期刊文献+
共找到66篇文章
< 1 2 4 >
每页显示 20 50 100
Model update mechanism for mean-shift tracking 被引量:3
1
作者 PengNingsong YangJie LiuErqi 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第1期52-57,共6页
In order to solve the model update problem in mean-shift based tracker, a novel mechanism is proposed. Kalman filter is employed to update object model by filtering object kernel-histogram using previous model and cur... In order to solve the model update problem in mean-shift based tracker, a novel mechanism is proposed. Kalman filter is employed to update object model by filtering object kernel-histogram using previous model and current candidate. A self-tuning method is used for adaptively adjust all the parameters of the filters under the analysis of the filtering residuals. In addition, hypothesis testing servers as the criterion for determining whether to accept filtering result. Therefore, the tracker has the ability to handle occlusion so as to avoid over-update. The experimental results show that our method can not only keep up with the object appearance and scale changes but also be robust to occlusion. 展开更多
关键词 MEAN-SHIFT TRACKING model update Kalman filter hypothesis testing.
在线阅读 下载PDF
Online RGB-D person re-identification based on metric model update 被引量:5
2
作者 Hong Liu Liang Hu Liclian Ma 《CAAI Transactions on Intelligence Technology》 2017年第1期48-55,共8页
Person re-identification (re-id) on robot platform is an important application for human-robot- interaction (HRI), which aims at making the robot recognize the around persons in varying scenes. Although many effec... Person re-identification (re-id) on robot platform is an important application for human-robot- interaction (HRI), which aims at making the robot recognize the around persons in varying scenes. Although many effective methods have been proposed for surveillance re-id in recent years, re-id on robot platform is still a novel unsolved problem. Most existing methods adapt the supervised metric learning offline to improve the accuracy. However, these methods can not adapt to unknown scenes. To solve this problem, an online re-id framework is proposed. Considering that robotics can afford to use high-resolution RGB-D sensors and clear human face may be captured, face information is used to update the metric model. Firstly, the metric model is pre-trained offline using labeled data. Then during the online stage, we use face information to mine incorrect body matching pairs which are collected to update the metric model online. In addition, to make full use of both appearance and skeleton information provided by RGB-D sensors, a novel feature funnel model (FFM) is proposed. Comparison studies show our approach is more effective and adaptable to varying environments. 展开更多
关键词 Person re-identification Online metric model update Face information Skeleton information
在线阅读 下载PDF
Real-time model updating and prediction of three-dimensional timevarying consolidation settlement using machine learning
3
作者 Huaming Tian Yu Wang Danni Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第9期5954-5969,共16页
The development of digital twins for geotechnical structures necessitates the real-time updates of threedimensional(3D)virtual models(e.g.numerical finite element method(FEM)model)to accurately predict time-varying ge... The development of digital twins for geotechnical structures necessitates the real-time updates of threedimensional(3D)virtual models(e.g.numerical finite element method(FEM)model)to accurately predict time-varying geotechnical responses(e.g.consolidation settlement)in a 3D spatial domain.However,traditional 3D numerical model updating approaches are computationally prohibitive and therefore difficult to update the 3D responses in real time.To address these challenges,this study proposes a novel machine learning framework called sparse dictionary learning(T-3D-SDL)for real-time updating of time-varying 3D geotechnical responses.In T-3D-SDL,a concerned dataset(e.g.time-varying 3D settlement)is approximated as a linear superposition of dictionary atoms generated from 3D random FEM analyses.Field monitoring data are then used to identify non-trivial atoms and estimate their weights within a Bayesian framework for model updating and prediction.The proposed approach enables the real-time update of temporally varying settlements with a high 3D spatial resolution and quantified uncertainty as field monitoring data evolve.The proposed approach is illustrated using an embankment construction project.The results show that the proposed approach effectively improves settlement predictions along temporal and 3D spatial dimensions,with minimal latency(e.g.within minutes),as monitoring data appear.In addition,the proposed approach requires only a reasonably small number of 3D FEM model evaluations,avoids the use of widely adopted yet often criticized surrogate models,and effectively addresses the limitations(e.g.computational inefficiency)of existing 3D model updating approaches. 展开更多
关键词 Digital twin Three-dimensional(3D)finite element method(FEM) Time-varying 3D settlement Real-time model update Sparse dictionary learning(SDL)
在线阅读 下载PDF
A two-step variational Bayesian Monte Carlo approach for model updating under observation uncertainty
4
作者 Yanhe Tao Qintao Guo +2 位作者 Jin Zhou Jiaqian Ma Wenxing Ge 《Acta Mechanica Sinica》 2025年第5期175-189,共15页
Engineering tests can yield inaccurate data due to instrument errors,human factors,and environmental interference,introducing uncertainty in numerical model updating.This study employs the probability-box(p-box)method... Engineering tests can yield inaccurate data due to instrument errors,human factors,and environmental interference,introducing uncertainty in numerical model updating.This study employs the probability-box(p-box)method for representing observational uncertainty and develops a two-step approximate Bayesian computation(ABC)framework using time-series data.Within the ABC framework,Euclidean and Bhattacharyya distances are employed as uncertainty quantification metrics to delineate approximate likelihood functions in the initial and subsequent steps,respectively.A novel variational Bayesian Monte Carlo method is introduced to efficiently apply the ABC framework amidst observational uncertainty,resulting in rapid convergence and accurate parameter estimation with minimal iterations.The efficacy of the proposed updating strategy is validated by its application to a shear frame model excited by seismic wave and an aviation pump force sensor for thermal output analysis.The results affirm the efficiency,robustness,and practical applicability of the proposed method. 展开更多
关键词 model updating Approximate Bayesian computation Observation uncertainty Bhattacharyya distance Thermal output Variational Bayesian
原文传递
A Real-time Updated Model Predictive Control Strategy for Batch Processes Based on State Estimation
5
作者 杨国军 李秀喜 钱宇 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2014年第3期318-329,共12页
Nonlinear model predictive control(NMPC) is an appealing control technique for improving the performance of batch processes, but its implementation in industry is not always possible due to its heavy on-line computati... Nonlinear model predictive control(NMPC) is an appealing control technique for improving the performance of batch processes, but its implementation in industry is not always possible due to its heavy on-line computation. To facilitate the implementation of NMPC in batch processes, we propose a real-time updated model predictive control method based on state estimation. The method includes two strategies: a multiple model building strategy and a real-time model updated strategy. The multiple model building strategy is to produce a series of sim-plified models to reduce the on-line computational complexity of NMPC. The real-time model updated strategy is to update the simplified models to keep the accuracy of the models describing dynamic process behavior. The me-thod is validated with a typical batch reactor. Simulation studies show that the new method is efficient and robust with respect to model mismatch and changes in process parameters. 展开更多
关键词 batch process exothermic batch reactor nonlinear model predictive control state estimation real-time model update
在线阅读 下载PDF
An improved interval model updating method via adaptive Kriging models 被引量:1
6
作者 Sha WEI Yifeng CHEN +1 位作者 Hu DING Liqun CHEN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第3期497-514,共18页
Interval model updating(IMU)methods have been widely used in uncertain model updating due to their low requirements for sample data.However,the surrogate model in IMU methods mostly adopts the one-time construction me... Interval model updating(IMU)methods have been widely used in uncertain model updating due to their low requirements for sample data.However,the surrogate model in IMU methods mostly adopts the one-time construction method.This makes the accuracy of the surrogate model highly dependent on the experience of users and affects the accuracy of IMU methods.Therefore,an improved IMU method via the adaptive Kriging models is proposed.This method transforms the objective function of the IMU problem into two deterministic global optimization problems about the upper bound and the interval diameter through universal grey numbers.These optimization problems are addressed through the adaptive Kriging models and the particle swarm optimization(PSO)method to quantify the uncertain parameters,and the IMU is accomplished.During the construction of these adaptive Kriging models,the sample space is gridded according to sensitivity information.Local sampling is then performed in key subspaces based on the maximum mean square error(MMSE)criterion.The interval division coefficient and random sampling coefficient are adaptively adjusted without human interference until the model meets accuracy requirements.The effectiveness of the proposed method is demonstrated by a numerical example of a three-degree-of-freedom mass-spring system and an experimental example of a butted cylindrical shell.The results show that the updated results of the interval model are in good agreement with the experimental results. 展开更多
关键词 interval model updating(IMU) non-probabilistic uncertainty adaptive Kriging model surrogate model grey number
在线阅读 下载PDF
Quantitative Identification of Delamination Damage in Composite Structure Based on Distributed Optical Fiber Sensors and Model Updating 被引量:1
7
作者 Hao Xu Jing Wang +3 位作者 Rubin Zhu Alfred Strauss Maosen Cao Zhanjun Wu 《Structural Durability & Health Monitoring》 EI 2024年第6期785-803,共19页
Delamination is a prevalent type of damage in composite laminate structures.Its accumulation degrades structural performance and threatens the safety and integrity of aircraft.This study presents a method for the quan... Delamination is a prevalent type of damage in composite laminate structures.Its accumulation degrades structural performance and threatens the safety and integrity of aircraft.This study presents a method for the quantitative identification of delamination identification in composite materials,leveraging distributed optical fiber sensors and a model updating approach.Initially,a numerical analysis is performed to establish a parameterized finite element model of the composite plate.Then,this model subsequently generates a database of strain responses corresponding to damage of varying sizes and locations.The radial basis function neural network surrogate model is then constructed based on the numerical simulation results and strain responses captured from the distributed fiber optic sensors.Finally,a multi-island genetic algorithm is employed for global optimization to identify the size and location of the damage.The efficacy of the proposed method is validated through numerical examples and experiment studies,examining the correlations between damage location,damage size,and strain responses.The findings confirm that the model updating technique,in conjunction with distributed fiber optic sensors,can precisely identify delamination in composite structures. 展开更多
关键词 Composite structures fiber optic sensor damage identification model updating surrogate model
在线阅读 下载PDF
Finite element model updating for structural damage detection using transmissibility data
8
作者 Ahmad Izadi Akbar Esfandiari 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第1期87-101,共15页
This paper presents a new finite element model updating method for estimating structural parameters and detecting structural damage location and severity based on the structural responses(output-only data).The method ... This paper presents a new finite element model updating method for estimating structural parameters and detecting structural damage location and severity based on the structural responses(output-only data).The method uses the sensitivity relation of transmissibility data through a least-squares algorithm and appropriate normalization of the extracted equations.The proposed transmissibility-based sensitivity equation produces a more significant number of equations than the sensitivity equations based on the frequency response function(FRF),which can estimate the structural parameters with higher accuracy.The abilities of the proposed method are assessed by using numerical data of a two-story two-bay frame model and a plate structure model.In evaluating different damage cases,the number,location,and stiffness reduction of the damaged elements and the severity of the simulated damage have been accurately identified.The reliability and stability of the presented method against measurement and modeling errors are examined using error-contaminated data.The parameter estimation results prove the method’s capabilities as an accurate model updating algorithm. 展开更多
关键词 damage detection model updating output-only TRANSMISSIBILITY sensitivity equation
在线阅读 下载PDF
Finite element model updating and validating of Runyang Suspension Bridge based on SHMS 被引量:7
9
作者 王浩 李爱群 缪长青 《Journal of Southeast University(English Edition)》 EI CAS 2005年第4期474-479,共6页
Based on the finite element (FE) program ANSYS, a three-dimensional model for the Runyang Suspension Bridge (RSB) is established. The structural natural frequency, vibration mode, stress and displacement response ... Based on the finite element (FE) program ANSYS, a three-dimensional model for the Runyang Suspension Bridge (RSB) is established. The structural natural frequency, vibration mode, stress and displacement response under various load cases are given. A new method of FE model updating is presented based on the physical meaning of sensitivity and the penalty function concept. In this method, the structural model is updated by modifying the parameters of design, and validated by structural natural vibration characteristics, stress response as well as displacement response. The design parameters used for updating are bounded according to measured static response and engineering judgment. The FE model of RSB is updated and validated by the measurements coming from the structural health monitoring system (SHMS), and the FE baseline model reflecting the current state of RSB is achieved. Both the dynamic and static results show that the method is effective in updating the FE model of long span suspension bridges. The results obtained provide an important research basis for damage alarming and health monitoring of the RSB. 展开更多
关键词 suspension bridge finite element model updating model validating baseline model structural health monitoring system (SHMS)
在线阅读 下载PDF
Dynamic finite element model updating using meta-model and genetic algorithm 被引量:3
10
作者 费庆国 李爱群 缪长青 《Journal of Southeast University(English Edition)》 EI CAS 2006年第2期213-217,共5页
Current dynamic finite element model updating methods are not efficient or restricted to the problem of local optima. To circumvent these, a novel updating method which integrates the meta-model and the genetic algori... Current dynamic finite element model updating methods are not efficient or restricted to the problem of local optima. To circumvent these, a novel updating method which integrates the meta-model and the genetic algorithm is proposed. Experimental design technique is used to determine the best sampling points for the estimation of polynomial coefficients given the order and the number of independent variables. Finite element analyses are performed to generate the sampling data. Regression analysis is then used to estimate the response surface model to approximate the functional relationship between response features and design parameters on the entire design space. In the fitness evaluation of the genetic algorithm, the response surface model is used to substitute the finite element model to output features with given design parameters for the computation of fitness for the individual. Finally, the global optima that corresponds to the updated design parameter is acquired after several generations of evolution. In the application example, finite element analysis and modal testing are performed on a real chassis model. The finite element model is updated using the proposed method. After updating, root-mean-square error of modal frequencies is smaller than 2%. Furthermore, prediction ability of the updated model is validated using the testing results of the modified structure. The root-mean-square error of the prediction errors is smaller than 2%. 展开更多
关键词 finite element model model updating response surface model genetic algorithm
在线阅读 下载PDF
Double-layer model updating for steel-concrete composite beam cable-stayed bridge based on GPS 被引量:1
11
作者 刘云 钱振东 《Journal of Southeast University(English Edition)》 EI CAS 2008年第1期80-84,共5页
In order to establish the relationship between the measured dynamic response and the health status of long-span bridges, a double-layer model updating method for steel-concrete composite beam cable-stayed bridges is p... In order to establish the relationship between the measured dynamic response and the health status of long-span bridges, a double-layer model updating method for steel-concrete composite beam cable-stayed bridges is proposed. Measured frequencies are selected as the first-layer reference data, and the mass of the bridge deck, the grid density, the modulus of concrete and the ballast on the side span are modified by using a manual tuning technique. Measured global positioning system (GPS) data is selected as the second-layer reference data, and the degradation of the integral structure stiffness EI of the whole bridge is taken into account for the second-layer model updating by using the finite element iteration algorithm. The Nanpu Bridge in Shanghai is taken as a case to verify the applicability of the proposed model updating method. After the first-layer model updating, the standard deviation of modal frequencies is smaller than 7%. After the second-layer model updating, the error of the deflection of the mid-span is smaller than 10%. The integral structure stiffness of the whole bridge decreases about 20%. The research results show a good agreement between the calculated response and the measured response. 展开更多
关键词 steel-concrete composite beam GPS dynamic respond double-layer model updating
在线阅读 下载PDF
OPTIMIZATION WITH QUADRATIC CONSTRAINT IN APPLICATION OF STRUCTURE DYNAMIC MODEL UPDATING 被引量:1
12
作者 桂冰 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2005年第3期212-215,共4页
A model updating optimization algorithm under quadratic constraints is applied to structure dynamic model updating. The updating problems of structure models are turned into the optimization with a quadratic constrain... A model updating optimization algorithm under quadratic constraints is applied to structure dynamic model updating. The updating problems of structure models are turned into the optimization with a quadratic constraint. Numerical method is presented by using singular value decomposition and an example is given. Compared with the other method, the method is efficient and feasible. 展开更多
关键词 updating model quadratic constraint singular value decomposition
在线阅读 下载PDF
An Automatic Damage Detection Method Based on Adaptive Theory-Assisted Reinforcement Learning
13
作者 Chengwen Zhang Qing Chun Yijie Lin 《Engineering》 2025年第7期188-202,共15页
Current damage detection methods based on model updating and sensitivity Jacobian matrixes show a low convergence ratio and computational efficiency for online calculations.The aim of this paper is to construct a real... Current damage detection methods based on model updating and sensitivity Jacobian matrixes show a low convergence ratio and computational efficiency for online calculations.The aim of this paper is to construct a real-time automated damage detection method by developing a theory-assisted adaptive mutiagent twin delayed deep deterministic(TA2-MATD3)policy gradient algorithm.First,the theoretical framework of reinforcement-learning-driven damage detection is established.To address the disadvantages of traditional mutiagent twin delayed deep deterministic(MATD3)method,the theory-assisted mechanism and the adaptive experience playback mechanism are introduced.Moreover,a historical residential house built in 1889 was taken as an example,using its 12-month structural health monitoring data.TA2-MATD3 was compared with existing damage detection methods in terms of the convergence ratio,online computing efficiency,and damage detection accuracy.The results show that the computational efficiency of TA2-MATD3 is approximately 117–160 times that of the traditional methods.The convergence ratio of damage detection on the training set is approximately 97%,and that on the test set is in the range of 86.2%–91.9%.In addition,the main apparent damages found in the field survey were identified by TA2-MATD3.The results indicate that the proposed method can significantly improve the online computing efficiency and damage detection accuracy.This research can provide novel perspectives for the use of reinforcement learning methods to conduct damage detection in online structural health monitoring. 展开更多
关键词 Reinforcement learning Theory-assisted Damage detection Newton’s method model updating Architectural heritage
在线阅读 下载PDF
Vibration signal predictions of damaged sensors on rotor blades based on operational modal analysis and virtual sensing
14
作者 Yuhan SUN Zhiguang SONG +2 位作者 Jie LI Guochen CAI Zefeng WANG 《Chinese Journal of Aeronautics》 2025年第6期462-486,共25页
Rotor blade is one of the most significant components of helicopters. But due to its highspeed rotation characteristics, it is difficult to collect the vibration signals during the flight stage.Moreover, sensors are h... Rotor blade is one of the most significant components of helicopters. But due to its highspeed rotation characteristics, it is difficult to collect the vibration signals during the flight stage.Moreover, sensors are highly susceptible to damage resulting in the failure of the measurement.In order to make signal predictions for the damaged sensors, an operational modal analysis(OMA) together with the virtual sensing(VS) technology is proposed in this paper. This paper discusses two situations, i.e., mode shapes measured by all sensors(both normal and damaged) can be obtained using OMA, and mode shapes measured by some sensors(only including normal) can be obtained using OMA. For the second situation, it is necessary to use finite element(FE) analysis to supplement the missing mode shapes of damaged sensor. In order to improve the correlation between the FE model and the real structure, the FE mode shapes are corrected using the local correspondence(LC) principle and mode shapes measured by some sensors(only including normal).Then, based on the VS technology, the vibration signals of the damaged sensors during the flight stage can be accurately predicted using the identified mode shapes(obtained based on OMA and FE analysis) and the normal sensors signals. Given the high degrees of freedom(DOFs) in the FE mode shapes, this approach can also be used to predict vibration data at locations without sensors. The effectiveness and robustness of the proposed method is verified through finite element simulation, experiment as well as the actual flight test. The present work can be further used in the fault diagnosis and damage identification for rotor blade of helicopters. 展开更多
关键词 Composite helicopter rotor blades Operational modal analysis Virtual sensing Vibration prediction model updating Finite element method
原文传递
Dynamic parametric modeling-based model updating strategy of aeroengine casings 被引量:9
15
作者 Chengwei FEI Haotian LIU +3 位作者 Shaolin LI Huan LI Liqiang AN Cheng LU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第12期145-157,共13页
For accurate Finite Element(FE)modeling for the structural dynamics of aeroengine casings,Parametric Modeling-based Model Updating Strategy(PM-MUS)is proposed based on efficient FE parametric modeling and model updati... For accurate Finite Element(FE)modeling for the structural dynamics of aeroengine casings,Parametric Modeling-based Model Updating Strategy(PM-MUS)is proposed based on efficient FE parametric modeling and model updating techniques regarding uncorrelated/correlated mode shapes.Casings structure is parametrically modeled by simplifying initial structural FE model and equivalently simulating mechanical characteristics.Uncorrelated modes between FE model and experiment are reasonably handled by adopting an objective function to recognize correct correlated modes pairs.The parametrized FE model is updated to effectively describe structural dynamic characteristics in respect of testing data.The model updating technology is firstly validated by the detailed FE model updating of one fixed–fixed beam structure in light of correlated/uncorrelated mode shapes and measured mode data.The PM-MUS is applied to the FE parametrized model updating of an aeroengine stator system(casings)which is constructed by the proposed parametric modeling approach.As revealed in this study,(A)the updated models by the proposed updating strategy and dynamic test data is accurate,and(B)the uncorrelated modes like close modes can be effectively handled and precisely identify the FE model mode associated the corresponding experimental mode,and(C)parametric modeling can enhance the dynamic modeling updating of complex structure in the accuracy of mode matching.The efforts of this study provide an efficient dynamic model updating strategy(PM-MUS)for aeroengine casings by parametric modeling and experimental test data regarding uncorrelated modes. 展开更多
关键词 Aeroengine casings Correlated mode pair model updating Parametric modeling Structural dynamics Uncorrelated modes
原文传递
DYNAMIC FINITE ELEMENT MODEL UPDATING BASED ON GLOBAL INFORMATION OF STRUCTURES 被引量:6
16
作者 FeiQingguo ZhangLingmi GuoQintao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2005年第2期294-296,共3页
Finite element model updating method based on global information is proposed.Prior investigation upon design space of structural parameters is performed before updating usingstatistic analysis, including parameter scr... Finite element model updating method based on global information is proposed.Prior investigation upon design space of structural parameters is performed before updating usingstatistic analysis, including parameter screening using variance analysis and response surfacefitting using regression analysis. The parameter screening method selects the design parametersconsidering the result of hypothesis testing, which is a kind of global information. Meanwhile, thetraditional updating method considers local sensitivity which only gives the information at solepoint in the design space. Response surface fitting constructs a close-form multinomial whichdescribes the relationship between concerned structural feature and selected updating parameters. Itis an approximation to finite element models(FEM) and used as a substitution in the updatingiterations. The presented updating method can be applied without the restriction of linearassumption. In addition, there is no data exchange between the updating program and the finite-element analysis program in the updating iterations. This makes the method practical inengineering. An aircraft test structure, GARTEUR, is employed to verify the effectiveness of themethod. After updating, the error of modal frequencies is less than 3 percent. 展开更多
关键词 model updating Design of experiment Variance analysis Regression analysis Response surface methodology
在线阅读 下载PDF
Dynamic finite element model updating of prestressed concrete continuous box-girder bridge 被引量:6
17
作者 Lin Xiankun Zhang Lingmi +1 位作者 Guo Qintao Zhang Yufeng 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2009年第3期399-407,共9页
The dynamic finite element model (FEM) of a prestressed concrete continuous box-girder bridge, called the Tongyang Canal Bridge, is built and updated based on the results of ambient vibration testing (AVT) using a... The dynamic finite element model (FEM) of a prestressed concrete continuous box-girder bridge, called the Tongyang Canal Bridge, is built and updated based on the results of ambient vibration testing (AVT) using a real-coded accelerating genetic algorithm (RAGA). The objective functions are defined based on natural frequency and modal assurance criterion (MAC) metrics to evaluate the updated FEM. Two objective functions are defined to fully account for the relative errors and standard deviations of the natural frequencies and MAC between the AVT results and the updated FEM predictions. The dynamically updated FEM of the bridge can better represent its structural dynamics and serve as a baseline in long-term health monitoring, condition assessment and damage identification over the service life of the bridge . 展开更多
关键词 prestressed concrete continuous box-girder bridge field ambient vibration testing dynamic characteristics model updating accelerating genetic algorithm objective function
在线阅读 下载PDF
Model updating of a bridge structure using vibration test data based on GMPSO and BPNN:case study 被引量:6
18
作者 Xia Zhiyuan Li Aiqun +1 位作者 Shi Huiyuan Li Jianhui 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2021年第1期213-221,共9页
Model updating issues with high-dimensional and strong-nonlinear optimization processes are still unsolved by most optimization methods.In this study,a hybrid methodology that combines the Gaussian-white-noise-mutatio... Model updating issues with high-dimensional and strong-nonlinear optimization processes are still unsolved by most optimization methods.In this study,a hybrid methodology that combines the Gaussian-white-noise-mutation particle swarm optimization(GMPSO),back-propagation neural network(BPNN)and Latin hypercube sampling(LHS)technique is proposed.In this approach,as a meta-heuristic algorithm with the least modification to the standard PSO,GMPSO simultaneously offers convenient programming and good performance in optimization.The BPNN with LHS establishes the meta-models for FEM to accelerate efficiency during the updating process.A case study of the model updating of an actual bridge with no distribution but bounded parameters was carried out using this methodology with two different objective functions.One considers only the frequencies of the main girder and the other considers both the frequencies and vertical displacements of typical points.The updating results show that the methodology is a sound approach to solve an actual complex bridge structure and offers good agreement in the frequencies and mode shapes of the updated model and test data.Based on the shape comparison of the main girder at the finished state with different objective functions,it is emphasized that both the dynamic and static responses should be taken into consideration during the model updating process. 展开更多
关键词 model updating hybrid methodology advanced particle swarm optimization neural network case study
在线阅读 下载PDF
Finite Element Model Updating of Bridge Structures Based on Sensitivity Analysis and Optimization Algorithm 被引量:6
19
作者 HUANG Minshui ZHU Hongping 《Wuhan University Journal of Natural Sciences》 CAS 2008年第1期87-92,共6页
The dynamic characteristics of bridge structures, such as the natural frequencies, mode shapes and model damping ratio, are the basis of structural dynamic computation, seismic analysis, vibration control and structur... The dynamic characteristics of bridge structures, such as the natural frequencies, mode shapes and model damping ratio, are the basis of structural dynamic computation, seismic analysis, vibration control and structural health condition monitoring. In this paper, a three-dimensional finite-element model is established for a highway bridge over a railway on No.312 National Highway and the ambient test is carried out in site, the dynamic characteristics of the bridge are studied using the finite-element analysis and ambient vibration measurements. Comparison between the theoretical and experimental results shows that the frequency differences of the modes range between 0.44% and 8.77%. If the measurement is more reliable, the finite element model updating is necessary. Thus, a set of design variables is selected based on sensitivity analysis, then the finite element model of the bridge is updated based on optimization algorithm. The results of model updating show that the proposed updating method in this paper is more simple and effective, the updated finite element model can reflect the dynamic characteristics of the bridge better, the analytical results can provide the theoretical basis for damage identification and health condition monitoring of the bridge. 展开更多
关键词 sensitivity analysis optimization algorithm model updating bridge structure
在线阅读 下载PDF
A Composite Approach of Radar Echo Extrapolation Based on TREC Vectors in Combination with Model-Predicted Winds 被引量:18
20
作者 梁巧倩 冯业荣 +4 位作者 邓文剑 胡胜 黄燕燕 曾沁 陈子通 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2010年第5期1119-1130,共12页
Extending the lead time of precipitation nowcasts is vital to improvements in heavy rainfall warning, flood mitigation, and water resource management. Because the TREC vector (tracking radar echo by correlation) rep... Extending the lead time of precipitation nowcasts is vital to improvements in heavy rainfall warning, flood mitigation, and water resource management. Because the TREC vector (tracking radar echo by correlation) represents only the instantaneous trend of precipitation echo motion, the approach using derived echo motion vectors to extrapolate radar reflectivity as a rainfall forecast is not satisfactory if the lead time is beyond 30 minutes. For longer lead times, the effect of ambient winds on echo movement should be considered. In this paper, an extrapolation algorithm that extends forecast lead times up to 3 hours was developed to blend TREC vectors with model-predicted winds. The TREC vectors were derived from radar reflectivity patterns in 3 km height CAPPI (constant altitude plan position indicator) mosaics through a cross-correlation technique. The background steering winds were provided by predictions of the rapid update assimilation model CHAF (cycle of hourly assimilation and forecast). A similarity index was designed to determine the vertical level at which model winds were applied in the extrapolation process, which occurs via a comparison between model winds and radar vectors. Based on a summer rainfall case study, it is found that the new algorithm provides a better forecast. 展开更多
关键词 radar motion vector rapid update assimilation model extrapolation nowcast
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部