This study investigated the impacts of increasing model resolutions and shortening forecast lead times on the quantitative precipitation forecast(QPF)for heavy-rainfall events over south China during the rainy seasons...This study investigated the impacts of increasing model resolutions and shortening forecast lead times on the quantitative precipitation forecast(QPF)for heavy-rainfall events over south China during the rainy seasons in 2013-2020.The control experiment,where the analysis-forecast cycles run with model resolutions of about 3 km,was compared to a lower-resolution experiment with model resolutions of about 9 km,and a longer-term experiment activated 12 hours earlier.Rainfall forecasting in the presummer rainy season was significantly improved by improving model resolutions,with more improvements in cases with stronger synoptic-scale forcings.This is partially attributed to the improved initial conditions(ICs)and subsequent forecasts for low-level jets(LLJs).Forecasts of heavy rainfall induced by landfalling tropical cyclones(TCs)benefited from increasing model resolutions in the first 6 hours.Forecast improvements in rainfall due to shortening forecast lead times were more significant at earlier(1-6 h)and later(7-12 h)lead times for cases with stronger and weaker synoptic-scale forcings,respectively,due to the area-and case-dependent improvements in ICs for nonprecipitation variables.Specifically,significant improvements mainly presented over the northern South China Sea for low-level onshore wind of weak-forcing cases but over south China for LLJs of strong-forcing cases during the presummer rainy season,and over south China for all the nonprecipitation variables above the surface during the TC season.However,some disadvantages of higher-resolution and shorter-term forecasts in QPFs highlight the importance of developing ensemble forecasting with proper IC perturbations,which include the complementary advantages of lower-resolution and longer-term forecasts.展开更多
Climate model prediction has been improved by enhancing model resolution as well as the implementation of sophisticated physical parameterization and refinement of data assimilation systems[section 6.1 in Wang et al.(...Climate model prediction has been improved by enhancing model resolution as well as the implementation of sophisticated physical parameterization and refinement of data assimilation systems[section 6.1 in Wang et al.(2025)].In relation to seasonal forecasting and climate projection in the East Asian summer monsoon season,proper simulation of the seasonal migration of rain bands by models is a challenging and limiting factor[section 7.1 in Wang et al.(2025)].展开更多
Based on the high-and low-resolution Community Earth System Model, version 1(CESM1), and corresponding simulations from phase 6 of the Coupled Model Intercomparison Project(CMIP6), we compare the interannual variabili...Based on the high-and low-resolution Community Earth System Model, version 1(CESM1), and corresponding simulations from phase 6 of the Coupled Model Intercomparison Project(CMIP6), we compare the interannual variability of the East Asian summer monsoon(EASM). The EASM interannual variability is characterized by the anomalous western North Pacific anticyclone(WNPAC) circulation and the dipole rainfall pattern with a negative southern lobe over the western North Pacific and a positive northern lobe along the Meiyu–Baiu region, which is better reproduced by the highresolution models. The reason for the improvement in the high-resolution models has been attributed to the better simulation of the warm temperature advection from the wind anomalies on the climatological temperature gradient. Positive sea surface temperature(SST) anomalies over the tropical Indian Ocean are the key to the improved wind anomalies featuring a WNPAC in the high-resolution models. The warm SST anomalies over the tropical Indian Ocean strengthen the WNPAC by triggering a Kelvin-wave response to the enhanced heat release induced by the increased precipitation. Based on the mixed-layer heat budget analysis, the warm SST anomalies over the western Indian Ocean in the high-resolution CESM1 are tied to the anomalous easterly wind along the equator, which reduces surface evaporation and upwelling.Therefore, the better simulations of air–sea feedback and the oceanic mesoscale eddy over the western Indian Ocean are the key for the improved simulation of the EASM interannual variations in the high-resolution CESM1.展开更多
To better understand how model resolution affects the formation of Arctic boundary layer clouds,we investigated the influence of grid spacing on simulating cloud streets that occurred near Utqiaġvik(formerly Barrow),A...To better understand how model resolution affects the formation of Arctic boundary layer clouds,we investigated the influence of grid spacing on simulating cloud streets that occurred near Utqiaġvik(formerly Barrow),Alaska,on 2 May 2013 and were observed by MODIS(the Moderate Resolution Imaging Spectroradiometer).The Weather Research and Forecasting model was used to simulate the clouds using nested domains with increasingly fine resolution ranging from a horizontal grid spacing of 27 km in the boundary-layer-parameterized mesoscale domain to a grid spacing of 0.111 km in the large-eddy-permitting domain.We investigated the model-simulated mesoscale environment,horizontal and vertical cloud structures,boundary layer stability,and cloud properties,all of which were subsequently used to interpret the observed roll-cloud case.Increasing model resolution led to a transition from a more buoyant boundary layer to a more shear-driven turbulent boundary layer.The clouds were stratiform-like in the mesoscale domain,but as the model resolution increased,roll-like structures,aligned along the wind field,appeared with ever smaller wavelengths.A stronger vertical water vapor gradient occurred above the cloud layers with decreasing grid spacing.With fixed model grid spacing at 0.333 km,changing the model configuration from a boundary layer parameterization to a large-eddy-permitting scheme produced a more shear-driven and less unstable environment,a stronger vertical water vapor gradient below the cloud layers,and the wavelengths of the rolls decreased slightly.In this study,only the large-eddy-permitting simulation with gird spacing of 0.111 km was sufficient to model the observed roll clouds.展开更多
A global eddy-permitting ocean-ice coupled model with a horizontal resolution of 0.25° by 0.25° is estab- lished on the basis of Modular Ocean Model version 4 (MOM4) and Sea Ice Simulator (SIS). Simulati...A global eddy-permitting ocean-ice coupled model with a horizontal resolution of 0.25° by 0.25° is estab- lished on the basis of Modular Ocean Model version 4 (MOM4) and Sea Ice Simulator (SIS). Simulation results are compared with those of an intermediate resolution ocean-ice coupled model with a horizontal resolution of about 1° by 1°. The results show that the simulated ocean temperature, ocean current and sea ice concentration from the eddy-permitting model are better than those from the intermediate resolu- tion model. However, both the two models have the common problem of ocean general circulation models (OGCMs) that the majority of the simulated summer sea surface temperature (SST) is too warm while the majority of the simulated subsurface summer temperature is too cold. Further numerical experiments show that this problem can be alleviated by incorporating the non-breaking surface wave-induced vertical mixing into the vertical mixing scheme for both eddy-permitting and intermediate resolution models.展开更多
A high resolution nonhydrostatic tropical atmospheric model is developed by using a ready-made regional atmospheric modeling system. The motivation is to investigate the convective activities associated with the tropi...A high resolution nonhydrostatic tropical atmospheric model is developed by using a ready-made regional atmospheric modeling system. The motivation is to investigate the convective activities associated with the tropical intraseasonal oscillation (ISO) through a cloud resolving calculation. Due to limitations in computing resources, a展开更多
A new method based on resolution degradation model is proposed to improve both spatial and spectral quality of the synthetic images.Some ETM+panchromatic and multispectral images are used to assess the new method.Its ...A new method based on resolution degradation model is proposed to improve both spatial and spectral quality of the synthetic images.Some ETM+panchromatic and multispectral images are used to assess the new method.Its spatial and spectral effects are evaluated by qualitative and quantitative measures and the results are compared with those of IHS,PCA,Brovey,OWT(Orthogonal Wavelet Transform)and RWT(Redundant Wavelet Transform).The results show that the new method can keep almost the same spatial resolution as the panchromatic images,and the spectral effect of the new method is as good as those of wavelet-based methods.展开更多
This paper analyses the climate change in La Plata Basin, one of the most important regions in South America due to its economy and population. For this work it has been used the Meteorological Research Institute (MRI...This paper analyses the climate change in La Plata Basin, one of the most important regions in South America due to its economy and population. For this work it has been used the Meteorological Research Institute (MRI) and the Japanese Meteorological Agency (JMA) atmospheric global model. For both near and far future, the projected changes for temperature over the entire basin were positive, although they were only statistically significant at the end of the XXI century. Changes in the annual cycle of mean temperature were also positive in all subregions of the basin. Regarding precipitation, there were no changes in the near future that were statistically significant. The summer (winter) is the only season where both models project positive (negative) changes for both periods of the future. In the transitional seasons these changes vary depending on the spatial resolution model and the area of study. The annual cycle showed that the largest changes in precipitation (positive or negative) coincide with the rainy season of each subregion. Regarding the interannual variability of temperature, it was found that the 20 km. model pro-jected a decrease of this variability for both near and far future, especially in summer and autumn. On the other hand, the 60 km. ensemble model showed a decreased of year-to-year variability for summer and an increase in winter and spring. It was also found that both models project an increase in precipitation variability for winter and summer, while in other seasons, only the 60 km. ensemble model presents the mentioned behavior.展开更多
Long-term integrations are conducted using the Spectral Atmospheric Model (referred to as SAMIL), which was developed in the Laboratory for Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics ...Long-term integrations are conducted using the Spectral Atmospheric Model (referred to as SAMIL), which was developed in the Laboratory for Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG) in the Institute of Atmospheric Physics (IAP), with different resolutions to inves-tigate sensitivity of the Madden-Julian Oscillation (MJO) simulations to the model's resolution (horizontal and vertical). Three resolutions of the model, R15L9, R42L9 and R42L26, with identical physical processes, all produced the basic observed features of the MJO, including the spatiotemporal space-time spectra and eastward propagation. No fundamental differences among these simulations were found. This indicates that the model resolution is not a determining factor for simulating the MJO. Detailed differences among these modeling results suggest, however, that model resolution can substantially affect the simulated MJO in certain aspects. For instance, at a lower horizontal resolution, high frequency disturbances were weaker and the structures of the simulated MJO were better defined to a certain extent. A higher vertical resolution led to a more realistic spatiotemporal spectrum and spatial distribution of MJO precipitation. Meanwhile, increasing the model's resolution improved simulation of the climatology. However, increasing the resolution should be based on improving the cumulus parameterization scheme.展开更多
A free-resolution model is developed for ocean circulation simulation in the National Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Chinese Academy of Sciences,...A free-resolution model is developed for ocean circulation simulation in the National Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Chinese Academy of Sciences, and is applied to simulate surface current and sea ice variations in the Arctic Mediterranean Seas. A dynamic sea ice model in elastic-viscous-plastic rheology and a thermodynamic sea ice model are employed. A 200-year simulation is performed and a dimatological average of a 10-year period (14lst-150th) is presented with focus on sea ice concentration and surface current variations in the Arctic Mediterranean Seas. The model is able to simulate well the East Greenland Current, Beaufort Gyre and the Transpolar Drift, but the simulated West Spitsbergen Current is small and weak. In the March climatology, the sea ice coverage can be simulated well except for a bit more ice in east of Spitsbergen Island. The result is also good for the September scenario except for less ice concentration east of Greenland and greater ice concentration near the ice margin. The extra ice east of Spitsbergen Island is caused by sea ice current convergence forced by atmospheric wind stress.展开更多
The sensitivity of the representation of the global monsoon annual cycle to horizontal resolution is compared in three AGCMs: the Met Office Unified Model-Global Atmosphere 3.0; the Meteorological Research Institute ...The sensitivity of the representation of the global monsoon annual cycle to horizontal resolution is compared in three AGCMs: the Met Office Unified Model-Global Atmosphere 3.0; the Meteorological Research Institute AGCM3; and the Global High Resolution AGCM from the Geophysical Fluid Dynamics Laboratory. For each model, we use two horizon- tal resolution configurations for the period 1998-2008. Increasing resolution consistently improves simulated precipitation and low-level circulation of the annual mean and the first two annual cycle modes, as measured by the pattern correla- tion coefficient and equitable threat score. Improvements in simulating the summer monsoon onset and withdrawal are region-dependent. No consistent response to resolution is found in simulating summer monsoon retreat. Regionally, in- creased resolution reduces the positive bias in simulated annual mean precipitation, the two annual-cycle modes over the West African monsoon and Northwestern Pacific monsoon. An overestimation of the solstitial mode and an underestimation of the equinoctial asymmetric mode of the East Asian monsoon axe reduced in all high-resolution configurations. Systematic errors exist in lower-resolution models for simulating the onset and withdrawal of the summer monsoon. Higher resolution models consistently improve the early summer monsoon onset over East Asia and West Africa, but substantial differences exist in the responses over the Indian monsoon region, where biases differ across the three low-resolution AGCMs. This study demonstrates the importance of a multi-model comparison when examining the added value of resolution and the importance of model physical parameterizations for simulation of the Indian monsoon.展开更多
We present a mathematical model of a day care center in a developed country (such as Canada), in order to use it for the estimation of individual-to-individual contact rates in young age groups and in an educational g...We present a mathematical model of a day care center in a developed country (such as Canada), in order to use it for the estimation of individual-to-individual contact rates in young age groups and in an educational group setting. In our model, individuals in the population are children (ages 1.5 to 4 years) and staff, and their interactions are modelled explicitly: person-to-person and person-to-environment, with a very high time resolution. Their movement and meaningful contact patterns are simulated and then calibrated with collected data from a child care facility as a case study. We present these calibration results as a first part in the further development of our model for testing and estimating the spread of infectious diseases within child care centers.展开更多
This paper analyses the climate change projected for the near and distant future in South America using MRI/JMA (Japanese Meteorological Agency) global model simulations with resolutions of 20 and 60 km. Changes in me...This paper analyses the climate change projected for the near and distant future in South America using MRI/JMA (Japanese Meteorological Agency) global model simulations with resolutions of 20 and 60 km. Changes in mean climate, as well as in the annual cycles and interannual variability of temperature and precipitation are discussed. An analysis is also made of the uncertainties of the 60 km resolution model experiments. For the near and distant future, both, the 20 km and 60 km resolution MRI/JMA models project that temperature changes will be positive in all seasons. The greatest values of change are over the Andes and over tropical and subtropical latitudes of the study region. In all the subregions analysed, the 20 km model projects greater changes in the annual cycle of mean temperature than the 60 km model. Changes in summer precipitation are positive over most of the continent, except for southern Chile. Autumn precipitation is projected to increase over northern Argentina and north-western South America and to decrease over central Chile in winter, which might be due to the southward shift of the Pacific storm-track. The most significant positive change in Southeastern South America (SESA) is projected to occur in spring precipitation. In general, projected changes in the annual cycle are greater in the rainy seasons of each subregion. No significant changes are expected in the interannual variability of temperature and precipitation. La Plata basin is projected to experience increased runoff, which would indicate that the projected rise in precipitation would have stronger effect than projected warming. The analysis of climate projection uncertainties revealed that temperature projections are more reliable than precipitation projections;and that uncertainty in near future simulations is greater than in simulations of the end of the century.展开更多
With the constantly changing engineering construction sector,the detection accuracy of conventional electrical resistivity tomography(ERT)is no longer sufficient.A multichannel electrode design(MERT)-based ERT is intr...With the constantly changing engineering construction sector,the detection accuracy of conventional electrical resistivity tomography(ERT)is no longer sufficient.A multichannel electrode design(MERT)-based ERT is introduced in this paper to address the growing need for resolution.The imaging accuracy of the ERT method is improved through the collection of apparent resistivity data in various directions by measuring the potential diff erence between diff erent channels.Numerical simulation results of the inclined high-resistivity anomaly model reveal that MERT is a precise representation of the shape,inclined direction,and buried depth of the anomaly,with thoroughfare M2N2 producing the most precise forward and inverse results.Based on the analysis results of the model resolution matrix,when the buried depth of power supply points and the gap between potential acquisition points are 30%-90%and 30%-60%of the electrode distance,respectively,the MERT approach yields superior detection outcomes.The detection eff ect of the MERT method on anomalous bodies with diff erent burial depths under the optimal parameters also indicates that the MERT method can obtain richer potential change information with higher resolution in deep areas compared to the ERT method.With the implementation of the MERT approach,the scope of applications for ERT is expanded,the accuracy of ERT detection is increased,and the progress of near-surface fine detection is positively infl uenced.展开更多
A formal methodology for analyzing the importance of weighing a decision maker's attitudes in a conflict is introduced and applied to the problem of negotiating a fair transfer of a brownfield property. A decision ma...A formal methodology for analyzing the importance of weighing a decision maker's attitudes in a conflict is introduced and applied to the problem of negotiating a fair transfer of a brownfield property. A decision maker's attitudes are expressed in his consideration of his own preferences, as well as those of his opponents. Dominating attitudes are used to suggest that in a circumstance in which a decision maker takes into account multiple perspectives due to his attitudes, he may favor one perspective more heavily. The analysis of a brownfield acquisition conflict illustrates the types of insights that this methodology reveals.展开更多
A comparison of two decision analysis tools for the analysis of strategic conflicts, the Analytic Network Process (ANP) and the graph model for conflict resolution, is carried out by applying them to the China-US TV...A comparison of two decision analysis tools for the analysis of strategic conflicts, the Analytic Network Process (ANP) and the graph model for conflict resolution, is carried out by applying them to the China-US TV dumping conflict. Firstly, the graph model is introduced along with practical procedures for modeling and analyzing conflicts using the decision support software, GMCR Ⅱ. Next, ANP is explained, emphasizing structural features and procedures for synthesizing priorities. Then a framework for employing ANP to analyze strategic conflicts is designed and used to compare ANP to the graph model. The case study of the China-US TV dumping conflict provides a basis for the graph model and ANP to be compared; different features of the approaches are highlighted. The study shows that because of different theoretical backgrounds, ANP and the graph model for conflict analysis both provide useful information which can be combined to furnish a better understanding of a strategic conflict.展开更多
Based on the option prioritization in graph model for conflict resolution of two decision makers(DMs),new logical and matrix representations of four stability concepts for DMs′attitude are proposed.The logical repres...Based on the option prioritization in graph model for conflict resolution of two decision makers(DMs),new logical and matrix representations of four stability concepts for DMs′attitude are proposed.The logical representation of attitude is defined,and converted to the matrix form in order to develop a decision support system(DSS)efficiently.Compared with existing definitions of DMs′attitude based on states,the proposed definitions of attitude based on options are convenient and more effective to generate preferences since that of states can be significantly larger than that of options in a large conflict.In addition,it is easier to obtain the information of the prioritization of option statements than to obtain preference of states for users.The proposed representations are applied to the process conflict during aircraft manufacturing to demonstrate the efficiency of the new approach.展开更多
A new dry deposition velocity pattern (NDDVP) for the study of region-scale dry deposition processes is developed. The mean ratio between NDDVP and 1022 experimental data of dry deposi- tion velocity V_d is 1. 06±...A new dry deposition velocity pattern (NDDVP) for the study of region-scale dry deposition processes is developed. The mean ratio between NDDVP and 1022 experimental data of dry deposi- tion velocity V_d is 1. 06±0.82. The result shows that NDDVP is well consistent with experimental data. Practical cases are forecasted by the high resolution regional acid deposition model (EM3) with both NDDVP and old V_d pattern. The maximum ratio between the central concentrations for SO4 can reach 2.4 only due to different V_d patterns. 3-D distributions of species concentrations and dry depositions forecasted by NDDVP are better than those by the old V_d pattern.展开更多
The impacts of the enhanced model's moist physics and horizontal resolution upon the QPFs (quantitative precipitation forecasts)are investigated by applying the HIRLAM(high resolution limited area model)to the sum...The impacts of the enhanced model's moist physics and horizontal resolution upon the QPFs (quantitative precipitation forecasts)are investigated by applying the HIRLAM(high resolution limited area model)to the summer heavy-rain cases in China.The performance of the control run, for which a 0.5°×0.5°grid spacing and a traditional“grid-box supersaturation removal+Kuo type convective paramerization”are used as the moist physics,is compared with that of the sensitivity runs with an enhanced model's moist physics(Sundqvist scheme)and an increased horizontal resolution(0.25°×0.25°),respectively.The results show: (1)The enhanced moist physics scheme(Sundqvist scheme),by introducing the cloud water content as an additional prognostic variable and taking into account briefly of the microphysics involved in the cloud-rain conversion,does bring improvements in the model's QPFs.Although the deteriorated QPFs also occur occasionally,the improvements are found in the majority of the cases,indicating the great potential for the improvement of QPFs by enhancing the model's moist physics. (2)By increasing the model's horizontal resolution from 0.5°×0.5°,which is already quite high compared with that of the conventional atmospheric soundings,to 0.25°×0.25°without the simultaneous enhancement in model physics and objective analysis,the improvements in QPFs are very limited.With higher resolution,although slight amelioration in locating the rainfall centers and in resolving some finer structures of precipitation pattern are made,the number of the mis- predicted fine structures in rainfall field increases with the enhanced model resolution as well.展开更多
In this paper some improvements on certainty factor model are discussed aiming at:1)including, in a rule“E→H”,not only the CF of H when E exists but also CF of(?)when E does not exist(partly or completely).For this...In this paper some improvements on certainty factor model are discussed aiming at:1)including, in a rule“E→H”,not only the CF of H when E exists but also CF of(?)when E does not exist(partly or completely).For this purpose another factor(?)is added into the original model;2) improving the model so that it can tackle problems with unknown evidence.In this aspect two concepts are introduced:(relative)maximum existence risk and(relative)maximum non-existence risk.An impor- tant result is that even if some necessary evidence is unknown one can still know the tendency whether the conclusion is true.Based on the improvements a conflict resolution model for problem-level conflict is also presented展开更多
基金National Key Research and Development Program of China(2017YFC1501603)National Natural Science Foundation of China(41975136,42075014)+2 种基金Startup Foundation for Introducing Talent of NUIST(2023r121)Guangdong Basic and Applied Basic Research Foundation(2019A1515011118)Guangzhou Municipal Science and Technology Planning Project of China(202103000030)。
文摘This study investigated the impacts of increasing model resolutions and shortening forecast lead times on the quantitative precipitation forecast(QPF)for heavy-rainfall events over south China during the rainy seasons in 2013-2020.The control experiment,where the analysis-forecast cycles run with model resolutions of about 3 km,was compared to a lower-resolution experiment with model resolutions of about 9 km,and a longer-term experiment activated 12 hours earlier.Rainfall forecasting in the presummer rainy season was significantly improved by improving model resolutions,with more improvements in cases with stronger synoptic-scale forcings.This is partially attributed to the improved initial conditions(ICs)and subsequent forecasts for low-level jets(LLJs).Forecasts of heavy rainfall induced by landfalling tropical cyclones(TCs)benefited from increasing model resolutions in the first 6 hours.Forecast improvements in rainfall due to shortening forecast lead times were more significant at earlier(1-6 h)and later(7-12 h)lead times for cases with stronger and weaker synoptic-scale forcings,respectively,due to the area-and case-dependent improvements in ICs for nonprecipitation variables.Specifically,significant improvements mainly presented over the northern South China Sea for low-level onshore wind of weak-forcing cases but over south China for LLJs of strong-forcing cases during the presummer rainy season,and over south China for all the nonprecipitation variables above the surface during the TC season.However,some disadvantages of higher-resolution and shorter-term forecasts in QPFs highlight the importance of developing ensemble forecasting with proper IC perturbations,which include the complementary advantages of lower-resolution and longer-term forecasts.
文摘Climate model prediction has been improved by enhancing model resolution as well as the implementation of sophisticated physical parameterization and refinement of data assimilation systems[section 6.1 in Wang et al.(2025)].In relation to seasonal forecasting and climate projection in the East Asian summer monsoon season,proper simulation of the seasonal migration of rain bands by models is a challenging and limiting factor[section 7.1 in Wang et al.(2025)].
基金supported by the National Natural Science Foundation of China [Grant Nos.42275018 (L.D.) and 42175029 (F.S.)]the Shandong Provincial Natural Science Fund for Excellent Young Scientists Fund Program (Overseas) [Grant No.2022HWYQ-065 (L.D.)]+3 种基金the Taishan Scholars Program of Shandong Province [Grant No.tsqn202211068 (L.D.)]the Fund of Laoshan Laboratory [Grant Nos.LSKJ202202602 (L.D.) and LSKJ202202201 (F.S.)]financially supported by Laoshan Laboratory (Grant No.LSKJ202300302)supported by the Office of Science, U.S.Department of Energy (DOE) Biological and Environmental Research through the Water Cycle and Climate Extremes Modeling (WACCEM) scientific focus area funded by the Regional and Global Model Analysis program area。
文摘Based on the high-and low-resolution Community Earth System Model, version 1(CESM1), and corresponding simulations from phase 6 of the Coupled Model Intercomparison Project(CMIP6), we compare the interannual variability of the East Asian summer monsoon(EASM). The EASM interannual variability is characterized by the anomalous western North Pacific anticyclone(WNPAC) circulation and the dipole rainfall pattern with a negative southern lobe over the western North Pacific and a positive northern lobe along the Meiyu–Baiu region, which is better reproduced by the highresolution models. The reason for the improvement in the high-resolution models has been attributed to the better simulation of the warm temperature advection from the wind anomalies on the climatological temperature gradient. Positive sea surface temperature(SST) anomalies over the tropical Indian Ocean are the key to the improved wind anomalies featuring a WNPAC in the high-resolution models. The warm SST anomalies over the tropical Indian Ocean strengthen the WNPAC by triggering a Kelvin-wave response to the enhanced heat release induced by the increased precipitation. Based on the mixed-layer heat budget analysis, the warm SST anomalies over the western Indian Ocean in the high-resolution CESM1 are tied to the anomalous easterly wind along the equator, which reduces surface evaporation and upwelling.Therefore, the better simulations of air–sea feedback and the oceanic mesoscale eddy over the western Indian Ocean are the key for the improved simulation of the EASM interannual variations in the high-resolution CESM1.
基金supported by the U.S. DOE ASR (Atmospheric Systems Research) program (Grant No. DE-SC0013953)
文摘To better understand how model resolution affects the formation of Arctic boundary layer clouds,we investigated the influence of grid spacing on simulating cloud streets that occurred near Utqiaġvik(formerly Barrow),Alaska,on 2 May 2013 and were observed by MODIS(the Moderate Resolution Imaging Spectroradiometer).The Weather Research and Forecasting model was used to simulate the clouds using nested domains with increasingly fine resolution ranging from a horizontal grid spacing of 27 km in the boundary-layer-parameterized mesoscale domain to a grid spacing of 0.111 km in the large-eddy-permitting domain.We investigated the model-simulated mesoscale environment,horizontal and vertical cloud structures,boundary layer stability,and cloud properties,all of which were subsequently used to interpret the observed roll-cloud case.Increasing model resolution led to a transition from a more buoyant boundary layer to a more shear-driven turbulent boundary layer.The clouds were stratiform-like in the mesoscale domain,but as the model resolution increased,roll-like structures,aligned along the wind field,appeared with ever smaller wavelengths.A stronger vertical water vapor gradient occurred above the cloud layers with decreasing grid spacing.With fixed model grid spacing at 0.333 km,changing the model configuration from a boundary layer parameterization to a large-eddy-permitting scheme produced a more shear-driven and less unstable environment,a stronger vertical water vapor gradient below the cloud layers,and the wavelengths of the rolls decreased slightly.In this study,only the large-eddy-permitting simulation with gird spacing of 0.111 km was sufficient to model the observed roll clouds.
基金The Key Project of the National Science Foundation of China under contract No. 40730842the "973" Project of China under contract No. 2010CB950303+2 种基金the Scientific Research Foundation of the First Institute of Oceanography, State Oceanic Administration of Chinaunder contract No. 2011T02the National Key Technology R&D Program of China under contract No. 2011BAC03B02the Key Supercomputing Science-Technology Project of Shandong Province of China under contract No. 2011YD01107
文摘A global eddy-permitting ocean-ice coupled model with a horizontal resolution of 0.25° by 0.25° is estab- lished on the basis of Modular Ocean Model version 4 (MOM4) and Sea Ice Simulator (SIS). Simulation results are compared with those of an intermediate resolution ocean-ice coupled model with a horizontal resolution of about 1° by 1°. The results show that the simulated ocean temperature, ocean current and sea ice concentration from the eddy-permitting model are better than those from the intermediate resolu- tion model. However, both the two models have the common problem of ocean general circulation models (OGCMs) that the majority of the simulated summer sea surface temperature (SST) is too warm while the majority of the simulated subsurface summer temperature is too cold. Further numerical experiments show that this problem can be alleviated by incorporating the non-breaking surface wave-induced vertical mixing into the vertical mixing scheme for both eddy-permitting and intermediate resolution models.
文摘A high resolution nonhydrostatic tropical atmospheric model is developed by using a ready-made regional atmospheric modeling system. The motivation is to investigate the convective activities associated with the tropical intraseasonal oscillation (ISO) through a cloud resolving calculation. Due to limitations in computing resources, a
文摘A new method based on resolution degradation model is proposed to improve both spatial and spectral quality of the synthetic images.Some ETM+panchromatic and multispectral images are used to assess the new method.Its spatial and spectral effects are evaluated by qualitative and quantitative measures and the results are compared with those of IHS,PCA,Brovey,OWT(Orthogonal Wavelet Transform)and RWT(Redundant Wavelet Transform).The results show that the new method can keep almost the same spatial resolution as the panchromatic images,and the spectral effect of the new method is as good as those of wavelet-based methods.
基金funding from the European Community’s Seventh Framework Programme(FP7/2007-2013),under Grant Agreement N°212492.
文摘This paper analyses the climate change in La Plata Basin, one of the most important regions in South America due to its economy and population. For this work it has been used the Meteorological Research Institute (MRI) and the Japanese Meteorological Agency (JMA) atmospheric global model. For both near and far future, the projected changes for temperature over the entire basin were positive, although they were only statistically significant at the end of the XXI century. Changes in the annual cycle of mean temperature were also positive in all subregions of the basin. Regarding precipitation, there were no changes in the near future that were statistically significant. The summer (winter) is the only season where both models project positive (negative) changes for both periods of the future. In the transitional seasons these changes vary depending on the spatial resolution model and the area of study. The annual cycle showed that the largest changes in precipitation (positive or negative) coincide with the rainy season of each subregion. Regarding the interannual variability of temperature, it was found that the 20 km. model pro-jected a decrease of this variability for both near and far future, especially in summer and autumn. On the other hand, the 60 km. ensemble model showed a decreased of year-to-year variability for summer and an increase in winter and spring. It was also found that both models project an increase in precipitation variability for winter and summer, while in other seasons, only the 60 km. ensemble model presents the mentioned behavior.
文摘Long-term integrations are conducted using the Spectral Atmospheric Model (referred to as SAMIL), which was developed in the Laboratory for Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG) in the Institute of Atmospheric Physics (IAP), with different resolutions to inves-tigate sensitivity of the Madden-Julian Oscillation (MJO) simulations to the model's resolution (horizontal and vertical). Three resolutions of the model, R15L9, R42L9 and R42L26, with identical physical processes, all produced the basic observed features of the MJO, including the spatiotemporal space-time spectra and eastward propagation. No fundamental differences among these simulations were found. This indicates that the model resolution is not a determining factor for simulating the MJO. Detailed differences among these modeling results suggest, however, that model resolution can substantially affect the simulated MJO in certain aspects. For instance, at a lower horizontal resolution, high frequency disturbances were weaker and the structures of the simulated MJO were better defined to a certain extent. A higher vertical resolution led to a more realistic spatiotemporal spectrum and spatial distribution of MJO precipitation. Meanwhile, increasing the model's resolution improved simulation of the climatology. However, increasing the resolution should be based on improving the cumulus parameterization scheme.
基金the NSFC (No. 40675065) the National Basic Research Priorities Program of China (No.2005CB32170X)
文摘A free-resolution model is developed for ocean circulation simulation in the National Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Chinese Academy of Sciences, and is applied to simulate surface current and sea ice variations in the Arctic Mediterranean Seas. A dynamic sea ice model in elastic-viscous-plastic rheology and a thermodynamic sea ice model are employed. A 200-year simulation is performed and a dimatological average of a 10-year period (14lst-150th) is presented with focus on sea ice concentration and surface current variations in the Arctic Mediterranean Seas. The model is able to simulate well the East Greenland Current, Beaufort Gyre and the Transpolar Drift, but the simulated West Spitsbergen Current is small and weak. In the March climatology, the sea ice coverage can be simulated well except for a bit more ice in east of Spitsbergen Island. The result is also good for the September scenario except for less ice concentration east of Greenland and greater ice concentration near the ice margin. The extra ice east of Spitsbergen Island is caused by sea ice current convergence forced by atmospheric wind stress.
基金jointly supported by the National Natural Science Foundation of China(Grant Nos.41420104006,41330423)Program of International S&T Cooperation under grant 2016YFE0102400+1 种基金the UK-China Research&Innovation Partnership Fund through the Met Office Climate Science for Service Partnership(CSSP)China as part of the Newton Fundfunded by an Independent Research Fellowship from the Natural Environment Research Council(Grant No.NE/L010976/1)
文摘The sensitivity of the representation of the global monsoon annual cycle to horizontal resolution is compared in three AGCMs: the Met Office Unified Model-Global Atmosphere 3.0; the Meteorological Research Institute AGCM3; and the Global High Resolution AGCM from the Geophysical Fluid Dynamics Laboratory. For each model, we use two horizon- tal resolution configurations for the period 1998-2008. Increasing resolution consistently improves simulated precipitation and low-level circulation of the annual mean and the first two annual cycle modes, as measured by the pattern correla- tion coefficient and equitable threat score. Improvements in simulating the summer monsoon onset and withdrawal are region-dependent. No consistent response to resolution is found in simulating summer monsoon retreat. Regionally, in- creased resolution reduces the positive bias in simulated annual mean precipitation, the two annual-cycle modes over the West African monsoon and Northwestern Pacific monsoon. An overestimation of the solstitial mode and an underestimation of the equinoctial asymmetric mode of the East Asian monsoon axe reduced in all high-resolution configurations. Systematic errors exist in lower-resolution models for simulating the onset and withdrawal of the summer monsoon. Higher resolution models consistently improve the early summer monsoon onset over East Asia and West Africa, but substantial differences exist in the responses over the Indian monsoon region, where biases differ across the three low-resolution AGCMs. This study demonstrates the importance of a multi-model comparison when examining the added value of resolution and the importance of model physical parameterizations for simulation of the Indian monsoon.
文摘We present a mathematical model of a day care center in a developed country (such as Canada), in order to use it for the estimation of individual-to-individual contact rates in young age groups and in an educational group setting. In our model, individuals in the population are children (ages 1.5 to 4 years) and staff, and their interactions are modelled explicitly: person-to-person and person-to-environment, with a very high time resolution. Their movement and meaningful contact patterns are simulated and then calibrated with collected data from a child care facility as a case study. We present these calibration results as a first part in the further development of our model for testing and estimating the spread of infectious diseases within child care centers.
基金partially supported by UBACYT-1028,PIP CONICET 112-200801-00195 and CLARIS-LPB(A Europe-South America Network for Climate Change Assessment and Impact Studies in La Plata Basin).
文摘This paper analyses the climate change projected for the near and distant future in South America using MRI/JMA (Japanese Meteorological Agency) global model simulations with resolutions of 20 and 60 km. Changes in mean climate, as well as in the annual cycles and interannual variability of temperature and precipitation are discussed. An analysis is also made of the uncertainties of the 60 km resolution model experiments. For the near and distant future, both, the 20 km and 60 km resolution MRI/JMA models project that temperature changes will be positive in all seasons. The greatest values of change are over the Andes and over tropical and subtropical latitudes of the study region. In all the subregions analysed, the 20 km model projects greater changes in the annual cycle of mean temperature than the 60 km model. Changes in summer precipitation are positive over most of the continent, except for southern Chile. Autumn precipitation is projected to increase over northern Argentina and north-western South America and to decrease over central Chile in winter, which might be due to the southward shift of the Pacific storm-track. The most significant positive change in Southeastern South America (SESA) is projected to occur in spring precipitation. In general, projected changes in the annual cycle are greater in the rainy seasons of each subregion. No significant changes are expected in the interannual variability of temperature and precipitation. La Plata basin is projected to experience increased runoff, which would indicate that the projected rise in precipitation would have stronger effect than projected warming. The analysis of climate projection uncertainties revealed that temperature projections are more reliable than precipitation projections;and that uncertainty in near future simulations is greater than in simulations of the end of the century.
基金supported by the National Key Research and Development Program of China(Grant No.2021YFC3000103)the National Natural Science Foundation of China(Grant No.41504081)。
文摘With the constantly changing engineering construction sector,the detection accuracy of conventional electrical resistivity tomography(ERT)is no longer sufficient.A multichannel electrode design(MERT)-based ERT is introduced in this paper to address the growing need for resolution.The imaging accuracy of the ERT method is improved through the collection of apparent resistivity data in various directions by measuring the potential diff erence between diff erent channels.Numerical simulation results of the inclined high-resistivity anomaly model reveal that MERT is a precise representation of the shape,inclined direction,and buried depth of the anomaly,with thoroughfare M2N2 producing the most precise forward and inverse results.Based on the analysis results of the model resolution matrix,when the buried depth of power supply points and the gap between potential acquisition points are 30%-90%and 30%-60%of the electrode distance,respectively,the MERT approach yields superior detection outcomes.The detection eff ect of the MERT method on anomalous bodies with diff erent burial depths under the optimal parameters also indicates that the MERT method can obtain richer potential change information with higher resolution in deep areas compared to the ERT method.With the implementation of the MERT approach,the scope of applications for ERT is expanded,the accuracy of ERT detection is increased,and the progress of near-surface fine detection is positively infl uenced.
基金the Centre for International Governance Innovation(CIGI) for financially supporting Dr.Sean Bernath Walker during his PhD studies in Systems Design Engineering at the University of Waterloo(UW) under the project entitled Multiple Participant-Multiple Objective Decision Making in International Governance,headed by K.W.Hipelfunded by the UW Faculty of EngineeringThe Natural Sciences and Engineering Research Council(NSERC) of Canada
文摘A formal methodology for analyzing the importance of weighing a decision maker's attitudes in a conflict is introduced and applied to the problem of negotiating a fair transfer of a brownfield property. A decision maker's attitudes are expressed in his consideration of his own preferences, as well as those of his opponents. Dominating attitudes are used to suggest that in a circumstance in which a decision maker takes into account multiple perspectives due to his attitudes, he may favor one perspective more heavily. The analysis of a brownfield acquisition conflict illustrates the types of insights that this methodology reveals.
文摘A comparison of two decision analysis tools for the analysis of strategic conflicts, the Analytic Network Process (ANP) and the graph model for conflict resolution, is carried out by applying them to the China-US TV dumping conflict. Firstly, the graph model is introduced along with practical procedures for modeling and analyzing conflicts using the decision support software, GMCR Ⅱ. Next, ANP is explained, emphasizing structural features and procedures for synthesizing priorities. Then a framework for employing ANP to analyze strategic conflicts is designed and used to compare ANP to the graph model. The case study of the China-US TV dumping conflict provides a basis for the graph model and ANP to be compared; different features of the approaches are highlighted. The study shows that because of different theoretical backgrounds, ANP and the graph model for conflict analysis both provide useful information which can be combined to furnish a better understanding of a strategic conflict.
基金supported by the National Natural Science Foundation of China(Nos.71071076,71471087,and 61673209)
文摘Based on the option prioritization in graph model for conflict resolution of two decision makers(DMs),new logical and matrix representations of four stability concepts for DMs′attitude are proposed.The logical representation of attitude is defined,and converted to the matrix form in order to develop a decision support system(DSS)efficiently.Compared with existing definitions of DMs′attitude based on states,the proposed definitions of attitude based on options are convenient and more effective to generate preferences since that of states can be significantly larger than that of options in a large conflict.In addition,it is easier to obtain the information of the prioritization of option statements than to obtain preference of states for users.The proposed representations are applied to the process conflict during aircraft manufacturing to demonstrate the efficiency of the new approach.
基金The study is supported by the National Natural Science Foundation of China,LASG and LAPC in IAP, CAS
文摘A new dry deposition velocity pattern (NDDVP) for the study of region-scale dry deposition processes is developed. The mean ratio between NDDVP and 1022 experimental data of dry deposi- tion velocity V_d is 1. 06±0.82. The result shows that NDDVP is well consistent with experimental data. Practical cases are forecasted by the high resolution regional acid deposition model (EM3) with both NDDVP and old V_d pattern. The maximum ratio between the central concentrations for SO4 can reach 2.4 only due to different V_d patterns. 3-D distributions of species concentrations and dry depositions forecasted by NDDVP are better than those by the old V_d pattern.
基金Financially supported by the Chinese State Education Committee's Research Foundation for scholars returning from abroad and by Danish Government's Danida Foundation.
文摘The impacts of the enhanced model's moist physics and horizontal resolution upon the QPFs (quantitative precipitation forecasts)are investigated by applying the HIRLAM(high resolution limited area model)to the summer heavy-rain cases in China.The performance of the control run, for which a 0.5°×0.5°grid spacing and a traditional“grid-box supersaturation removal+Kuo type convective paramerization”are used as the moist physics,is compared with that of the sensitivity runs with an enhanced model's moist physics(Sundqvist scheme)and an increased horizontal resolution(0.25°×0.25°),respectively.The results show: (1)The enhanced moist physics scheme(Sundqvist scheme),by introducing the cloud water content as an additional prognostic variable and taking into account briefly of the microphysics involved in the cloud-rain conversion,does bring improvements in the model's QPFs.Although the deteriorated QPFs also occur occasionally,the improvements are found in the majority of the cases,indicating the great potential for the improvement of QPFs by enhancing the model's moist physics. (2)By increasing the model's horizontal resolution from 0.5°×0.5°,which is already quite high compared with that of the conventional atmospheric soundings,to 0.25°×0.25°without the simultaneous enhancement in model physics and objective analysis,the improvements in QPFs are very limited.With higher resolution,although slight amelioration in locating the rainfall centers and in resolving some finer structures of precipitation pattern are made,the number of the mis- predicted fine structures in rainfall field increases with the enhanced model resolution as well.
文摘In this paper some improvements on certainty factor model are discussed aiming at:1)including, in a rule“E→H”,not only the CF of H when E exists but also CF of(?)when E does not exist(partly or completely).For this purpose another factor(?)is added into the original model;2) improving the model so that it can tackle problems with unknown evidence.In this aspect two concepts are introduced:(relative)maximum existence risk and(relative)maximum non-existence risk.An impor- tant result is that even if some necessary evidence is unknown one can still know the tendency whether the conclusion is true.Based on the improvements a conflict resolution model for problem-level conflict is also presented