期刊文献+
共找到4,812篇文章
< 1 2 241 >
每页显示 20 50 100
Classification of forest vegetation with the application of iterative reallocation and model-based clustering
1
作者 Naghmeh Pakgohar Javad Eshaghi Rad +4 位作者 Hossein Gholami Ahmad Alijanpour David W.Roberts Attila Lengyel Enrico Feoli 《Journal of Forestry Research》 2025年第5期103-112,共10页
Numerous clustering algorithms are valuable in pattern recognition in forest vegetation,with new ones continually being proposed.While some are well-known,others are underutilized in vegetation science.This study comp... Numerous clustering algorithms are valuable in pattern recognition in forest vegetation,with new ones continually being proposed.While some are well-known,others are underutilized in vegetation science.This study compares the performance of practical iterative reallocation algorithms with model-based clustering algorithms.The data is from forest vegetation in Virginia(United States),the Hyrcanian Forest(Asia),and European beech forests.Practical iterative reallocation algorithms were applied as non-hierarchical methods and Finite Gaussian mixture modeling was used as a model-based clustering method.Due to limitations on dimensionality in model-based clustering,principal coordinates analysis was employed to reduce the dataset’s dimensions.A log transformation was applied to achieve a normal distribution for the pseudo-species data before calculating the Bray-Curtis dissimilarity.The findings indicate that the reallocation of misclassified objects based on silhouette width(OPTSIL)with Flexible-β(-0.25)had the highest mean among the tested clustering algorithms with Silhouette width 1(REMOS1)with Flexible-β(-0.25)second.However,model-based clustering performed poorly.Based on these results,it is recommended using OPTSIL with Flexible-β(-0.25)and REMOS1 with Flexible-β(-0.25)for forest vegetation classification instead of model-based clustering particularly for heterogeneous datasets common in forest vegetation community data. 展开更多
关键词 CLASSIFICATION Heuristic clustering Finite mixture Forest ecosystems model-based clustering
在线阅读 下载PDF
Awareness with Machine: Hybrid Approach to Detecting ASD with a Clustering
2
作者 Gozde Karatas Baydogmus Onder Demir 《Computers, Materials & Continua》 2025年第8期3393-3406,共14页
Detection of Autism Spectrum Disorder(ASD)is a crucial area of research,representing a foundational aspect of psychological studies.The advancement of technology and the widespread adoption of machine learning methodo... Detection of Autism Spectrum Disorder(ASD)is a crucial area of research,representing a foundational aspect of psychological studies.The advancement of technology and the widespread adoption of machine learning methodologies have brought significant attention to this field in recent years.Interdisciplinary efforts have further propelled research into detection methods.Consequently,this study aims to contribute to both the fields of psychology and computer science.Specifically,the goal is to apply machine learning techniques to limited data for the detection of Autism Spectrum Disorder.This study is structured into two distinct phases:data preprocessing and classification.In the data preprocessing phase,four datasets—Toddler,Children,Adolescent,and Adult—were converted into numerical form,adjusted as necessary,and subsequently clustered.Clustering was performed using six different methods:Kmeans,agglomerative,DBSCAN(Density-Based Spatial Clustering of Applications with Noise),mean shift,spectral,and Birch.In the second phase,the clustered ASD data were classified.The model’s accuracy was assessed using 5-fold cross-validation to ensure robust evaluation.In total,ten distinct machine learning algorithms were employed.The findings indicate that all clustering methods demonstrated success with various classifiers.Notably,the K-means algorithm emerged as particularly effective,achieving consistent and significant results across all datasets.This study is expected to serve as a guide for improving ASD detection performance,even with minimal data availability. 展开更多
关键词 ASD ASD detection machine learning clustering methods
在线阅读 下载PDF
Optimizing basis wave functions in the generator coordinate method for microscopic cluster models (Ⅰ)
3
作者 Yi‑Fan Liu Bo Zhou Yu‑Gang Ma 《Nuclear Science and Techniques》 2025年第10期183-191,共9页
We employed random distributions and gradient descent methods for the Generator Coordinate Method(GCM)to identify effective basis wave functions,taking halo nuclei ^(6)He and ^(6)Li as examples.By comparing the ground... We employed random distributions and gradient descent methods for the Generator Coordinate Method(GCM)to identify effective basis wave functions,taking halo nuclei ^(6)He and ^(6)Li as examples.By comparing the ground state(0^(+))energy of ^(6)He and the excited state(0^(+))energy of 6 Li calculated with various random distributions and manually selected generation coordinates,we found that the heavy tail characteristic of the logistic distribution better describes the features of the halo nuclei.Subsequently,the Adam algorithm from machine learning was applied to optimize the basis wave functions,indicating that a limited number of basis wave functions can approximate the converged values.These results offer some empirical insights for selecting basis wave functions and contribute to the broader application of machine learning methods in predicting effective basis wave functions. 展开更多
关键词 Generator Coordinate method Effective basis wave functions Nuclear cluster model Machine learning Halo nuclei
在线阅读 下载PDF
Level-shifted embedded cluster method may offer a viable alternative for the simulation of metal oxides
4
作者 Zi-Jian Zhou Xin-Ping Wu 《Chinese Journal of Structural Chemistry》 2025年第5期1-2,共2页
The use of metal oxides has been extensively documented in the literature and applied in a variety of contexts,including but not limited to energy storage,chemical sensors,and biomedical applications.One of the most s... The use of metal oxides has been extensively documented in the literature and applied in a variety of contexts,including but not limited to energy storage,chemical sensors,and biomedical applications.One of the most significant applications of metal oxides is heterogeneous catalysis,which represents a pivotal technology in industrial production on a global scale.Catalysts serve as the primary enabling agents for chemical reactions,and among the plethora of catalysts,metal oxides including magnesium oxide(MgO),ceria(CeO_(2))and titania(TiO_(2)),have been identified to be particularly effective in catalyzing a variety of reactions[1].Theoretical calculations based on density functional theory(DFT)and a multitude of other quantum chemistry methods have proven invaluable in elucidating the mechanisms of metal-oxide-catalyzed reactions,thereby facilitating the design of high-performance catalysts[2]. 展开更多
关键词 chemical reactionsand industrial production heterogeneous catalysiswhich metal oxides energy storagechemical biomedical applicationsone level shifted embedded cluster method catalystsmetal oxides
原文传递
Research on entropy weight variation evaluation method for wind power clusters based on dynamic layered sorting 被引量:1
5
作者 Yansong Gao Lifu A +4 位作者 Chenxu Zhao Xiaodong Qin Ri Na An Wang Shangshang Wei 《Global Energy Interconnection》 EI CSCD 2024年第5期653-666,共14页
This paper presents an evaluation method for the entropy-weighting of wind power clusters that comprehensively evaluates the allocation problems of wind power clusters by considering the correlation between indicators... This paper presents an evaluation method for the entropy-weighting of wind power clusters that comprehensively evaluates the allocation problems of wind power clusters by considering the correlation between indicators and the dynamic performance of weight changes.A dynamic layered sorting allocation method is also proposed.The proposed evaluation method considers the power-limiting degree of the last cycle,the adjustment margin,and volatility.It uses the theory of weight variation to update the entropy weight coefficients of each indicator in real time,and then performs a fuzzy evaluation based on the membership function to obtain intuitive comprehensive evaluation results.A case study of a large-scale wind power base in Northwest China was conducted.The proposed evaluation method is compared with fixed-weight entropy and principal component analysis methods.The results show that the three scoring trends are the same,and that the proposed evaluation method is closer to the average level of the latter two,demonstrating higher accuracy.The proposed allocation method can reduce the number of adjustments made to wind farms,which is significant for the allocation and evaluation of wind power clusters. 展开更多
关键词 Wind power clusters Entropy-weighting method Comprehensive evaluation Dynamic layered sorting
在线阅读 下载PDF
Global Optimization Method Using SLE and Adaptive RBF Based on Fuzzy Clustering 被引量:8
6
作者 ZHU Huaguang LIU Li LONG Teng ZHAO Junfeng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2012年第4期768-775,共8页
High fidelity analysis models,which are beneficial to improving the design quality,have been more and more widely utilized in the modern engineering design optimization problems.However,the high fidelity analysis mode... High fidelity analysis models,which are beneficial to improving the design quality,have been more and more widely utilized in the modern engineering design optimization problems.However,the high fidelity analysis models are so computationally expensive that the time required in design optimization is usually unacceptable.In order to improve the efficiency of optimization involving high fidelity analysis models,the optimization efficiency can be upgraded through applying surrogates to approximate the computationally expensive models,which can greately reduce the computation time.An efficient heuristic global optimization method using adaptive radial basis function(RBF) based on fuzzy clustering(ARFC) is proposed.In this method,a novel algorithm of maximin Latin hypercube design using successive local enumeration(SLE) is employed to obtain sample points with good performance in both space-filling and projective uniformity properties,which does a great deal of good to metamodels accuracy.RBF method is adopted for constructing the metamodels,and with the increasing the number of sample points the approximation accuracy of RBF is gradually enhanced.The fuzzy c-means clustering method is applied to identify the reduced attractive regions in the original design space.The numerical benchmark examples are used for validating the performance of ARFC.The results demonstrates that for most application examples the global optima are effectively obtained and comparison with adaptive response surface method(ARSM) proves that the proposed method can intuitively capture promising design regions and can efficiently identify the global or near-global design optimum.This method improves the efficiency and global convergence of the optimization problems,and gives a new optimization strategy for engineering design optimization problems involving computationally expensive models. 展开更多
关键词 global optimization Latin hypercube design radial basis function fuzzy clustering adaptive response surface method
在线阅读 下载PDF
Geochemical and Geostatistical Studies for Estimating Gold Grade in Tarq Prospect Area by K-Means Clustering Method 被引量:7
7
作者 Adel Shirazy Aref Shirazi +1 位作者 Mohammad Hossein Ferdossi Mansour Ziaii 《Open Journal of Geology》 2019年第6期306-326,共21页
Tarq geochemical 1:100,000 Sheet is located in Isfahan province which is investigated by Iran’s Geological and Explorations Organization using stream sediment analyzes. This area has stratigraphy of Precambrian to Qu... Tarq geochemical 1:100,000 Sheet is located in Isfahan province which is investigated by Iran’s Geological and Explorations Organization using stream sediment analyzes. This area has stratigraphy of Precambrian to Quaternary rocks and is located in the Central Iran zone. According to the presence of signs of gold mineralization in this area, it is necessary to identify important mineral areas in this area. Therefore, finding information is necessary about the relationship and monitoring the elements of gold, arsenic, and antimony relative to each other in this area to determine the extent of geochemical halos and to estimate the grade. Therefore, a well-known and useful K-means method is used for monitoring the elements in the present study, this is a clustering method based on minimizing the total Euclidean distances of each sample from the center of the classes which are assigned to them. In this research, the clustering quality function and the utility rate of the sample have been used in the desired cluster (S(i)) to determine the optimum number of clusters. Finally, with regard to the cluster centers and the results, the equations were used to predict the amount of the gold element based on four parameters of arsenic and antimony grade, length and width of sampling points. 展开更多
关键词 GOLD Tarq K-MEANS clustering method Estimation of the ELEMENTS GRADE K-MEANS
暂未订购
A model-based prognostics method for fatigue crack growth in fuselage panels 被引量:3
8
作者 Yiwei WANG Christian GOGU +2 位作者 Nicolas BINAUD Christian BES Jian FU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2019年第2期396-408,共13页
This paper proposes a model-based prognostics method that couples the Extended Kalman Filter(EKF) and a new developed linearization method. The proposed prognostics method is developed in the context of fatigue crack ... This paper proposes a model-based prognostics method that couples the Extended Kalman Filter(EKF) and a new developed linearization method. The proposed prognostics method is developed in the context of fatigue crack propagation in fuselage panels where the model parameters are unknown and the crack propagation is affected by different types of uncertainties. The coupled method is composed of two steps. The first step employs EKF to estimate the unknown model parameters and the current damage state. In the second step, the proposed efficient linearization method is applied to compute analytically the statistical distribution of the damage evolution path in some future time. A numerical case study is implemented to evaluate the performance of the proposed method. The results show that the coupled EKF-linearization method provides satisfactory results: the EKF algorithm well identifies the model parameters, and the linearization method gives comparable prediction results to Monte Carlo(MC) method while leading to very significant computational cost saving. The proposed prognostics method for fatigue crack growth can be used for developing predictive maintenance strategy for an aircraft fleet, in which case, the computational cost saving is significantly meaningful. 展开更多
关键词 Aircraft FUSELAGE PANELS Extended Kalman filter Fatigue crack propagation LINEARIZATION method model-based PROGNOSTICS
原文传递
Kernel method-based fuzzy clustering algorithm 被引量:2
9
作者 WuZhongdong GaoXinbo +1 位作者 XieWeixin YuJianping 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第1期160-166,共7页
The fuzzy C-means clustering algorithm(FCM) to the fuzzy kernel C-means clustering algorithm(FKCM) to effectively perform cluster analysis on the diversiform structures are extended, such as non-hyperspherical data, d... The fuzzy C-means clustering algorithm(FCM) to the fuzzy kernel C-means clustering algorithm(FKCM) to effectively perform cluster analysis on the diversiform structures are extended, such as non-hyperspherical data, data with noise, data with mixture of heterogeneous cluster prototypes, asymmetric data, etc. Based on the Mercer kernel, FKCM clustering algorithm is derived from FCM algorithm united with kernel method. The results of experiments with the synthetic and real data show that the FKCM clustering algorithm is universality and can effectively unsupervised analyze datasets with variform structures in contrast to FCM algorithm. It is can be imagined that kernel-based clustering algorithm is one of important research direction of fuzzy clustering analysis. 展开更多
关键词 fuzzy clustering analysis kernel method fuzzy C-means clustering.
在线阅读 下载PDF
13 Galactic Star Clusters in Gaia DR3 Identified by An Improved FoF and UPMASK Hybrid Method Using MvC
10
作者 Huanbin Chi Zebang Lai +2 位作者 Feng Wang Zhongmu Li Ying Mei 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2024年第11期243-258,共16页
Open clusters(OCs)serve as invaluable tracers for investigating the properties and evolution of stars and galaxies.Despite recent advancements in machine learning clustering algorithms,accurately discerning such clust... Open clusters(OCs)serve as invaluable tracers for investigating the properties and evolution of stars and galaxies.Despite recent advancements in machine learning clustering algorithms,accurately discerning such clusters remains challenging.We re-visited the 3013 samples generated with a hybrid clustering algorithm of FoF and pyUPMASK.A multi-view clustering(MvC)ensemble method was applied,which analyzes each member star of the OC from three perspectives—proper motion,spatial position,and composite views—before integrating the clustering outcomes to deduce more reliable cluster memberships.Based on the MvC results,we further excluded cluster candidates with fewer than ten member stars and obtained 1256 OC candidates.After isochrone fitting and visual inspection,we identified 506 candidate OCs in the Milky Way.In addition to the 493 previously reported candidates,we finally discovered 13 high-confidence new candidate clusters. 展开更多
关键词 GALAXIES star clusters GENERAL (Galaxy:)open clusters and associations GENERAL methods data analysis
在线阅读 下载PDF
Refracturing candidate selection for MFHWs in tight oil and gas reservoirs using hybrid method with data analysis techniques and fuzzy clustering 被引量:5
11
作者 TAO Liang GUO Jian-chun +1 位作者 ZHAO Zhi-hong YIN Qi-wu 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第1期277-287,共11页
The selection of refracturing candidate is one of the most important jobs faced by oilfield engineers. However, due to the complicated multi-parameter relationships and their comprehensive influence, the selection of ... The selection of refracturing candidate is one of the most important jobs faced by oilfield engineers. However, due to the complicated multi-parameter relationships and their comprehensive influence, the selection of refracturing candidate is often very difficult. In this paper, a novel approach combining data analysis techniques and fuzzy clustering was proposed to select refracturing candidate. First, the analysis techniques were used to quantitatively calculate the weight coefficient and determine the key factors. Then, the idealized refracturing well was established by considering the main factors. Fuzzy clustering was applied to evaluate refracturing potential. Finally, reservoirs numerical simulation was used to further evaluate reservoirs energy and material basis of the optimum refracturing candidates. The hybrid method has been successfully applied to a tight oil reservoir in China. The average steady production was 15.8 t/d after refracturing treatment, increasing significantly compared with previous status. The research results can guide the development of tight oil and gas reservoirs effectively. 展开更多
关键词 tight oil and gas reservoirs idealized refracturing well fuzzy clustering refracturing potential hybrid method
在线阅读 下载PDF
3D Model Retrieval Method Based on Affinity Propagation Clustering 被引量:2
12
作者 Lin Lin Xiao-Long Xie Fang-Yu Chen 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2013年第3期12-21,共10页
In order to improve the accuracy and efficiency of 3D model retrieval,the method based on affinity propagation clustering algorithm is proposed. Firstly,projection ray-based method is proposed to improve the feature e... In order to improve the accuracy and efficiency of 3D model retrieval,the method based on affinity propagation clustering algorithm is proposed. Firstly,projection ray-based method is proposed to improve the feature extraction efficiency of 3D models. Based on the relationship between model and its projection,the intersection in 3D space is transformed into intersection in 2D space,which reduces the number of intersection and improves the efficiency of the extraction algorithm. In feature extraction,multi-layer spheres method is analyzed. The two-layer spheres method makes the feature vector more accurate and improves retrieval precision. Secondly,Semi-supervised Affinity Propagation ( S-AP) clustering is utilized because it can be applied to different cluster structures. The S-AP algorithm is adopted to find the center models and then the center model collection is built. During retrieval process,the collection is utilized to classify the query model into corresponding model base and then the most similar model is retrieved in the model base. Finally,75 sample models from Princeton library are selected to do the experiment and then 36 models are used for retrieval test. The results validate that the proposed method outperforms the original method and the retrieval precision and recall ratios are improved effectively. 展开更多
关键词 feature extraction project ray-based method affinity propagation clustering 3D model retrieval
在线阅读 下载PDF
Reconstructing bubble profiles from gas-liquid two-phase flow data using agglomerative hierarchical clustering method 被引量:2
13
作者 WU Dong-ling SONG Yan-po +1 位作者 PENG Xiao-qi GAO Dong-bo 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第8期2056-2067,共12页
The knowledge of bubble profiles in gas-liquid two-phase flows is crucial for analyzing the kinetic processes such as heat and mass transfer, and this knowledge is contained in field data obtained by surface-resolved ... The knowledge of bubble profiles in gas-liquid two-phase flows is crucial for analyzing the kinetic processes such as heat and mass transfer, and this knowledge is contained in field data obtained by surface-resolved computational fluid dynamics (CFD) simulations. To obtain this information, an efficient bubble profile reconstruction method based on an improved agglomerative hierarchical clustering (AHC) algorithm is proposed in this paper. The reconstruction method is featured by the implementations of a binary space division preprocessing, which aims to reduce the computational complexity, an adaptive linkage criterion, which guarantees the applicability of the AHC algorithm when dealing with datasets involving either non-uniform or distorted grids, and a stepwise execution strategy, which enables the separation of attached bubbles. To illustrate and verify this method, it was applied to dealing with 3 datasets, 2 of them with pre-specified spherical bubbles and the other obtained by a surface-resolved CFD simulation. Application results indicate that the proposed method is effective even when the data include some non-uniform and distortion. 展开更多
关键词 bubble profile reconstruction gas-liquid two-phase flow clustering method surface-resolved computational fluid dynamics (CFD) distorted bubble shape
在线阅读 下载PDF
An unsupervised clustering method for nuclear magnetic resonance transverse relaxation spectrums based on the Gaussian mixture model and its application 被引量:2
14
作者 GE Xinmin XUE Zong’an +6 位作者 ZHOU Jun HU Falong LI Jiangtao ZHANG Hengrong WANG Shuolong NIU Shenyuan ZHAO Ji’er 《Petroleum Exploration and Development》 CSCD 2022年第2期339-348,共10页
To make the quantitative results of nuclear magnetic resonance(NMR) transverse relaxation(T;) spectrums reflect the type and pore structure of reservoir more directly, an unsupervised clustering method was developed t... To make the quantitative results of nuclear magnetic resonance(NMR) transverse relaxation(T;) spectrums reflect the type and pore structure of reservoir more directly, an unsupervised clustering method was developed to obtain the quantitative pore structure information from the NMR T;spectrums based on the Gaussian mixture model(GMM). Firstly, We conducted the principal component analysis on T;spectrums in order to reduce the dimension data and the dependence of the original variables. Secondly, the dimension-reduced data was fitted using the GMM probability density function, and the model parameters and optimal clustering numbers were obtained according to the expectation-maximization algorithm and the change of the Akaike information criterion. Finally, the T;spectrum features and pore structure types of different clustering groups were analyzed and compared with T;geometric mean and T;arithmetic mean. The effectiveness of the algorithm has been verified by numerical simulation and field NMR logging data. The research shows that the clustering results based on GMM method have good correlations with the shape and distribution of the T;spectrum, pore structure, and petroleum productivity, providing a new means for quantitative identification of pore structure, reservoir grading, and oil and gas productivity evaluation. 展开更多
关键词 NMR T2 spectrum Gaussian mixture model expectation-maximization algorithm Akaike information criterion unsupervised clustering method quantitative pore structure evaluation
在线阅读 下载PDF
Comparison of Analyses of Genetic Structure among Chinese Indigenous Chicken Breeds using Distance-based and Model-based Methods
15
作者 LI Hui-fang CHEN Kuan-wei +5 位作者 HAN Wei ZHANG Xue-yu GAO Yu-shi CHEN Guo-hong ZHU Yun-fen WANG Qiang 《畜牧兽医学报》 CAS CSCD 北大核心 2009年第S1期8-12,共5页
The Nei's improved genetic distance(DA)and gene flow(Nm)were measured using sixteen microsatellite markers.Dendograms based on DA genetic distance using the neighbor-joining(NJ)method and STRUCTURE program were co... The Nei's improved genetic distance(DA)and gene flow(Nm)were measured using sixteen microsatellite markers.Dendograms based on DA genetic distance using the neighbor-joining(NJ)method and STRUCTURE program were constructed to analyze the genetic structure and relationship among 10 Chinese indigenous chicken breeds.The results showed that dendograms of DA genetic distance using the NJ method divided the 10 chicken breeds into two main clusters;one consisted of breeds of low weight body(CHA,TTB,XIA,GUS and BAI),the other contained heavier breeds(LAN,DAG,YOU,XIS and LUY).In the lighter breeds,TIB and CHA clustered together,as did XIA and GUS.In the heavier breeds,XIS and LUY was clustered together in one branch,but LAN,DAG and YOU clustered in independent branches.The results were consistent with Nm estimates among the 10 indigenous chicken breeds.The STRUCTURE program properly inferred the presence of genetic structure despite not pre-defining the origin of individuals.The genetic cluster inferred by STRUCTURE was basically the same as that from the DA distance clustering method.An advantage of the STRUCTURE program was its ability to identify the migrants and admixed individuals in the 10 chicken populations;this could not be achieved by use of the DA distance clustering method. 展开更多
关键词 microsatellite CHINESE chicken BREEDS Distance-based clustering method model-based clustering method
在线阅读 下载PDF
APPLICATION OF THE CLUSTERING METHOD IN ANALYSING SHALLOW WATER MASSES AND MODIFIED WATER MASSES IN THE HUANGHAI SEA AND EAST CHINA SEA
16
作者 Su Yusong, Yu Zuxiang and Li Fengqi(Shandong College of Oceanology,Qingdao) 《中国海洋大学学报(自然科学版)》 CAS CSCD 1989年第S1期385-402,共18页
The idea of modified water masses is introduced and a cluster analysis is used for determining the boundary of modified water masses and its variety in the shallow water area of the Huanghai Sea (Yellow Sea) and the E... The idea of modified water masses is introduced and a cluster analysis is used for determining the boundary of modified water masses and its variety in the shallow water area of the Huanghai Sea (Yellow Sea) and the East China Sea. According to the specified standards to make the cluster, we have determined the number and boundary of the water masses and the mixed zones.The results obtained by the cluster method show that there are eight modified water masses in this area. According to the relative index of temperature and salinity,the modified water masses are divided into nine different characteristic parts. The water, masses may also be divided into three salinity types. On the TS-Diagram, the points concerning temperature and safinity of different modified mater masses are distributed around a curve, from which the characteristics of gradual modification may be embodied. The variation ranges of different modified water masses are all large, explaining the intensive modification of water masses in 展开更多
关键词 WATER MASS MODIFIED WATER MASS the HUANGHAI SEA the East China SEA clustering method the MODIFIED regression curve
在线阅读 下载PDF
Modified possibilistic clustering model based on kernel methods
17
作者 武小红 周建江 《Journal of Shanghai University(English Edition)》 CAS 2008年第2期136-140,共5页
A novel model of fuzzy clustering using kernel methods is proposed. This model is called kernel modified possibilistic c-means (KMPCM) model. The proposed model is an extension of the modified possibilistic c-means ... A novel model of fuzzy clustering using kernel methods is proposed. This model is called kernel modified possibilistic c-means (KMPCM) model. The proposed model is an extension of the modified possibilistic c-means (MPCM) algorithm by using kernel methods. Different from MPCM and fuzzy c-means (FCM) model which are based on Euclidean distance, the proposed model is based on kernel-induced distance. Furthermore, with kernel methods the input data can be mapped implicitly into a high-dimensional feature space where the nonlinear pattern now appears linear. It is unnecessary to do calculation in the high-dimensional feature space because the kernel function can do it. Numerical experiments show that KMPCM outperforms FCM and MPCM. 展开更多
关键词 fuzzy clustering kernel methods possibilistic c-means (PCM) kernel modified possibilistic c-means (KMPCM).
在线阅读 下载PDF
A bottom-up method for module-based product platform development through mapping,clustering and matching analysis
18
作者 张萌 李国喜 +2 位作者 曹建平 龚京忠 吴宝中 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第3期623-635,共13页
Designing product platform could be an effective and efficient solution for manufacturing firms. Product platforms enable firms to provide increased product variety for the marketplace with as little variety between p... Designing product platform could be an effective and efficient solution for manufacturing firms. Product platforms enable firms to provide increased product variety for the marketplace with as little variety between products as possible. Developed consumer products and modules within a firm can further be investigated to find out the possibility of product platform creation. A bottom-up method is proposed for module-based product platform through mapping, clustering and matching analysis. The framework and the parametric model of the method are presented, which consist of three steps:(1) mapping parameters from existing product families to functional modules,(2) clustering the modules within existing module families based on their parameters so as to generate module clusters, and selecting the satisfactory module clusters based on commonality, and(3) matching the parameters of the module clusters to the functional modules in order to capture platform elements. In addition, the parameter matching criterion and mismatching treatment are put forward to ensure the effectiveness of the platform process, while standardization and serialization of the platform element are presented. A design case of the belt conveyor is studied to demonstrate the feasibility of the proposed method. 展开更多
关键词 product platform development bottom-up method MAPPING clustering MATCHING
在线阅读 下载PDF
A Research on Competitiveness of Guangxi City——Based on System Clustering Method and Principal Component Analysis Method
19
作者 FAN Chang-ke WU Yu 《Asian Agricultural Research》 2010年第2期13-16,共4页
A total of 10 indices of regional economic development in Guangxi are selected.According to the relevant economic data,regional economic development in Guangxi is analyzed by using System Clustering Method and Princip... A total of 10 indices of regional economic development in Guangxi are selected.According to the relevant economic data,regional economic development in Guangxi is analyzed by using System Clustering Method and Principal Component Analysis Method.Result shows that System Clustering Method and Principal Component Analysis Method have revealed similar results analysis of economic development level.Overall economic strength of Guangxi is weak and Nanning has relatively high scores of factors due to its advantage of the political,economic and cultural center.Comprehensive scores of other regions are all lower than 1,which has big gap with the development of Nanning.Overall development strategy points out that Guangxi should accelerate the construction of the Ring Northern Bay Economic Zone,create a strong logistics system having strategic significance to national development,use the unique location advantage and rely on the modern transportation system to establish a logistics center and business center connecting the hinterland and the Asean Market.Based on the problems of unbalanced regional economic development in Guangxi,we should speed up the development of service industry in Nanning,construct the circular economy system of industrial city,and accelerate the industrialization process of tourism city in order to realize balanced development of regional economy in Guangxi,China. 展开更多
关键词 clustering Analysis method Factor Analysis method Economic development level Economic strength China
在线阅读 下载PDF
Coarse-Graining Method Based on Hierarchical Clustering on Complex Networks
20
作者 Lin Liao Zhen Jia Yang Deng 《Communications and Network》 2019年第1期21-34,共14页
With the rapid development of big data, the scale of realistic networks is increasing continually. In order to reduce the network scale, some coarse-graining methods are proposed to transform large-scale networks into... With the rapid development of big data, the scale of realistic networks is increasing continually. In order to reduce the network scale, some coarse-graining methods are proposed to transform large-scale networks into mesoscale networks. In this paper, a new coarse-graining method based on hierarchical clustering (HCCG) on complex networks is proposed. The network nodes are grouped by using the hierarchical clustering method, then updating the weights of edges between clusters extract the coarse-grained networks. A large number of simulation experiments on several typical complex networks show that the HCCG method can effectively reduce the network scale, meanwhile maintaining the synchronizability of the original network well. Furthermore, this method is more suitable for these networks with obvious clustering structure, and we can choose freely the size of the coarse-grained networks in the proposed method. 展开更多
关键词 Complex Network SYNCHRONIZABILITY COARSE-GRAINING method HIERARCHICAL clustering
在线阅读 下载PDF
上一页 1 2 241 下一页 到第
使用帮助 返回顶部