期刊文献+
共找到10,657篇文章
< 1 2 250 >
每页显示 20 50 100
Model Transformer Evaluation of High-Permeability Grain-Oriented Electrical Steels 被引量:1
1
作者 Masayoshi Ishida, Seiji Okabe, Takeshi Imamura and Michiro Komatsubara (Kawasaki Steel Corporation, Kurashiki 712-8511, Japan) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2000年第2期223-227,共5页
The dependence of transformer performance on the material properties was investigated using two laboratory-processed 0.23 mm thick grain-oriented electrical steels domain-refined with elec-trolytically etched grooves ... The dependence of transformer performance on the material properties was investigated using two laboratory-processed 0.23 mm thick grain-oriented electrical steels domain-refined with elec-trolytically etched grooves having different magnetic properties. The iron loss at 1.7 T, 50 Hz and the flux density at 800 A/m of material A were 0.73 W/kg and 1.89 T, respectively; and those of material B, 0.83 W/kg and 1.88 T. Model stacked and wound transformer core experiments using the tested materials exhibited performance well reflecting the material characteristics. In a three-phase stacked core with step-lap joints excited to 1.7 T, 50 Hz, the core loss, the exciting current and the noise level were 0.86 W/kg, 0.74 A and 52 dB, respectively, with material A; and 0.97 W/kg, 1.0 A and 54 dB with material B. The building factors for the core losses of the two materials were almost the same in both core configurations. The effect of higher harmonics on transformer performance was also investigated. 展开更多
关键词 model transformer Evaluation of High-Permeability Grain-Oriented Electrical Steels
在线阅读 下载PDF
A Model Transformation Approach for Detecting Distancing Violations in Weighted Graphs
2
作者 Ahmad F.Subahi 《Computer Systems Science & Engineering》 SCIE EI 2021年第1期13-39,共27页
This work presents the design of an Internet of Things(IoT)edge-based system based on model transformation and complete weighted graph to detect violations of social distancing measures in indoor public places.Awirele... This work presents the design of an Internet of Things(IoT)edge-based system based on model transformation and complete weighted graph to detect violations of social distancing measures in indoor public places.Awireless sensor network based on Bluetooth Low Energy is introduced as the infrastructure of the proposed design.A hybrid model transformation strategy for generating a graph database to represent groups of people is presented as a core middleware layer of the detecting system’s proposed architectural design.A Neo4j graph database is used as a target implementation generated from the proposed transformational system to store all captured real-time IoT data about the distances between individuals in an indoor area and answer user predefined queries,expressed using Neo4j Cypher,to provide insights from the stored data for decision support.As proof of concept,a discrete-time simulation model was adopted for the design of a COVID-19 physical distancing measures case study to evaluate the introduced system architecture.Twenty-one weighted graphs were generated randomly and the degrees of violation of distancing measures were inspected.The experimental results demonstrate the capability of the proposed system design to detect violations of COVID-19 physical distancing measures within an enclosed area. 展开更多
关键词 model-driven engineering(MDE) Internet-of-Things(IoTs) model transformation edge computing system design Neo4j graph databases
在线阅读 下载PDF
Model Transformation and Optimization of the Olympics Scheduling Problem
3
作者 JIANG Yong-Heng GU Qing-Hua +2 位作者 HUANG Bi-Qing CHEN Xi XIAO Tian-Yuan 《自动化学报》 EI CSCD 北大核心 2007年第4期409-413,共5页
安排问题的奥林匹克作为限制满足问题被建模,它被弄软最后的比赛的时间限制转变成一个抑制优化问题。分解方法论为抑制优化问题基于Lagrangian松驰被介绍。为双问题优化,有可变直径的亚坡度设计方法被学习。方法能收敛到全球性最佳的答... 安排问题的奥林匹克作为限制满足问题被建模,它被弄软最后的比赛的时间限制转变成一个抑制优化问题。分解方法论为抑制优化问题基于Lagrangian松驰被介绍。为双问题优化,有可变直径的亚坡度设计方法被学习。方法能收敛到全球性最佳的答案,效率被给。数字结果证明方法是有效的。 展开更多
关键词 最佳化设计 程序安排 拉格朗日 转换模型
在线阅读 下载PDF
Model Transformation Using a Simplified Metamodel
4
作者 Hongming Liu Xiaoping Jia 《Journal of Software Engineering and Applications》 2010年第7期653-660,共8页
Model Driven Engineering (MDE) is a model-centric software development approach aims at improving the quality and productivity of software development processes. While some progresses in MDE have been made, there are ... Model Driven Engineering (MDE) is a model-centric software development approach aims at improving the quality and productivity of software development processes. While some progresses in MDE have been made, there are still many challenges in realizing the full benefits of model driven engineering. These challenges include incompleteness in existing modeling notations, inadequate in tools support, and the lack of effective model transformation mechanism. This paper provides a solution to build a template-based model transformation framework using a simplified metamode called Hierarchical Relational Metamodel (HRM). This framework supports MDE while providing the benefits of readability and rigorousness of meta-model definitions and transformation definitions. 展开更多
关键词 model DRIVEN ENGINEERING modeling METAmodelING model transformATION
在线阅读 下载PDF
On Utilizing Model Transformation for the Performance Analysis of Queueing Networks
5
作者 Issam Al-Azzoni 《Journal of Software Engineering and Applications》 2018年第9期435-457,共23页
In this paper, we present an approach for model transformation from Queueing Network Models (QNMs) into Queueing Petri Nets (QPNs). The performance of QPNs can be analyzed using a powerful simulation engine, SimQPN, d... In this paper, we present an approach for model transformation from Queueing Network Models (QNMs) into Queueing Petri Nets (QPNs). The performance of QPNs can be analyzed using a powerful simulation engine, SimQPN, designed to exploit the knowledge and behavior of QPNs to improve the efficiency of simulation. When QNMs are transformed into QPNs, their performance can be analyzed efficiently using SimQPN. To validate our approach, we apply it to analyze the performance of several queueing network models including a model of a database system. The evaluation results show that the performance analysis of the transformed QNMs has high accuracy and low overhead. In this context, model transformation enables the performance analysis of queueing networks using different ways that can be more efficient. 展开更多
关键词 model transformATION QUEUEING Networks QUEUEING PETRI NETS ATL
暂未订购
基于Transformer模型堤坝渗漏入口精准识别方法研究
6
作者 梁越 赵硕 +4 位作者 喻金桃 许彬 张斌 龚胜勇 舒云林 《岩土工程学报》 北大核心 2026年第1期187-195,共9页
渗漏是堤坝工程面临的主要安全隐患,渗漏入口精确识别与定位对降低堤坝风险至关重要。通过堤坝渗漏入口示踪剂分布及其运移特征模拟数据,训练学习Transformer模型以确定最优参数条件并分析该条件下该模型的预测效果,进一步通过室内模型... 渗漏是堤坝工程面临的主要安全隐患,渗漏入口精确识别与定位对降低堤坝风险至关重要。通过堤坝渗漏入口示踪剂分布及其运移特征模拟数据,训练学习Transformer模型以确定最优参数条件并分析该条件下该模型的预测效果,进一步通过室内模型试验验证该模型的可靠性。研究表明:①当迭代次数达600次时,模型预测的流速最大值相对误差最小,且最大流速值坐标与真实渗漏入口坐标最为接近,预测效果最佳;在此条件下,当数据采集时长为50 s时,模型预测的流速最大值相对偏差最小,预测效果最优。②在最佳迭代次数和数据采集时长条件下,模型预测精度超过95%,渗漏入口大小和渗漏流量的预测值与真实值差异极小,且流速和位置预测相对误差均较低,其中位置预测相对误差低于5%。③将电导率试验采集数据转换为示踪剂浓度并输入至该模型进行流速分布预测,可知该模型能准确定位渗漏入口位置,且流速和渗漏入口坐标的预测平均相对误差均低于10%,进而验证了该模型在渗漏入口定位中的有效性与准确性。相关研究成果可为堤坝渗漏入口精确识别奠定理论基础和提供技术支撑。 展开更多
关键词 堤坝 渗漏入口 transformer模型 精准识别 室内模型试验
原文传递
基于近红外光谱与Transformer的烟叶感官指标预测方法
7
作者 张云伟 张健涛 +3 位作者 张海 周渭皓 李斌 陶成金 《农业机械学报》 北大核心 2026年第1期386-396,共11页
为克服传统卷烟配方设计与维护过程中存在的主观性强、过度依赖人工经验及感官评吸等技术瓶颈,利用“近红外光谱-化学成分-感官指标”的间接关联,提出了一种基于近红外光谱与Transformer架构的端到端烟叶感官质量指标预测方法。首先采用... 为克服传统卷烟配方设计与维护过程中存在的主观性强、过度依赖人工经验及感官评吸等技术瓶颈,利用“近红外光谱-化学成分-感官指标”的间接关联,提出了一种基于近红外光谱与Transformer架构的端到端烟叶感官质量指标预测方法。首先采用Savitzky-Golay卷积平滑法(SG)、一阶导数法(D1)、多元散射校正(MSC)3种光谱预处理技术有效消除基线漂移和散射干扰;进而设计了一种面向光谱数据特征的Transformer预测模型,实现了烟叶感官质量三维评价体系(风格特征:清香、甜香、焦香;烟气特征:浓度、劲头;质量特征:香气质、香气量、杂气、刺激、余味)的精准预测,并采用了SHAP方法对模型进行分析,增强了模型的可解释性。结果表明,模型对各感官指标测试集预测的平均绝对误差均不高于0.56,具有较好可用性;针对不同感官指标,模型表现出对不同光谱特征波段的捕捉,有效挖掘了光谱特征的协同作用机制,具有较好可解释性。在此基础上,进一步结合多维相似度分析设计了一种辅助烟叶替代方法,可为烟叶替代与配方优化提供量化决策支持。 展开更多
关键词 烟叶感官指标 近红外光谱 transformER 预测模型 烟叶替代
在线阅读 下载PDF
基于LSTM-Transformer模型的突水条件下矿井涌水量预测
8
作者 李振华 姜雨菲 +1 位作者 杜锋 王文强 《河南理工大学学报(自然科学版)》 北大核心 2026年第1期77-85,共9页
目的矿井涌水量精准预测对预防矿井水害和保障矿井安全生产具有重要意义,为精准预测矿井涌水量,构建适用于华北型煤田受底板L_(1-4)灰岩含水层和奥陶系灰岩含水层水害威胁的矿井涌水量预测模型。方法以河南某典型矿井的水文监测数据为基... 目的矿井涌水量精准预测对预防矿井水害和保障矿井安全生产具有重要意义,为精准预测矿井涌水量,构建适用于华北型煤田受底板L_(1-4)灰岩含水层和奥陶系灰岩含水层水害威胁的矿井涌水量预测模型。方法以河南某典型矿井的水文监测数据为基础,提出LSTMTransformer模型。利用LSTM捕捉矿井涌水量的动态时序特征,通过Transformer的多头注意力机制分析含水层水位变化和矿井涌水量之间的复杂时序关联,构建水位动态变化驱动下的矿井涌水量精准预测框架。结果结果表明,LSTM-Transformer模型预测精度显著优于LSTM,CNN,Transformer和CNN-LSTM模型的,其均方根误差为20.91 m^(3)/h,平均绝对误差为16.08 m^(3)/h,平均绝对百分比误差为1.12%,且和单因素涌水量预测模型相比,水位-涌水量双因素预测模型预测结果更加稳定。结论LSTM-Transformer模型成功克服传统方法在捕捉复杂水文地质系统中水位-涌水量动态关联上的局限,为矿井涌水量动态预测提供可解释性强、鲁棒性好的解决方案,也为类似地质条件下矿井涌水量预测提供了新方法。 展开更多
关键词 涌水量预测 水位动态响应 LSTM-transformer耦合模型 时间序列预测 注意力机制 矿井安全生产
在线阅读 下载PDF
基于长短期记忆网络-Transformer模型参数优化的锂离子电池剩余使用寿命预测
9
作者 高建树 郝世宇 党一诺 《汽车工程师》 2026年第1期32-39,共8页
为提高锂离子电池剩余使用寿命(RUL)预测的准确性,提出了一种基于长短期记忆(LSTM)网络-Transformer模型参数优化的RUL预测方法,采用网格搜索法选取模型的超参数,利用LSTM网络提取锂离子电池时间序列中的长短期依赖关系,使用Transforme... 为提高锂离子电池剩余使用寿命(RUL)预测的准确性,提出了一种基于长短期记忆(LSTM)网络-Transformer模型参数优化的RUL预测方法,采用网格搜索法选取模型的超参数,利用LSTM网络提取锂离子电池时间序列中的长短期依赖关系,使用Transformer的自注意力机制处理全局信息并对超参数进行优化,通过全连接层进行最终的寿命预测。基于美国国家航空航天局(NASA)数据集和先进生命周期工程中心(CALCE)数据集的试验验证结果表明,模型在更短的序列长度、更少的隐藏层数量和训练次数等条件下,在多种评价指标上均优于LSTM网络模型、Transformer模型及其他神经网络模型,具有更高的预测精度和鲁棒性。最后,通过不同电池的对比试验进一步验证了模型在不同电池数据上的泛化能力。 展开更多
关键词 锂离子电池 剩余使用寿命预测 参数优化 长短期记忆神经网络 transformER 混合模型
在线阅读 下载PDF
Millimeter-wave modeling based on transformer model for InP high electron mobility transistor
10
作者 ZHANG Ya-Xue ZHANG Ao GAO Jian-Jun 《红外与毫米波学报》 北大核心 2025年第4期534-539,共6页
In this paper,the small-signal modeling of the Indium Phosphide High Electron Mobility Transistor(InP HEMT)based on the Transformer neural network model is investigated.The AC S-parameters of the HEMT device are train... In this paper,the small-signal modeling of the Indium Phosphide High Electron Mobility Transistor(InP HEMT)based on the Transformer neural network model is investigated.The AC S-parameters of the HEMT device are trained and validated using the Transformer model.In the proposed model,the eight-layer transformer encoders are connected in series and the encoder layer of each Transformer consists of the multi-head attention layer and the feed-forward neural network layer.The experimental results show that the measured and modeled S-parameters of the HEMT device match well in the frequency range of 0.5-40 GHz,with the errors versus frequency less than 1%.Compared with other models,good accuracy can be achieved to verify the effectiveness of the proposed model. 展开更多
关键词 transformer model neural network high electron mobility transistor(HEMT) small signal model
在线阅读 下载PDF
样本生成与Swin Transformer-YOLO网络结合的声呐图像目标检测
11
作者 罗雨薇 霍冠英 成振 《声学学报》 北大核心 2026年第1期201-215,共15页
由于目标投放成本高和实验条件限制,声呐图像样本稀缺且质量较差,导致现有目标检测方法难以有效学习特征,限制了性能提升。为解决这一问题,本文提出了一种基于扩散模型样本生成与Swin Transformer-级联群体注意力机制(CGA)融合的改进YOL... 由于目标投放成本高和实验条件限制,声呐图像样本稀缺且质量较差,导致现有目标检测方法难以有效学习特征,限制了性能提升。为解决这一问题,本文提出了一种基于扩散模型样本生成与Swin Transformer-级联群体注意力机制(CGA)融合的改进YOLO模型(STC-YOLO)的声呐图像目标检测方法。首先,利用LoRA对稳定扩散模型进行参数调整,并结合BLIP文本模型的语义特征,生成高质量、多样化的声呐图像,以构建新的数据集。其次,将Swin Transformer结构引入YOLOv8的主干网络,增强小目标的多尺度特征提取能力,同时在C2f模块中融合CGA机制,以增强小目标的感知能力。最后,采用偏斜交并比损失函数(SIoU)以适应复杂的水下场景。实验结果表明,所训练的生成模型能够在数据有限的情况下生成多样且真实的新样本。与原YOLOv8模型相比,改进后的STC-YOLO模型检测精度提升了5%,平均精度提升了12.6%,实现了对水下小目标的高精度检测。 展开更多
关键词 声呐图像 小目标检测 稳定扩散模型 Swin transformer 级联群体注意力机制
原文传递
Enhancing Multi-Class Cyberbullying Classification with Hybrid Feature Extraction and Transformer-Based Models
12
作者 Suliman Mohamed Fati Mohammed A.Mahdi +4 位作者 Mohamed A.G.Hazber Shahanawaj Ahamad Sawsan A.Saad Mohammed Gamal Ragab Mohammed Al-Shalabi 《Computer Modeling in Engineering & Sciences》 2025年第5期2109-2131,共23页
Cyberbullying on social media poses significant psychological risks,yet most detection systems over-simplify the task by focusing on binary classification,ignoring nuanced categories like passive-aggressive remarks or... Cyberbullying on social media poses significant psychological risks,yet most detection systems over-simplify the task by focusing on binary classification,ignoring nuanced categories like passive-aggressive remarks or indirect slurs.To address this gap,we propose a hybrid framework combining Term Frequency-Inverse Document Frequency(TF-IDF),word-to-vector(Word2Vec),and Bidirectional Encoder Representations from Transformers(BERT)based models for multi-class cyberbullying detection.Our approach integrates TF-IDF for lexical specificity and Word2Vec for semantic relationships,fused with BERT’s contextual embeddings to capture syntactic and semantic complexities.We evaluate the framework on a publicly available dataset of 47,000 annotated social media posts across five cyberbullying categories:age,ethnicity,gender,religion,and indirect aggression.Among BERT variants tested,BERT Base Un-Cased achieved the highest performance with 93%accuracy(standard deviation across±1%5-fold cross-validation)and an average AUC of 0.96,outperforming standalone TF-IDF(78%)and Word2Vec(82%)models.Notably,it achieved near-perfect AUC scores(0.99)for age and ethnicity-based bullying.A comparative analysis with state-of-the-art benchmarks,including Generative Pre-trained Transformer 2(GPT-2)and Text-to-Text Transfer Transformer(T5)models highlights BERT’s superiority in handling ambiguous language.This work advances cyberbullying detection by demonstrating how hybrid feature extraction and transformer models improve multi-class classification,offering a scalable solution for moderating nuanced harmful content. 展开更多
关键词 Cyberbullying classification multi-class classification BERT models machine learning TF-IDF Word2Vec social media analysis transformer models
在线阅读 下载PDF
Multi⁃Step Short⁃Term Traffic Flow Prediction of Urban Road Network Based on ISTA⁃Transformer Model
13
作者 Leyao Xiao Qian Chen 《Journal of Harbin Institute of Technology(New Series)》 2025年第6期1-14,共14页
Short⁃term traffic flow prediction plays a crucial role in the planning of intelligent transportation systems.Nowadays,there is a large amount of traffic flow data generated from the monitoring devices of urban road n... Short⁃term traffic flow prediction plays a crucial role in the planning of intelligent transportation systems.Nowadays,there is a large amount of traffic flow data generated from the monitoring devices of urban road networks,which contains road network traffic information with high application value.In this study,an improved spatio⁃temporal attention transformer model(ISTA⁃transformer model)is proposed to provide a more accurate method for predicting multi⁃step short⁃term traffic flow based on monitoring data.By embedding a temporal attention layer and a spatial attention layer in the model,the model learns the relationship between traffic flows at different time intervals and different geographic locations,and realizes more accurate multi⁃step short⁃time flow prediction.Finally,we validate the superiority of the model with monitoring data spanning 15 days from 620 monitoring points in Qingdao,China.In the four time steps of prediction,the MAPE(Mean Absolute Percentage Error)values of ISTA⁃transformers prediction results are 0.22,0.29,0.37,and 0.38,respectively,and its prediction accuracy is usually better than that of six baseline models(Transformer,GRU,CNN,LSTM,Seq2Seq and LightGBM),which indicates that the proposed model in this paper always has a better ability to explain the prediction results with the time steps in the multi⁃step prediction. 展开更多
关键词 urban road network traffic flow prediction spatio⁃temporal feature ISTA⁃transformer model
在线阅读 下载PDF
Combining transformer and 3DCNN models to achieve co-design of structures and sequences of antibodies in a diffusional manner
14
作者 Yue Hu Feng Tao +3 位作者 Jiajie Xu Wen-Jun Lan Jing Zhang Wei Lan 《Journal of Pharmaceutical Analysis》 2025年第6期1406-1408,共3页
AlphaPanda(AlphaFold2[1]inspired protein-specific antibody design in a diffusional manner)is an advanced algorithm for designing complementary determining regions(CDRs)of the antibody targeted the specific epitope,com... AlphaPanda(AlphaFold2[1]inspired protein-specific antibody design in a diffusional manner)is an advanced algorithm for designing complementary determining regions(CDRs)of the antibody targeted the specific epitope,combining transformer[2]models,3DCNN[3],and diffusion[4]generative models. 展开更多
关键词 advanced algorithm diffusion generative models dcnn epitope targeting antibody design complementary determining regions complementary determining regions cdrs transformer models
在线阅读 下载PDF
The 3D-Geoformer for ENSO studies:a Transformer-based model with integrated gradient methods for enhanced explainability
15
作者 Lu ZHOU Rong-Hua ZHANG 《Journal of Oceanology and Limnology》 2025年第6期1688-1708,共21页
Deep learning(DL)has become a crucial technique for predicting the El Niño-Southern Oscillation(ENSO)and evaluating its predictability.While various DL-based models have been developed for ENSO predictions,many f... Deep learning(DL)has become a crucial technique for predicting the El Niño-Southern Oscillation(ENSO)and evaluating its predictability.While various DL-based models have been developed for ENSO predictions,many fail to capture the coherent multivariate evolution within the coupled ocean-atmosphere system of the tropical Pacific.To address this three-dimensional(3D)limitation and represent ENSO-related ocean-atmosphere interactions more accurately,a novel this 3D multivariate prediction model was proposed based on a Transformer architecture,which incorporates a spatiotemporal self-attention mechanism.This model,named 3D-Geoformer,offers several advantages,enabling accurate ENSO predictions up to one and a half years in advance.Furthermore,an integrated gradient method was introduced into the model to identify the sources of predictability for sea surface temperature(SST)variability in the eastern equatorial Pacific.Results reveal that the 3D-Geoformer effectively captures ENSO-related precursors during the evolution of ENSO events,particularly the thermocline feedback processes and ocean temperature anomaly pathways on and off the equator.By extending DL-based ENSO predictions from one-dimensional Niño time series to 3D multivariate fields,the 3D-Geoformer represents a significant advancement in ENSO prediction.This study provides details in the model formulation,analysis procedures,sensitivity experiments,and illustrative examples,offering practical guidance for the application of the model in ENSO research. 展开更多
关键词 transformer model 3 D-Geoformer El Niño-Southern Oscillation(ENSO)prediction explainable artificial intelligence(XAI) integrated gradient method
在线阅读 下载PDF
基于麻雀搜索算法优化Transformer的短文本情感分析方法
16
作者 胡翔 《微处理机》 2026年第1期53-58,共6页
短文本情感分析面临诸多挑战,如语义稀疏、表达简洁、缺乏上下文信息等,导致情感特征提取不完整,进而影响分类精度。为解决这些问题,提出基于麻雀搜索算法(SSA)优化Transformer的短文本情感分析方法。该方法通过构建词向量矩阵,转变短... 短文本情感分析面临诸多挑战,如语义稀疏、表达简洁、缺乏上下文信息等,导致情感特征提取不完整,进而影响分类精度。为解决这些问题,提出基于麻雀搜索算法(SSA)优化Transformer的短文本情感分析方法。该方法通过构建词向量矩阵,转变短文本的表现形式;利用Transformer模型提取情感特征,并引入SSA优化模型超参数;将所提取情感特征输入全连接层+Softmax分类器中,采用交叉熵损失的梯度下降算法衡量文本预测情感与真实情感之间的差异,完成短文本情感分析。SSA具有全局搜索能力强、收敛速度快等优点,能有效优化Transformer模型的超参数,提升模型性能。试验结果表明,所提出方法的迭代损失值较低,分类精度较高,能够较好地捕捉情感特征且对各类情感区分能力强。 展开更多
关键词 麻雀搜索算法 transformer模型 短文本情感分析 情感特征
在线阅读 下载PDF
基于多源掘进参数与LSTM-Transformer的复杂地层盾构姿态预测方法
17
作者 邹道恒 《国防交通工程与技术》 2026年第1期6-12,共7页
针对深大城际黄麻布—石岩中心盾构区间的复杂地层及纵坡变化问题,提出一种基于多源数据融合与深度神经网络的盾构姿态实时预测方法。方法整合掘进参数、地质信息、渣样分析等数据,经特征筛选和规范化处理后,构建LSTM-Transformer混合... 针对深大城际黄麻布—石岩中心盾构区间的复杂地层及纵坡变化问题,提出一种基于多源数据融合与深度神经网络的盾构姿态实时预测方法。方法整合掘进参数、地质信息、渣样分析等数据,经特征筛选和规范化处理后,构建LSTM-Transformer混合神经网络模型,结合两者优势动态学习姿态变化规律,并在复杂地层转换处引入状态残差校正机制。以区间实测数据验证,该方法姿态预测均方误差较传统方法降低36%以上、提前预警时间达2环,能有效辅助掘进参数调控与风险预警、减少管片破损等事故,提升施工效率与安全性。 展开更多
关键词 多源数据融合 LSTM-transformer混合模型 盾构姿态预测 复杂地层 状态残差校正
在线阅读 下载PDF
Test-driven verification/validation of model transformations
18
作者 Lfiszlo LENGYEL Hassan CHARAF 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2015年第2期85-97,共13页
Why is it important to verify/validate model transformations? The motivation is to improve the quality of the trans- formations, and therefore the quality of the generated software artifacts. Verified/validated model... Why is it important to verify/validate model transformations? The motivation is to improve the quality of the trans- formations, and therefore the quality of the generated software artifacts. Verified/validated model transformations make it possible to ensure certain properties of the generated software artifacts. In this way, verification/validation methods can guarantee different requirements stated by the actual domain against the generated/modified/optimized software products. For example, a verified/ validated model transformation can ensure the preservation of certain properties during the model-to-model transformation. This paper emphasizes the necessity of methods that make model transformation verified/validated, discusses the different scenarios of model transformation verification and validation, and introduces the principles of a novel test-driven method for verifying/ validating model transformations. We provide a solution that makes it possible to automatically generate test input models for model transformations. Furthermore, we collect and discuss the actual open issues in the field of verification/validation of model transformations. 展开更多
关键词 Graph rewriting based model transformations Verification/validation Test-driven verification
原文传递
Pragmatic model transformations for refactoring in Scilab/Xcos
19
作者 Umut Durak 《International Journal of Modeling, Simulation, and Scientific Computing》 EI 2016年第1期39-61,共23页
Model-Based Development has become an industry wide standard paradigm.As an open source alternative,Scilab/Xcos is being widely employed as a hybrid dynamic systems modeling tool.With the increasing efficiency in impl... Model-Based Development has become an industry wide standard paradigm.As an open source alternative,Scilab/Xcos is being widely employed as a hybrid dynamic systems modeling tool.With the increasing efficiency in implementation using graphical model development and code generation,the modeling and simulation community is struggling with assuring quality as well as maintainability and extendibility.Refactoring is defined as an evolutionary modernization activity where,most of the time,the structure of the artifact is changed to alter its quality characteristics,while keeping its behavior unchanged.It has been widely established as a technique for textual programming languages to improve the code structure and quality.While refactoring is also regarded as one of the key practices of model engineering,the methodologies and approaches for model refactoring are still under development.Architecture-Driven Modernization(ADM)has been introduced by the software engineering community as a model-based approach to software modernization,in which the implicit information that lies in software artifacts is extracted to models and model transformations are applied for modernization tasks.Regarding refactoring as a low level modernization task,the practices from ADM are adaptable.Accordingly,this paper proposes a model-based approach for model refactoring in order to come up with more efficient and effective model refactoring methodology that is accessible and extendable by modelers.Like other graphical modeling tools,Scilab/Xcos also possesses a formalized model specification conforming to its implicit metamodel.Rather than proposing another metamodel for knowledge extraction,this pragmatic approach proposes to conduct in place model-to-model transformations for refactoring employing the Scilab/Xcos model specification.To construct a structured model-based approach,the implicit Scilab/Xcos metamodel is explicitly presented utilizing ECORE as a meta-metamodel.Then a practical model transformation approach is established based on Scilab scripting.A Scilab toolset is provided to the modeler for in-place model-to-model transformations.Using a sample case study,it is demonstrated that proposed model transformation functions in Scilab provide a valuable refactoring tool. 展开更多
关键词 model refactoring Scilab/Xcos model engineering model transformations
原文传递
基于Transformer的时间序列预测方法综述 被引量:5
20
作者 陈嘉俊 刘波 +2 位作者 林伟伟 郑剑文 谢家晨 《计算机科学》 北大核心 2025年第6期96-105,共10页
时间序列预测作为分析历史数据以预测未来趋势的关键技术,已广泛应用于金融、气象等领域。然而,传统方法如自回归移动平均模型和指数平滑法等在处理非线性模式、捕捉长期依赖性时存在局限。最近,基于Transformer的方法因其自注意力机制... 时间序列预测作为分析历史数据以预测未来趋势的关键技术,已广泛应用于金融、气象等领域。然而,传统方法如自回归移动平均模型和指数平滑法等在处理非线性模式、捕捉长期依赖性时存在局限。最近,基于Transformer的方法因其自注意力机制,在自然语言处理与计算机视觉领域取得突破,也开始拓展至时间序列预测领域并取得显著成果。因此,探究如何将Transformer高效运用于时间序列预测,成为推动该领域发展的关键。首先,介绍了时间序列的特性,阐述了时间序列预测的常见任务类别及评估指标。接着,深入解析Transformer的基本架构,并挑选了近年来在时间序列预测中广受关注的Transfo-rmer衍生模型,从模块及架构层面进行分类,并分别从问题解决、创新点及局限性3个维度进行比较和分析。最后,进一步探讨了时间序列预测Transformer在未来可能的研究方向。 展开更多
关键词 时间序列 transformer模型 深度学习 注意力机制 预测
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部