金Project supported by the Key Program for the National Natural Science Foundation of China(Grant No.61333003)the General Program for the National Natural Science Foundation of China(Grant No.61273104)
文摘This paper discusses the model-based predictive controller design of networked nonlinear systems with communica- tion delay and data loss. Based on the analysis of the closed-loop networked predictive control systems, the model-based networked predictive control strategy can compensate for communication delay and data loss in an active way. The designed model-based predictive controller can also guarantee the stability of the closed-loop networked system. The simulation re- suits demonstrate the feasibility and efficacy of the proposed model-based predictive controller design scheme.
基金supported by the Research Grants Council of the Hong Kong Special Administration Region under the Grant No.14201621。
文摘In this paper,we investigate the distributed Nash equilibrium(NE)seeking problem for aggregative games with multiple uncertain Euler–Lagrange(EL)systems over jointly connected and weight-balanced switching networks.The designed distributed controller consists of two parts:a dynamic average consensus part that asymptotically reproduces the unknown NE,and an adaptive reference-tracking module responsible for steering EL systems’positions to track a desired trajectory.The generalized Barbalat’s Lemma is used to overcome the discontinuity of the closed-loop system caused by the switching networks.The proposed algorithm is illustrated by a sensor network deployment problem.
基金supported in part by the National Natural Science Foundation of China(62222301,62373012,62473012,62021003)the National Science and Technology Major Project(2021ZD0112302,2021ZD0112301)the Beijing Natural Science Foundation(JQ19013)
文摘In this paper, a fault-tolerant-based online critic learning algorithm is developed to solve the optimal tracking control issue for nonaffine nonlinear systems with actuator faults.First, a novel augmented plant is constructed by fusing the system state and the reference trajectory, which aims to transform the optimal fault-tolerant tracking control design with actuator faults into the optimal regulation problem of the conventional nonlinear error system. Subsequently, in order to ensure the normal execution of the online learning algorithm, a stability criterion condition is created to obtain an initial admissible tracking policy. Then, the constructed model neural network(NN) is pretrained to recognize the system dynamics and calculate trajectory control. The critic and action NNs are constructed to output the approximate cost function and approximate tracking control,respectively. The Hamilton-Jacobi-Bellman equation of the error system is solved online through the action-critic framework. In theoretical analysis, it is proved that all concerned signals are uniformly ultimately bounded according to the Lyapunov principle.The tracking control law can approach the optimal tracking control within a finite approximation error. Finally, two experimental examples are conducted to indicate the effectiveness and superiority of the developed fault-tolerant tracking control scheme.
基金the National Natural Science Foundation of China(62203356)Fundamental Research Funds for the Central Universities of China(31020210502002)。
文摘This paper studies the problem of time-varying formation control with finite-time prescribed performance for nonstrict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities.To eliminate nonlinearities,neural networks are applied to approximate the inherent dynamics of the system.In addition,due to the limitations of the actual working conditions,each follower agent can only obtain the locally measurable partial state information of the leader agent.To address this problem,a neural network state observer based on the leader state information is designed.Then,a finite-time prescribed performance adaptive output feedback control strategy is proposed by restricting the sliding mode surface to a prescribed region,which ensures that the closed-loop system has practical finite-time stability and that formation errors of the multi-agent systems converge to the prescribed performance bound in finite time.Finally,a numerical simulation is provided to demonstrate the practicality and effectiveness of the developed algorithm.
文摘The random delays in a networked control system (NCS) degrade control performance and can even destabilize the control system.To deal with this problem,the time-stamped predictive functional control (PFC) algorithm is proposed,which generalizes the standard PFC algorithm to networked control systems with random delays.The algorithm uses the time-stamp method to estimate the control delay,predicts the future outputs based on a discrete time delay state space model,and drives the control law that applies to an NCS from the idea of a PFC algorithm.A networked control system was constructed based on TrueTime simulator,with which the time-stamped PFC algorithm was compared with the standard PFC algorithm.The response curves show that the proposed algorithm has better control performance.
基金supported in part by the Australian Research Council Discovery Project(DP160103567)
文摘Networked control systems are spatially distributed systems in which the communication between sensors, actuators,and controllers occurs through a shared band-limited digital communication network. Several advantages of the network architectures include reduced system wiring, plug and play devices,increased system agility, and ease of system diagnosis and maintenance. Consequently, networked control is the current trend for industrial automation and has ever-increasing applications in a wide range of areas, such as smart grids, manufacturing systems,process control, automobiles, automated highway systems, and unmanned aerial vehicles. The modelling, analysis, and control of networked control systems have received considerable attention in the last two decades. The ‘control over networks’ is one of the key research directions for networked control systems. This paper aims at presenting a survey of trends and techniques in networked control systems from the perspective of ‘control over networks’, providing a snapshot of five control issues: sampled-data control, quantization control, networked control, event-triggered control, and security control. Some challenging issues are suggested to direct the future research.
基金supported by National Basic Research Program of China(973 Program)(No.2012CB720000)National Natural Science Foundation of China(Nos.61225015 and 60974011)+3 种基金Foundation for Innovative Research Groups of the National Natural Science Foundation of China(No.61321002)Beijing Municipal Natural Science Foundation(Nos.4102053 and 4101001)Beijing Natural Science Foundation(Nos.4132042)Beijing Higher Education Young Elite Teacher Project(No.YETP1212)
文摘For the past decades,networked control systems(NCSs),as an interdisciplinary subject,have been one of the main research highlights and many fruitful results from different aspects have been achieved.With these growing research trends,it is significant to consolidate the latest knowledge and information to keep up with the research needs.In this paper,the results of different aspects of NCSs,such as quantization,estimation,fault detection and networked predictive control,are summarized.In addition,with the development of cloud technique,cloud control systems are proposed for the further development of NCSs.
基金This work was supported by the National Natural Science Foundation of China (No.60274014)Specialized+1 种基金Research Fund for the Doctoral Program of Higher Education (No. 20020487006)China Education Ministry' s Key Laboratory Foundation for Intelligent Ma
文摘The guaranteed cost control problem for networked control systems (NCSs) is addressed under communication constraints and varying sampling rate. First of all, a simple information-scheduling scheme is presented to describe the scheduling approach of system signals in NCSs. Then, based on such a scheme and given sampling method, the design procedure in dynamic output feedback manner is also derived which renders the closed loop system to be asymptotically stable and guarantees an upper bound of the LQ performance cost function.
基金the National Natural Science Foundation of China (60574011)the National Natural Science Foundation of Liaoning Province (2050770).
文摘Based on bounded network-induced time-delay, the networked control system is modeled as a linear time-variant singular system. Using the Lyapunov theory and the linear matrix inequality approach, the criteria for delay-independent stability and delay-dependent stability of singular networked control systems are derived and transformed to a feasibility problem of linear matrix inequality formulation, which can be solved by the Matlab LMI toolbox, and the feasible solutions provide the maximum allowable delay bound that makes the system stable. A numerical example is provided, which shows that the analysis method is valid and the stability criteria are feasible.
基金supported by the Deanship of Scientific Research(DSR) at KFUPM through Research Project(IN141048)
文摘Abstract--This paper provides a survey on modeling and theories of networked control systems (NCS). In the first part, modeling of the different types of imperfections that affect NCS is discussed. These imperfections are quantization errors, packet dropouts, variable sampling/transmission intervals, vari- able transmission delays, and communication constraints. Then follows in the second part a presentation of several theories that have been applied for controlling networked systems. These theories include: input delay system approach, Markovian system approach, switched system approach, stochastic system approach, impulsive system approach, and predictive control approach. In the last part, some advanced issues in NCS including decentral- ized and distributed NCS, cloud control system, and co-design of NCS are reviewed. Index Terms--Decentralized networked control systems (NCS), distributed networked control systems, network constraints, net- worked control system, quantization, time delays.
基金Hohai University Startup Outlay for Doctor Scientific Research (2084/40601136)
文摘A kind of networked control system is studied; the networked control system with noise disturbance is modeled based on information scheduling and control co-design. Augmented state matrix analysis method is introduced, and robust fault-tolerant control problem of networked control systems with noise disturbance under actuator failures is studied. The parametric expression of the controller under actuator failures is given. Furthermore, the result is analyzed by simulation tests, which not only satisfies the networked control systems stability, but also decreases the data information number in network channel and makes full use of the network resources.
基金This work was supported by the National Natural Science Foundation of China (No.60574013, 60274009), and the Natural Science Fundation ofLiaoning Province (No.20032020).
文摘This paper deals with the problem of switching between an open-loop estimator and a close-loop estimator for compensating transmission error and packet dropout of networked control systems. Switching impulse is considered in order to reduce the error between theory and application, a sufficient condition for exponential stabilization of networked control systems under a given switching rule is presented by multiple Lyapunov-like functions. These results are presented for both continuous-time and discrete-time domains. Controllers are designed by means of linear matrix inequalities. Sim- ulation results show the feasibility and efficiency of the proposed method.
基金the National Natural Science Foundation of China (No.60674043)
文摘In this paper, we present an interval model of networked control systems with time-varying sampling periods and time-varying network-induced delays and discuss the problem of stability of networked control systems using Lyapunov stability theory. A sufficient stability condition is obtained by solving a set of linear matrix inequalities. In the end, the illustrative example demonstrates the correctness and effectiveness of the proposed approach.