期刊文献+
共找到945,576篇文章
< 1 2 250 >
每页显示 20 50 100
Reservoir Forming Conditions and Models of Oil Sands in Northwestern Margin of Junggar Basin,China
1
作者 Xiaoping Ma Xinguo Zhuang +6 位作者 Yunlong He Jibin Zhou Meng Wang Baoqing Li Zhenlong Dai Xudong Fan Haihuai Sun 《Journal of Earth Science》 2025年第2期611-626,共16页
The northwestern margin of Junggar Basin is the region with the richest oil sand resources in China.For better understanding the enrichment rules and deployment of exploration and development of regional oil sand,it i... The northwestern margin of Junggar Basin is the region with the richest oil sand resources in China.For better understanding the enrichment rules and deployment of exploration and development of regional oil sand,it is of great scientific significance to study the accumulation conditions of oil sand in different strata and mining areas of the Junggar Basin.Through a large number of field investigations,drilling verification and sampling tests,it is found that the oil sand in the region covers an area of 2000 km^(2),with shallow and thick reservoir,and predicted resource of 180 million tons.The oil sand resources are mainly distributed in four geological strata,namely the Middle Triassic Karamay Formation,Early Jurassic Badaowan Formation,Late Jurassic Qigu Formation,and Early Cretaceous Qingshuihe Formation.The reservoir is mainly composed of sandstone with high porosity and permeability,and the reservoir space is mainly intergranular pores with a medium average oil content.The oil sand deposit in the region is a typical destructive oil reservoir.The crude oil in the oil sand layer is degraded and thickened from the deep to the shallow,the content of saturated hydrocarbon decreased,and the content of aromatic hydrocarbon,non-hydrocarbon and asphaltene increased.The oil source comes from the deep Permian hydrocarbon-generating depression.Unconformities,faults and marginal fan delta-braided river depositional systems constitute effective migration and storage systems.Caprocks of the Upper Triassic Baijiantan Formation,Lower Jurassic Sangonghe Formation and Lower Cretaceous Hutubihe Formation were formed by three large scale lake transgressions.The Indosinian,Yanshan and Late Yanshan movements are the main driving forces for the migration of deep oil and gas to the shallow edge to form oil sand deposits.It is considered that the oil sand in the northwestern margin of Junggar Basin is of a slope complex migration type. 展开更多
关键词 oil sand reservoir forming conditions accumulation model Junggar Basin petroleum geology
原文传递
Mechanical behavior and improved hypoplastic constitutive model for saturated frozen sand
2
作者 ZhaoMing Yao XiangBin Fu Nan Li 《Research in Cold and Arid Regions》 2025年第4期195-204,共10页
The artificial ground-freezing method is the main technical means for the excavation of mines and tunnels through the water-rich sand layer,and the comprehensive understanding of the mechanical properties of frozen sa... The artificial ground-freezing method is the main technical means for the excavation of mines and tunnels through the water-rich sand layer,and the comprehensive understanding of the mechanical properties of frozen saturated sand and the stress-strain relationship under complex stress can provide important guidance.In this study,a series of true triaxial tests of frozen saturated sand samples were conducted.Combined with the test data,the effects of temperature and medium principal stress ratio(b)on the strength and deformation characteristics of frozen saturated sand are discussed.In addition,a cohesion tensor is introduced to the Wu-Lin hypoplastic model.A scalar value is used to characterize the effect of temperature on the strength of frozen soil.The defect that the original model cannot describe the tensile capacity of frozen soil under low stress conditions is clearly solved.In addition,the cumulative deformation state variable is introduced to improve the response performance of the model in triaxial compression tests.The hypoplastic model of frozen soil has shown good performance in simulating triaxial compression tests at different temperatures and medium principal stress ratios. 展开更多
关键词 Saturated frozen sand True triaxial test Hypoplastic constitutive model Critical state
在线阅读 下载PDF
Characteristics of Channel Sand Body Based on 3D Digital Outcrop Model:A Case Study of Shaximiao Formation Outcrop,in Sichuan Basin,China
3
作者 Xianghui Zhang Changmin Zhang +3 位作者 Wei Yang Wenjun Fu Zhihong Wang Qinghai Xu 《Journal of Earth Science》 2025年第4期1766-1779,共14页
To address the shortage of characterization scale of field outcrops,we used the characteristics of unmanned aerial vehicle(UAV)oblique photography with a wide field of view and a high degree of quantification for imag... To address the shortage of characterization scale of field outcrops,we used the characteristics of unmanned aerial vehicle(UAV)oblique photography with a wide field of view and a high degree of quantification for image acquisition,data processing,and geological interpretation of the outcrops of the Shaximiao Formation in the Sichuan Basin.We established a 3D digital outcrop model(DOM),which combines the advantages of visualization and digitization the 3D DOM to interpret the characteristics of typical channel sand bodies.Within the study area,we have identified three types of channel deposition:composite channel deposition,crevasse channel deposition,and abandoned channel deposition.Among these,the composite channel deposition was mainly sandstone,the bottom contains conglomerate,with large cross-bedding,and the maximum thickness of the single sand body was 1.96 m.The crevasse channel deposition was mainly fine sandstone and siltstone,with massive bedding and small cross-bedding,and the maximum thickness of the single sand body was 0.64 m.The abandoned channel deposition dominated by mudstone with thin sandstone,the sandstone was mainly lenticular in section,and the maximum thickness of the single sand body was 0.28 m.We identified the depositional model of the studied region,which is dominated by braided river deposition,based on the growth size and correspondence of the sand bodies.The research provides a comparative foundation for the detailed characterisation of the underground reservoir sands found in the Jurassic Shaximiao Formation in the Sichuan Basin.It also serves as a reference for the effective study of UAV oblique photography technology in the field. 展开更多
关键词 unmanned aerial vehicle oblique photography digital outcrop model channel sand body Shaximiao Formation Sichuan Basin
原文传递
Creep constitutive model of yellow sandstone under coupling action of unloading and wet-dry cyclic damage 被引量:1
4
作者 QIN Zhe LIU Zhen +1 位作者 ZHANG Run-chang FU Hou-li 《Journal of Mountain Science》 2025年第3期1087-1100,共14页
The study focuses on the creep characteristics of significant yellow sandstone for water conservancy, hydropower, and other waterrelated slope excavation unloading rock-graded loading creep characteristics. It conduct... The study focuses on the creep characteristics of significant yellow sandstone for water conservancy, hydropower, and other waterrelated slope excavation unloading rock-graded loading creep characteristics. It conducts a uniaxial graded loading creep test on yellow sandstone under different pre-peak unloading and wetting-drying cycles. The improved nonlinear Nishihara model was obtained by introducing a nonlinear viscous element with an accelerated creep threshold switch. The sensitivity characteristics of the parameters of the improved creep model were analyzed and a nonlinear creep constitutive model was established, considering the unloading-cyclic intrinsic damage induced by water intrusion. The research results show that:(1)With an increase in the unloading point, the porosity of the rock samples initially decreases and then increases. As the number of cyclic water intrusions rises, the porosity of the rock samples gradually increases, reaching a maximum of 9.58% at an unloading point of 70% uniaxial compression stress(0.7 Rc) after five cycles.(2) Total creep deformation increases with the number of cyclic water intrusions;however, with an increase in the unloading ratio, the original samples show an initial decrease, followed by an increase in creep deformation. With a higher unloading ratio and various instances of cyclic water intrusion, the total creep time of the rock samples,compared to the original samples, is reduced by 21.8%and 23.02%. The creep damage mode gradually changes from shear damage to tensile damage.(3) The sensitivity characteristics of the improved creep model parameters show that transient elasticity modulus E1 is affected by the coupling of unloading and cyclic water intrusion. The viscoelastic modulus E2 and viscous coefficient η1 are mainly affected by unloading and cyclic water intrusion.(4) Based on the strain equivalence principle of damage mechanics, the damage treatment of the parameters in the original model is improved to construct a nonlinear creep constitutive model that considers unloading-cyclic water intrusion damage. A parameter inversion and comparison to the traditional Nishihara model reveal an average relative standard deviation of 0.271%,significantly less than 1%, indicating a more accurate nonlinear creep constitutive model. The research results are crucial for analyzing the long-term stability of water-related steep rocky slopes post-excavation and unloading and for preventing and controlling creep-type landslide disasters. 展开更多
关键词 Pre-peak unloading Dry and wet cycles Creep test Deformation characteristics Creep constitutive model
原文传递
Mesoscopic fracture damage evolution and fractal damage constitutive model of heat-treated red sandstone under direct tensile impact loadings 被引量:1
5
作者 Shi Liu Yu Jia +1 位作者 Yue Zhai Shaoxu Hao 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第1期323-340,共18页
Understanding the mesoscopic tensile fracture damage of rock is the basis of evaluating the deterioration process of mechanical properties of heat-damaged rock. For this, tensile tests of rocks under high-temperature ... Understanding the mesoscopic tensile fracture damage of rock is the basis of evaluating the deterioration process of mechanical properties of heat-damaged rock. For this, tensile tests of rocks under high-temperature treatment were conducted with a ϕ75 mm split Hopkinson tension bar (SHTB) to investigate the mesoscopic fracture and damage properties of rock. An improved scanning electron microscopy (SEM) experimental method was used to analyze the tensile fracture surfaces of rock samples. Qualitative and quantitative analyses were performed to assess evolution of mesoscopic damage of heat-damaged rock under tensile loading. A constitutive model describing the mesoscopic fractal damage under thermo-mechanical coupling was established. The results showed that the high temperatures significantly reduced the tensile strength and fracture surface roughness of the red sandstone. The three-dimensional (3D) reconstruction of the fracture surface of the samples that experienced tensile failure at 900 °C showed a flat surface. The standard deviation of elevation and slope angle of specimen fracture surface first increased and then decreased with increasing temperature. The threshold for brittle fracture of the heat-damaged red sandstone specimens was 600 °C. Beyond this threshold temperature, local ductile fracture occurred, resulting in plastic deformation of the fracture surface during tensile fracturing. With increase of temperature, the internal meso-structure of samples was strengthened slightly at first and then deteriorated gradually, which was consistent with the change of macroscopic mechanical properties of red sandstone. The mesoscopic characteristics, such as the number, mean side length, maximum area, porosity, and fractal dimension of crack, exhibited an initial decline, followed by a gradual increase. The development of microcracks in samples had significant influence on mesoscopic fractal dimension. The mesoscopic fractal characteristics were used to establish a mesoscopic fractal damage constitutive model for red sandstone, and the agreement between the theoretical and experimental results validated the proposed model. 展开更多
关键词 High temperature rock mechanics Dynamic direct tension Red sandstone Mesoscopic fracture mechanism Fractal damage constitutive model
在线阅读 下载PDF
Precipitation patterns of nitrogen and phosphorus in reservoirs:A study in typical sand-source area of Inner Mongolia using PMF-HYSPLIT model
6
作者 Zhuo Li Junping Lu +6 位作者 Tingxi Liu Yi Wang Jiahui Mi Zhenyu Shi Chen Feng Yinghui Liu Aojie Sun 《Journal of Environmental Sciences》 2025年第10期435-449,共15页
Analyzing the sources of nitrogen and phosphorus pollution in atmospheric deposition is crucial for protecting the surfacewater environment in vulnerable areas.This study focused on the Dahekou Reservoir,Shayuan Distr... Analyzing the sources of nitrogen and phosphorus pollution in atmospheric deposition is crucial for protecting the surfacewater environment in vulnerable areas.This study focused on the Dahekou Reservoir,Shayuan District,Xilin Gol League,Inner Mongolia,China.It established 12 monitoring sites,conducted one-year monitoring,and collected 144 samples.The concentrations of nitrogen,phosphorus,and water-soluble ions in atmospheric wet sedimentation were measured.This study identified atmospheric precipitation types,revealed seasonal variations in nitrogen and phosphorus concentrations,assessed the contribution of atmosphericwet sedimentation to reservoirwater quality.Utilizing the airmass backward trajectory(HYSPLIT)model and PMF model,themain pollution sources were analyzed.The results were as follows.1)During the observation period,the atmospheric precipitation types were nitric acid rain in spring,sulfuric acid rain in winter,and mixed acid rain in summer and autumn.2)The monthly concentrations of nitrogen and phosphorus of various forms varied significantly,with NH_(4)^(+)-N peaking in spring,NO_(3)^(-)-N and DOP in autumn,and DIP and DON in summer.Annual pollution loads of atmospheric nitrogen and phosphorus precipitation into the reservoir were 35.77 and 4.17 t/a,respectively,severely impacting reservoir water quality.3)Precipitation was negatively correlated with TN concentration,particularly with the NO_(3)^(-)-N/TN ratio,and positively correlated with TP and DIP concen-trations.4)The analysis of pollution sources indicated that the sources of atmospheric nitrogen and phosphorus wet deposition pollution in the study area included agricultural,anthropogenic,dust,and coal sources,with contribution rates of 32.4%,25.6%,21.0%,and 21.0%,respectively. 展开更多
关键词 Wet sedimentation sand source area Dahekou Reservoir Nitrogen and Phosphorus Source resolution
原文传递
Centrifuge modeling of contaminant transport in keyed sand-bentonite cutoff walls
7
作者 Bo HUANG Linfeng CAO +2 位作者 Jiachen GUO Chunrui XU Yuchao LI 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 2025年第6期573-584,共12页
Sand-bentonite(SB)cutoff walls are commonly used as barriers in polluted areas.The embedded part of an SB wall in an aquitard is crucial for its performance.In this study,a centrifuge modeling test was carried out to ... Sand-bentonite(SB)cutoff walls are commonly used as barriers in polluted areas.The embedded part of an SB wall in an aquitard is crucial for its performance.In this study,a centrifuge modeling test was carried out to investigate the effect of contact between the key and the aquitard on the migration behavior of contaminants within an SB cutoff wall.The centrifuge was accelerated to 100g(gravitational acceleration)and maintained in-flight for 36 h,equivalent to 41 years of transport time in the prototype.Results showed that the contaminant concentration within the SB wall was higher downstream than in the middle in the thickness direction,and deeper regions exhibited a greater concentration than shallower ones.This concentration distribution indicated that contaminants were transported along the interface between the SB wall and the aquitard,bypassing the base of the SB wall to reach the downstream aquifer rapidly.An improved numerical simulation considering preferential interface migration was performed,which agreed with the centrifuge test results.The simulation results indicated that preferential interface migration,as a defect,significantly accelerated the speed of contaminant migration,reducing the breakthrough time of the SB wall to 1/9 of that without preferential interface migration. 展开更多
关键词 Cutoff wall Centrifuge modeling Contaminant transport DEFECT Breakthrough time
原文传递
Energy evolution model and energy response characteristics of freeze-thaw damaged sandstone under uniaxial compression
8
作者 ZHANG Chun-yang TAN Tao ZHAO Er-cheng 《Journal of Central South University》 2025年第6期2328-2348,共21页
Rocks will suffer different degree of damage under freeze-thaw(FT)cycles,which seriously threatens the long-term stability of rock engineering in cold regions.In order to study the mechanism of rock FT damage,energy c... Rocks will suffer different degree of damage under freeze-thaw(FT)cycles,which seriously threatens the long-term stability of rock engineering in cold regions.In order to study the mechanism of rock FT damage,energy calculation method and energy self-inhibition model are introduced to explore their energy characteristics in this paper.The applicability of the energy self-inhibition model was verified by combining the data of FT cycles and uniaxial compression tests of intact and pre-cracked sandstone samples,as well as published reference data.In addition,the energy evolution characteristics of FT damaged rocks were discussed accordingly.The results indicate that the energy self-inhibition model perfectly characterizes the energy accumulation characteristics of FT damaged rocks under uniaxial compression before the peak strength and the energy dissipation characteristics before microcrack unstable growth stage.Taking the FT damaged cyan sandstone sample as an example,it has gone through two stages dominated by energy dissipation mechanism and energy accumulation mechanism,and the energy rate curve of the pre-cracked sample shows a fall-rise phenomenon when approaching failure.Based on the published reference data,it was found that the peak total input energy and energy storage limit conform to an exponential FT decay model,with corresponding decay constants ranging from 0.0021 to 0.1370 and 0.0018 to 0.1945,respectively.Finally,a linear energy storage equation for FT damaged rocks was proposed,and its high reliability and applicability were verified by combining published reference data,the energy storage coefficient of different types of rocks ranged from 0.823 to 0.992,showing a negative exponential relationship with the initial UCS(uniaxial compressive strength).In summary,the mechanism by which FT weakens the mechanical properties of rocks has been revealed from an energy perspective in this paper,which can provide reference for related issues in cold regions. 展开更多
关键词 freeze-thaw damage energy self-inhibition model energy evolution linear energy storage equation
在线阅读 下载PDF
Fractional elastoplastic constitutive model for sandstone subjected to true-triaxial compressive loading
9
作者 Jiacun Liu Xing Li +2 位作者 Chonglang Wang Ying Xu Kaiwen Xia 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第9期5683-5694,共12页
A novel fractional elastoplastic constitutive model is proposed to accurately characterize the deformation of sandstone under true-triaxial stress states.This model is founded on the yield function and the fractional ... A novel fractional elastoplastic constitutive model is proposed to accurately characterize the deformation of sandstone under true-triaxial stress states.This model is founded on the yield function and the fractional flow rule.The yield function includes parameters that govern the evolution of yield surface,enabling an accurate description of three-dimensional stress states.The direction of plastic flow is governed by the two different fractional orders,which are functions of the plastic internal variable.Additionally,a detailed process is proposed for identifying the yield function parameters and fractional orders.Subsequently,the relationship between the fractional order and the direction of plastic flow in the meridian and deviatoric planes is examined,characterized by the dilation angle and the plastic deflection angle,respectively.The non-orthogonal flow rule,also referred to as the fractional flow rule,allows for a border range of plastic deflection and dilation angles compared to the orthogonal flow rule,thereby significantly enhancing its applicability.The validity and accuracy of proposed model are verified by comparing the analytical solution of the constitutive model with the experimental data.A comparison between the non-orthogonal flow rule and orthogonal flow rule is conducted in both the deviatoric and meridian planes.The further comparison of the stress-strain curves for the non-orthogonal and orthogonal flow rules demonstrates the superiority of the fractional constitutive model. 展开更多
关键词 Elastoplastic constitutive model True-triaxial stress Strength criterion Lode angle Fractional flow rule sandSTONE
在线阅读 下载PDF
Intelligent evaluation of sandstone rock structure based on a visual large model
10
作者 REN Yili ZENG Changmin +10 位作者 LI Xin LIU Xi HU Yanxu SU Qianxiao WANG Xiaoming LIN Zhiwei ZHOU Yixiao ZHENG Zilu HU Huiying YANG Yanning HUI Fang 《Petroleum Exploration and Development》 2025年第2期548-558,共11页
Existing sandstone rock structure evaluation methods rely on visual inspection,with low efficiency,semi-quantitative analysis of roundness,and inability to perform classified statistics in particle size analysis.This ... Existing sandstone rock structure evaluation methods rely on visual inspection,with low efficiency,semi-quantitative analysis of roundness,and inability to perform classified statistics in particle size analysis.This study presents an intelligent evaluation method for sandstone rock structure based on the Segment Anything Model(SAM).By developing a lightweight SAM fine-tuning method with rank-decomposition matrix adapters,a multispectral rock particle segmentation model named CoreSAM is constructed,which achieves rock particle edge extraction and type identification.Building upon this,we propose a comprehensive quantitative evaluation system for rock structure,assessing parameters including particle size,sorting,roundness,particle contact and cementation types.The experimental results demonstrate that CoreSAM outperforms existing methods in rock particle segmentation accuracy while showing excellent generalization across different image types such as CT scans and core photographs.The proposed method enables full-sample,classified particle size analysis and quantitative characterization of parameters like roundness,advancing reservoir evaluation towards more precise,quantitative,intuitive,and comprehensive development. 展开更多
关键词 sandSTONE rock structure intelligent evaluation Segment Anything model fine-tuning particle edge extraction type identification
在线阅读 下载PDF
A cohesion loss model for determining residual strength of deep bedded sandstone
11
作者 SONG Zhi-xiang ZHANG Jun-wen +12 位作者 ZHANG Yu-jie WU Shao-kang BAI Xu-yang ZHANG Li-chao ZHANG Sui-lin ZHANG Xu-wen FAN Guang-chen LI Wen-jun ZENG Ban-quan WANG Shi-ji SUN Xiao-yan SANG Pei-miao LI Ning 《Journal of Central South University》 2025年第7期2593-2618,共26页
Rock residual strength,as an important input parameter,plays an indispensable role in proposing the reasonable and scientific scheme about stope design,underground tunnel excavation and stability evaluation of deep ch... Rock residual strength,as an important input parameter,plays an indispensable role in proposing the reasonable and scientific scheme about stope design,underground tunnel excavation and stability evaluation of deep chambers.Therefore,previous residual strength models of rocks established were reviewed.And corresponding related problems were stated.Subsequently,starting from the effects of bedding and whole life-cycle evolution process,series of triaxial mechanical tests of deep bedded sandstone with five bedding angles were conducted under different confining pressures.Then,six residual strength models considering the effects of bedding and whole life-cycle evolution process were established and evaluated.Finally,a cohesion loss model for determining residual strength of deep bedded sandstone was verified.The results showed that the effects of bedding and whole life-cycle evolution process had both significant influences on the evolution characteristic of residual strength of deep bedded sandstone.Additionally,residual strength parameters:residual cohesion and residual internal friction angle of deep bedded sandstone were not constant,which both significantly changed with increasing bedding angle.Besides,the cohesion loss model was the most suitable for determining and estimating the residual strength of bedded rocks,which could provide more accurate theoretical guidance for the stability control of deep chambers. 展开更多
关键词 residual strength deep bedded sandstone whole life-cycle evolution process cohesion loss model rock mechanics
在线阅读 下载PDF
Modeling of Precipitation over Africa:Progress,Challenges,and Prospects
12
作者 A.A.AKINSANOLA C.N.WENHAJI +21 位作者 R.BARIMALALA P.-A.MONERIE R.D.DIXON A.T.TAMOFFO M.O.ADENIYI V.ONGOMA I.DIALLO M.GUDOSHAVA C.M.WAINWRIGHT R.JAMES K.C.SILVERIO A.FAYE S.S.NANGOMBE M.W.POKAM D.A.VONDOU N.C.G.HART I.PINTO M.KILAVI S.HAGOS E.N.RAJAGOPAL R.K.KOLLI S.JOSEPH 《Advances in Atmospheric Sciences》 2026年第1期59-86,共28页
In recent years,there has been an increasing need for climate information across diverse sectors of society.This demand has arisen from the necessity to adapt to and mitigate the impacts of climate variability and cha... In recent years,there has been an increasing need for climate information across diverse sectors of society.This demand has arisen from the necessity to adapt to and mitigate the impacts of climate variability and change.Likewise,this period has seen a significant increase in our understanding of the physical processes and mechanisms that drive precipitation and its variability across different regions of Africa.By leveraging a large volume of climate model outputs,numerous studies have investigated the model representation of African precipitation as well as underlying physical processes.These studies have assessed whether the physical processes are well depicted and whether the models are fit for informing mitigation and adaptation strategies.This paper provides a review of the progress in precipitation simulation overAfrica in state-of-the-science climate models and discusses the major issues and challenges that remain. 展开更多
关键词 RAINFALL MONSOON climate modeling CORDEX CMIP6 convection-permitting models
在线阅读 下载PDF
Artificial intelligence-driven enhanced CBR modeling of sandy soils considering broad grain size variability
13
作者 Zia ur Rehman Zeeshan Aziz +3 位作者 Usama Khalid Nauman Ijaz Sadaqat ur Rehman Zain Ijaz 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第5期3161-3179,共19页
The soil packing,influenced by variations in grain size and the gradation pattern within the soil matrix,plays a crucial role in constituting the mechanical properties of sandy soils.However,previous modeling approach... The soil packing,influenced by variations in grain size and the gradation pattern within the soil matrix,plays a crucial role in constituting the mechanical properties of sandy soils.However,previous modeling approaches have overlooked incorporating the full range of representative parameters to accurately predict the soaked California bearing ratio(CBR_(s))of sandy soils by precisely articulating soil packing in the modeling framework.This study presents an innovative artificial intelligence(AI)-based approach for modeling the CBR_(s)of sandy soils,considering grain size variability meticulously.By synthesizing extensive data from multiple sources,i.e.extensive tailored testing program undertaking multiple tests and extant literature,various modeling techniques including genetic expression programming(GEP),multi-expression programming(MEP),support vector machine(SVM),and multi-linear regression(MLR)are utilized to develop models.The research explores two modeling strategies,namely simplified and composite,with the former incorporating only sieve analysis test parameters,while the latter includes compaction test parameters alongside sieve analysis data.The models'performance is assessed using statistical key performance indicators(KPIs).Results indicate that genetic AI-based algorithms,particularly GEP,outperform SVM and conventional regression techniques,effectively capturing complex relationships between input parameters and CBR_(s).Additionally,the study reveals insights into model performance concerning the number of input parameters,with GEP consistently outperforming other models.External validation and Taylor diagram analysis demonstrate the GEP models'superiority over existing literature models on an independent dataset from the literature.Parametric and sensitivity analyses highlight the intricate relationships between grain sizes and CBR_(s),further emphasizing GEP's efficacy in modeling such complexities.This study contributes to enhancing CBR_(s)modeling accuracy for sandy soils,crucial for pertinent infrastructure design and construction rapidly and cost-effectively. 展开更多
关键词 California bearing ratio(CBR) Grain size variability sandy soil matrix AI-Based modeling Genetic algorithm
在线阅读 下载PDF
Do Higher Horizontal Resolution Models Perform Better?
14
作者 Shoji KUSUNOKI 《Advances in Atmospheric Sciences》 2026年第1期259-262,共4页
Climate model prediction has been improved by enhancing model resolution as well as the implementation of sophisticated physical parameterization and refinement of data assimilation systems[section 6.1 in Wang et al.(... Climate model prediction has been improved by enhancing model resolution as well as the implementation of sophisticated physical parameterization and refinement of data assimilation systems[section 6.1 in Wang et al.(2025)].In relation to seasonal forecasting and climate projection in the East Asian summer monsoon season,proper simulation of the seasonal migration of rain bands by models is a challenging and limiting factor[section 7.1 in Wang et al.(2025)]. 展开更多
关键词 enhancing model resolution refinement data assimilation systems section climate model climate projection higher horizontal resolution seasonal forecasting simulation seasonal migration rain bands model resolution
在线阅读 下载PDF
Accumulation mechanism and enrichment model of deep tight sandstone gas in second member of Upper Triassic Xujiahe Formation,Xinchang structural belt,Sichuan Basin,SW China
15
作者 XIONG Liang CHEN Dongxia +3 位作者 YANG Yingtao ZHANG Ling LI Sha WANG Qiaochu 《Petroleum Exploration and Development》 2025年第4期907-920,共14页
Taking the second member of the Xujiahe Formation of the Upper Triassic in the Xinchang structural belt as an example,based on data such as logging,production,seismic interpretation and test,a systematic analysis was ... Taking the second member of the Xujiahe Formation of the Upper Triassic in the Xinchang structural belt as an example,based on data such as logging,production,seismic interpretation and test,a systematic analysis was conducted on the structural characteristics and evolution,reservoir diagenesis and densification processes,and types and stages of faults/fractures,and revealing the multi-stage and multi-factor dynamic coupled enrichment mechanisms of tight gas reservoirs.(1)In the early Yanshan period,the paleo-structural traps were formed with low-medium maturity hydrocarbons accumulating in structural highs driven by buoyancy since reservoirs were not fully densified in this stage,demonstrating paleo-structure control on traps and early hydrocarbon accumulation.(2)In the middle-late Yanshan period,the source rocks became mature to generate and expel a large quantity of hydrocarbons.Grain size and type of sandstone controlled the time of reservoir densification,which restricted the scale of hydrocarbon charging,allowing for only a small-scale migration through sand bodies near the fault/fracture or less-densified matrix reservoirs.(3)During the Himalayan period,the source rocks reached overmaturity,and the residual oil cracking gas was efficiently transported along the late-stage faults/fractures.Wells with high production capacity were mainly located in Type I and II fault/fracture zones comprising the late-stage north-south trending fourth-order faults and the late-stage fractures.The productivity of the wells was controlled by the transformation of the late-stage faults/fractures.(4)The Xinchang structural belt underwent three stages of tectonic evolution,two stages of reservoir formation,and three stages of fault/fractures development.Hydrocarbons mainly accumulated in the paleo-structure highs.After reservoir densification and late fault/fracture adjustment,a complex gas-water distribution pattern was formed.Thus,it is summarized as the model of“near-source and low-abundance hydrocarbon charging in the early stage,and differential enrichment of natural gas under the joint control of fault-fold-fracture complex,high-quality reservoirs and structural highs in the late stage”.Faults/fractures with well-coupled fault-fold-fracture-pore are favorable exploration targets with high exploration effectiveness. 展开更多
关键词 Upper Triassic second member of the Xujiahe Formation tight sandstone gas reservoir enrichment mechanism hydrocarbon accumulation model Xinchang structural belt Sichuan Basin
在线阅读 下载PDF
An Optimized Customer Churn Prediction Approach Based on Regularized Bidirectional Long Short-Term Memory Model
16
作者 Adel Saad Assiri 《Computers, Materials & Continua》 2026年第1期1783-1803,共21页
Customer churn is the rate at which customers discontinue doing business with a company over a given time period.It is an essential measure for businesses to monitor high churn rates,as they often indicate underlying ... Customer churn is the rate at which customers discontinue doing business with a company over a given time period.It is an essential measure for businesses to monitor high churn rates,as they often indicate underlying issues with services,products,or customer experience,resulting in considerable income loss.Prediction of customer churn is a crucial task aimed at retaining customers and maintaining revenue growth.Traditional machine learning(ML)models often struggle to capture complex temporal dependencies in client behavior data.To address this,an optimized deep learning(DL)approach using a Regularized Bidirectional Long Short-Term Memory(RBiLSTM)model is proposed to mitigate overfitting and improve generalization error.The model integrates dropout,L2-regularization,and early stopping to enhance predictive accuracy while preventing over-reliance on specific patterns.Moreover,this study investigates the effect of optimization techniques on boosting the training efficiency of the developed model.Experimental results on a recent public customer churn dataset demonstrate that the trained model outperforms the traditional ML models and some other DL models,such as Long Short-Term Memory(LSTM)and Deep Neural Network(DNN),in churn prediction performance and stability.The proposed approach achieves 96.1%accuracy,compared with LSTM and DNN,which attain 94.5%and 94.1%accuracy,respectively.These results confirm that the proposed approach can be used as a valuable tool for businesses to identify at-risk consumers proactively and implement targeted retention strategies. 展开更多
关键词 Customer churn prediction deep learning RBiLSTM DROPOUT baseline models
在线阅读 下载PDF
When Large Language Models and Machine Learning Meet Multi-Criteria Decision Making: Fully Integrated Approach for Social Media Moderation
17
作者 Noreen Fuentes Janeth Ugang +4 位作者 Narcisan Galamiton Suzette Bacus Samantha Shane Evangelista Fatima Maturan Lanndon Ocampo 《Computers, Materials & Continua》 2026年第1期2137-2162,共26页
This study demonstrates a novel integration of large language models,machine learning,and multicriteria decision-making to investigate self-moderation in small online communities,a topic under-explored compared to use... This study demonstrates a novel integration of large language models,machine learning,and multicriteria decision-making to investigate self-moderation in small online communities,a topic under-explored compared to user behavior and platform-driven moderation on social media.The proposed methodological framework(1)utilizes large language models for social media post analysis and categorization,(2)employs k-means clustering for content characterization,and(3)incorporates the TODIM(Tomada de Decisão Interativa Multicritério)method to determine moderation strategies based on expert judgments.In general,the fully integrated framework leverages the strengths of these intelligent systems in a more systematic evaluation of large-scale decision problems.When applied in social media moderation,this approach promotes nuanced and context-sensitive self-moderation by taking into account factors such as cultural background and geographic location.The application of this framework is demonstrated within Facebook groups.Eight distinct content clusters encompassing safety,harassment,diversity,and misinformation are identified.Analysis revealed a preference for content removal across all clusters,suggesting a cautious approach towards potentially harmful content.However,the framework also highlights the use of other moderation actions,like account suspension,depending on the content category.These findings contribute to the growing body of research on self-moderation and offer valuable insights for creating safer and more inclusive online spaces within smaller communities. 展开更多
关键词 Self-moderation user-generated content k-means clustering TODIM large language models
在线阅读 下载PDF
Size-dependent axisymmetric bending and buckling analysis of functionally graded sandwich Kirchhoff nanoplates using nonlocal strain gradient integral model
18
作者 Chang LI Hai QING 《Applied Mathematics and Mechanics(English Edition)》 2025年第3期467-484,共18页
This paper extends the one-dimensional(1D)nonlocal strain gradient integral model(NStraGIM)to the two-dimensional(2D)Kirchhoff axisymmetric nanoplates,based on nonlocal strain gradient integral relations formulated al... This paper extends the one-dimensional(1D)nonlocal strain gradient integral model(NStraGIM)to the two-dimensional(2D)Kirchhoff axisymmetric nanoplates,based on nonlocal strain gradient integral relations formulated along both the radial and circumferential directions.By transforming the proposed integral constitutive equations into the equivalent differential forms,complemented by the corresponding constitutive boundary conditions(CBCs),a well-posed mathematical formulation is established for analyzing the axisymmetric bending and buckling of annular/circular functionally graded(FG)sandwich nanoplates.The boundary conditions at the inner edge of a solid nanoplate are derived by L'H?spital's rule.The numerical solution is obtained by the generalized differential quadrature method(GDQM).The accuracy of the proposed model is validated through comparison with the data from the existing literature.A parameter study is conducted to demonstrate the effects of FG sandwich parameters,size parameters,and nonlocal gradient parameters. 展开更多
关键词 size effect nonlocal strain gradient integral model(NStraGIM) BENDING buckling Kirchhoff annular/circular nanoplate functionally graded(FG)sandwich material
在线阅读 下载PDF
A Boundary Element Reconstruction (BER) Model for Moving Morphable Component Topology Optimization
19
作者 Zhao Li Hongyu Xu +2 位作者 Shuai Zhang Jintao Cui Xiaofeng Liu 《Computers, Materials & Continua》 2026年第1期2213-2230,共18页
The moving morphable component(MMC)topology optimization method,as a typical explicit topology optimization method,has been widely concerned.In the MMC topology optimization framework,the surrogate material model is m... The moving morphable component(MMC)topology optimization method,as a typical explicit topology optimization method,has been widely concerned.In the MMC topology optimization framework,the surrogate material model is mainly used for finite element analysis at present,and the effectiveness of the surrogate material model has been fully confirmed.However,there are some accuracy problems when dealing with boundary elements using the surrogate material model,which will affect the topology optimization results.In this study,a boundary element reconstruction(BER)model is proposed based on the surrogate material model under the MMC topology optimization framework to improve the accuracy of topology optimization.The proposed BER model can reconstruct the boundary elements by refining the local meshes and obtaining new nodes in boundary elements.Then the density of boundary elements is recalculated using the new node information,which is more accurate than the original model.Based on the new density of boundary elements,the material properties and volume information of the boundary elements are updated.Compared with other finite element analysis methods,the BER model is simple and feasible and can improve computational accuracy.Finally,the effectiveness and superiority of the proposed method are verified by comparing it with the optimization results of the original surrogate material model through several numerical examples. 展开更多
关键词 Topology optimization MMC method boundary element reconstruction surrogate material model local mesh
在线阅读 下载PDF
Face-Pedestrian Joint Feature Modeling with Cross-Category Dynamic Matching for Occlusion-Robust Multi-Object Tracking
20
作者 Qin Hu Hongshan Kong 《Computers, Materials & Continua》 2026年第1期870-900,共31页
To address the issues of frequent identity switches(IDs)and degraded identification accuracy in multi object tracking(MOT)under complex occlusion scenarios,this study proposes an occlusion-robust tracking framework ba... To address the issues of frequent identity switches(IDs)and degraded identification accuracy in multi object tracking(MOT)under complex occlusion scenarios,this study proposes an occlusion-robust tracking framework based on face-pedestrian joint feature modeling.By constructing a joint tracking model centered on“intra-class independent tracking+cross-category dynamic binding”,designing a multi-modal matching metric with spatio-temporal and appearance constraints,and innovatively introducing a cross-category feature mutual verification mechanism and a dual matching strategy,this work effectively resolves performance degradation in traditional single-category tracking methods caused by short-term occlusion,cross-camera tracking,and crowded environments.Experiments on the Chokepoint_Face_Pedestrian_Track test set demonstrate that in complex scenes,the proposed method improves Face-Pedestrian Matching F1 area under the curve(F1 AUC)by approximately 4 to 43 percentage points compared to several traditional methods.The joint tracking model achieves overall performance metrics of IDF1:85.1825%and MOTA:86.5956%,representing improvements of 0.91 and 0.06 percentage points,respectively,over the baseline model.Ablation studies confirm the effectiveness of key modules such as the Intersection over Area(IoA)/Intersection over Union(IoU)joint metric and dynamic threshold adjustment,validating the significant role of the cross-category identity matching mechanism in enhancing tracking stability.Our_model shows a 16.7%frame per second(FPS)drop vs.fairness of detection and re-identification in multiple object tracking(FairMOT),with its cross-category binding module adding aboute 10%overhead,yet maintains near-real-time performance for essential face-pedestrian tracking at small resolutions. 展开更多
关键词 Cross-category dynamic binding joint feature modeling face-pedestrian association multi object tracking occlusion robustness
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部