期刊文献+
共找到10,052篇文章
< 1 2 250 >
每页显示 20 50 100
A New Method for Identifying the Model Error of Adjust ment System 被引量:3
1
作者 TAO Benzao ZHANG Chaoyu 《Geo-Spatial Information Science》 2005年第3期189-192,共4页
Some theory problems affecting parameter estimation are discussed in this paper. Influence and transformation between errors of stochastic and functional models is pointed out as well. For choosing the best adjustment... Some theory problems affecting parameter estimation are discussed in this paper. Influence and transformation between errors of stochastic and functional models is pointed out as well. For choosing the best adjustment model, a formula, which is different from the literatures existing methods, for estimating and identifying the model error, is proposed. On the basis of the proposed formula, an effective approach of selecting the best model of adjustment system is given. 展开更多
关键词 adjustment model model error model error estimation model error identification
在线阅读 下载PDF
Neural network based method for compensating model error 被引量:2
2
作者 胡伍生 孙璐 《Journal of Southeast University(English Edition)》 EI CAS 2009年第3期400-403,共4页
Two traditional methods for compensating function model errors, the method of adding systematic parameters and the least-squares collection method, are introduced. A proposed method based on a BP neural network (call... Two traditional methods for compensating function model errors, the method of adding systematic parameters and the least-squares collection method, are introduced. A proposed method based on a BP neural network (called the H-BP algorithm) for compensating function model errors is put forward. The function model is assumed as y =f(x1, x2,… ,xn), and the special structure of the H-BP algorithm is determined as ( n + 1) ×p × 1, where (n + 1) is the element number of the input layer, and the elements are xl, x2,…, xn and y' ( y' is the value calculated by the function model); p is the element number of the hidden layer, and it is usually determined after many tests; 1 is the dement number of the output layer, and the element is △y = y0-y'(y0 is the known value of the sample). The calculation steps of the H-BP algorithm are introduced in detail. And then, the results of three methods for compensating function model errors from one engineering project are compared with each other. After being compensated, the accuracy of the traditional methods is about ± 19 mm, and the accuracy of the H-BP algorithm is ± 4. 3 mm. It shows that the proposed method based on a neural network is more effective than traditional methods for compensating function model errors. 展开更多
关键词 model error neural network BP algorithm compen- sating
在线阅读 下载PDF
An approach to estimating and extrapolating model error based on inverse problem methods:towards accurate numerical weather prediction 被引量:4
3
作者 胡淑娟 邱春雨 +3 位作者 张利云 黄启灿 于海鹏 丑纪范 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第8期669-677,共9页
Model error is one of the key factors restricting the accuracy of numerical weather prediction (NWP). Considering the continuous evolution of the atmosphere, the observed data (ignoring the measurement error) can ... Model error is one of the key factors restricting the accuracy of numerical weather prediction (NWP). Considering the continuous evolution of the atmosphere, the observed data (ignoring the measurement error) can be viewed as a series of solutions of an accurate model governing the actual atmosphere. Model error is represented as an unknown term in the accurate model, thus NWP can be considered as an inverse problem to uncover the unknown error term. The inverse problem models can absorb long periods of observed data to generate model error correction procedures. They thus resolve the deficiency and faultiness of the NWP schemes employing only the initial-time data. In this study we construct two inverse problem models to estimate and extrapolate the time-varying and spatial-varying model errors in both the historical and forecast periods by using recent observations and analogue phenomena of the atmosphere. Numerical experiment on Burgers' equation has illustrated the substantial forecast improvement using inverse problem algorithms. The proposed inverse problem methods of suppressing NWP errors will be useful in future high accuracy applications of NWP. 展开更多
关键词 numerical weather prediction model error past data inverse problem
原文传递
An Online Model Correction Method Based on an Inverse Problem:Part I—Model Error Estimation by Iteration 被引量:3
4
作者 XUE Haile SHEN Xueshun CHOU Jifan 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2015年第10期1329-1340,共12页
Errors inevitably exist in numerical weather prediction (NWP) due to imperfect numeric and physical parameterizations. To eliminate these errors, by considering NWP as an inverse problem, an unknown term in the pred... Errors inevitably exist in numerical weather prediction (NWP) due to imperfect numeric and physical parameterizations. To eliminate these errors, by considering NWP as an inverse problem, an unknown term in the prediction equations can be estimated inversely by using the past data, which are presumed to represent the imperfection of the NWP model (model error, denoted as ME). In this first paper of a two-part series, an iteration method for obtaining the MEs in past intervals is presented, and the results from testing its convergence in idealized experiments are reported. Moreover, two batches of iteration tests were applied in the global forecast system of the Global and Regional Assimilation and Prediction System (GRAPES-GFS) for July-August 2009 and January-February 2010. The datasets associated with the initial conditions and sea surface temperature (SST) were both based on NCEP (National Centers for Environmental Prediction) FNL (final) data. The results showed that 6th h forecast errors were reduced to 10% of their original value after a 20-step iteration. Then, off-line forecast error corrections were estimated linearly based on the 2-month mean MEs and compared with forecast errors. The estimated error corrections agreed well with the forecast errors, but the linear growth rate of the estimation was steeper than the forecast error. The advantage of this iteration method is that the MEs can provide the foundation for online correction. A larger proportion of the forecast errors can be expected to be canceled out by properly introducing the model error correction into GRAPES-GFS. 展开更多
关键词 model error past data inverse problem error estimation model correction GRAPES-GFS
在线阅读 下载PDF
Approach for wideband direction-of-arrival estimation in the presence of array model errors 被引量:3
5
作者 Chen Deli Zhang Cong Tao Huamin Lu Huanzhang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2009年第1期69-75,共7页
The presence of array imperfection and mutual coupling in sensor arrays poses several challenges for development of effective algorithms for the direction-of-arrival (DOA) estimation problem in array processing. A c... The presence of array imperfection and mutual coupling in sensor arrays poses several challenges for development of effective algorithms for the direction-of-arrival (DOA) estimation problem in array processing. A correlation domain wideband DOA estimation algorithm without array calibration is proposed, to deal with these array model errors, using the arbitrary antenna array of omnidirectional elements. By using the matrix operators that have the memory and oblivion characteristics, this algorithm can separate the incident signals effectively. Compared with other typical wideband DOA estimation algorithms based on the subspace theory, this algorithm can get robust DOA estimation with regard to position error, gain-phase error, and mutual coupling, by utilizing a relaxation technique based on signal separation. The signal separation category and the robustness of this algorithm to the array model errors are analyzed and proved. The validity and robustness of this algorithm, in the presence of array model errors, are confirmed by theoretical analysis and simulation results. 展开更多
关键词 DIRECTION-OF-ARRIVAL array model errors wideband.
在线阅读 下载PDF
Recursive weighted least squares estimation algorithm based on minimum model error principle 被引量:2
6
作者 雷晓云 张志安 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第2期545-558,共14页
Kalman filter is commonly used in data filtering and parameters estimation of nonlinear system,such as projectile's trajectory estimation and control.While there is a drawback that the prior error covariance matri... Kalman filter is commonly used in data filtering and parameters estimation of nonlinear system,such as projectile's trajectory estimation and control.While there is a drawback that the prior error covariance matrix and filter parameters are difficult to be determined,which may result in filtering divergence.As to the problem that the accuracy of state estimation for nonlinear ballistic model strongly depends on its mathematical model,we improve the weighted least squares method(WLSM)with minimum model error principle.Invariant embedding method is adopted to solve the cost function including the model error.With the knowledge of measurement data and measurement error covariance matrix,we use gradient descent algorithm to determine the weighting matrix of model error.The uncertainty and linearization error of model are recursively estimated by the proposed method,thus achieving an online filtering estimation of the observations.Simulation results indicate that the proposed recursive estimation algorithm is insensitive to initial conditions and of good robustness. 展开更多
关键词 Minimum model error Weighted least squares method State estimation Invariant embedding method Nonlinear recursive estimate
在线阅读 下载PDF
An Online Model Correction Method Based on an Inverse Problem:PartⅡ——Systematic Model Error Correction
7
作者 XUE Haile SHEN Xueshun CHOU Jifan 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2015年第11期1493-1503,共11页
An online systematic error correction is presented and examined as a technique to improve the accuracy of real-time numerical weather prediction, based on the dataset of model errors (MEs) in past intervals. Given t... An online systematic error correction is presented and examined as a technique to improve the accuracy of real-time numerical weather prediction, based on the dataset of model errors (MEs) in past intervals. Given the analyses, the ME in each interval (6 h) between two analyses can be iteratively obtained by introducing an unknown tendency term into the prediction equation, shown in Part I of this two-paper series. In this part, after analyzing the 5-year (2001-2005) GRAPES- GFS (Global Forecast System of the Global and Regional Assimilation and Prediction System) error patterns and evolution, a systematic model error correction is given based on the least-squares approach by firstly using the past MEs. To test the correction, we applied the approach in GRAPES-GFS for July 2009 and January 2010. The datasets associated with the initial condition and SST used in this study were based on NCEP (National Centers for Environmental Prediction) FNL (final) data. The results indicated that the Northern Hemispheric systematically underestimated equator-to-pole geopotential gradient and westerly wind of GRAPES-GFS were largely enhanced, and the biases of temperature and wind in the tropics were strongly reduced. Therefore, the correction results in a more skillful forecast with lower mean bias and root-mean-square error and higher anomaly correlation coefficient. 展开更多
关键词 model error past data inverse problem error estimation model correction GRAPES-GFS
在线阅读 下载PDF
Application of Backward Nonlinear Local Lyapunov Exponent Method to Assessing the Relative Impacts of Initial Condition and Model Errors on Local Backward Predictability
8
作者 Xuan LI Jie FENG +1 位作者 Ruiqiang DING Jianping LI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2021年第9期1486-1496,共11页
Initial condition and model errors both contribute to the loss of atmospheric predictability.However,it remains debatable which type of error has the larger impact on the prediction lead time of specific states.In thi... Initial condition and model errors both contribute to the loss of atmospheric predictability.However,it remains debatable which type of error has the larger impact on the prediction lead time of specific states.In this study,we perform a theoretical study to investigate the relative effects of initial condition and model errors on local prediction lead time of given states in the Lorenz model.Using the backward nonlinear local Lyapunov exponent method,the prediction lead time,also called local backward predictability limit(LBPL),of given states induced by the two types of errors can be quantitatively estimated.Results show that the structure of the Lorenz attractor leads to a layered distribution of LBPLs of states.On an individual circular orbit,the LBPLs are roughly the same,whereas they are different on different orbits.The spatial distributions of LBPLs show that the relative effects of initial condition and model errors on local backward predictability depend on the locations of given states on the dynamical trajectory and the error magnitudes.When the error magnitude is fixed,the differences between the LBPLs vary with the locations of given states.The larger differences are mainly located on the inner trajectories of regimes.When the error magnitudes are different,the dissimilarities in LBPLs are diverse for the same given state. 展开更多
关键词 Initial condition model errors error magnitude error location LBPL
在线阅读 下载PDF
The Combined Effect of Initial Error and Model Error on ENSO Prediction Uncertainty Generated by the Zebiak-Cane Model
9
作者 ZHAO Peng DUAN Wan-Suo 《Atmospheric and Oceanic Science Letters》 CSCD 2014年第5期447-452,共6页
Initial errors and model errors are the source of prediction errors. In this study, the authors compute the conditional nonlinear optimal perturbation (CNOP)-type initial errors and nonlinear forcing singular vector... Initial errors and model errors are the source of prediction errors. In this study, the authors compute the conditional nonlinear optimal perturbation (CNOP)-type initial errors and nonlinear forcing singular vector (NFSV)- type tendency errors of the Zebiak-Cane model with respect to El Nifio events and analyze their combined effect on the prediction errors for E1 Nino events. The CNOP- type initial error (NFSV-type tendency error) represents the initial errors (model errors) that have the largest effect on prediction uncertainties for E1 Nifio events under the perfect model (perfect initial conditions) scenario. How- ever, when the CNOP-type initial errors and the NFSV- type tendency errors are simultaneously considered in the model, the prediction errors caused by them are not am- plified as the authors expected. Specifically, the predic- tion errors caused by the combined mode of CNOP-type initial errors and NFSV-type tendency errors are a little larger than those caused by the NFSV-type tendency er- rors. This fact emphasizes a need to investigate the opti- mal combined mode of initial errors and tendency errors that cause the largest prediction error for E1 Nifio events. 展开更多
关键词 PREDICTABILITY initial error model error optimal perturbation
在线阅读 下载PDF
FORMING DYNAMIC EQUATIONS OF ELASTIC LINKAGE AND INVESTIGATION OF MODEL ERROR
10
作者 Zou Huijun(Shanghai Jiaotong University)Zhang Mingli(Shanghai Maritime University) 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 1995年第1期30-37,14,共17页
Dynamic equations of elastic linkage are formed by means of Kane equation and finitemethod. Eight main influential factors on the dynamic response of elastic linkage are considered inthese equations. Model error cause... Dynamic equations of elastic linkage are formed by means of Kane equation and finitemethod. Eight main influential factors on the dynamic response of elastic linkage are considered inthese equations. Model error caused by the eight factors are investigated. Some useful conclusionsabout model error are derived from theoretical analysis and the numerical calculation of twenty-sixexamples. 展开更多
关键词 KED model error
全文增补中
Non-negative least squares variance component estimation of mixed additive and multiplicative random error model
11
作者 Hao Xiao Leyang Wang 《Geodesy and Geodynamics》 2025年第5期617-623,共7页
In the variance component estimation(VCE)of geodetic data,the problem of negative VCE is likely to occur.In the ordinary additive error model,there have been related studies to solve the problem of negative variance c... In the variance component estimation(VCE)of geodetic data,the problem of negative VCE is likely to occur.In the ordinary additive error model,there have been related studies to solve the problem of negative variance components.However,there is still no related research in the mixed additive and multiplicative random error model(MAMREM).Based on the MAMREM,this paper applies the nonnegative least squares variance component estimation(NNLS-VCE)algorithm to this model.The correlation formula and iterative algorithm of NNLS-VCE for MAMREM are derived.The problem of negative variance in VCE for MAMREM is solved.This paper uses the digital simulation example and the Digital Terrain Mode(DTM)to prove the proposed algorithm's validity.The experimental results demonstrated that the proposed algorithm can effectively correct the VCE in MAMREM when there is a negative VCE. 展开更多
关键词 Mixed additive and multiplicative random error model Stochastic model Non-negative least squares variance component estimation
原文传递
A hybrid deep learning and data assimilation method for model error estimation
12
作者 Ziyi PENG Lili LEI Zhe-Min TAN 《Science China Earth Sciences》 SCIE EI CAS CSCD 2024年第12期3655-3670,共16页
Forecast errors of numerical weather prediction consist of model errors and the growth of initial condition errors,while the initial condition is often optimized based on short-term forecasts.Thus it is difficult to u... Forecast errors of numerical weather prediction consist of model errors and the growth of initial condition errors,while the initial condition is often optimized based on short-term forecasts.Thus it is difficult to untangle the initial condition error and model error,but it is essential to infer model errors not just for prediction but also for data assimilation(DA).A hybrid deep learning(DL)and DA method is proposed here,aiming to correct model errors.It uses a convolutional neural network(CNN)to extract characteristics of initial conditions and forecast errors,and then provides estimations for model errors.The CNN-based model error estimation method can consider the model error resulted from inaccurate model parameters,or simultaneously consider the model error and initial condition error.Based on the Lorenz05 model,offline and online experiments demonstrate that the CNN-based model error estimation method can effectively correct model errors resulted from inaccurate model parameters,including the forcing F,coupling coefficient c,and relative scale b.For both online and offline model error estimations,simultaneously considering model errors and initial condition errors are beneficial to infer the model errors,compared to considering model errors only.Moreover,using the observations to verify the forecasts has advantages over using the analyses,to estimate the model errors.Using observations can also achieve a faster convergence of model error estimation with online DA than using analyses. 展开更多
关键词 Data assimilation Deep learning model error
原文传递
Impact of the Sequential Bias Correction Scheme on the CMA-MESO Numerical Weather Prediction Model
13
作者 Yuxiao CHEN Liwen WANG +7 位作者 Daosheng XU Jeremy Cheuk-Hin LEUNG Yanan MA Shaojing ZHANG Jing CHEN Yi YANG Wenshou TIAN Banglin ZHANG 《Advances in Atmospheric Sciences》 2025年第8期1580-1596,共17页
Systematic bias is a type of model error that can affect the accuracy of data assimilation and forecasting that must be addressed.An online bias correction scheme called the sequential bias correction scheme(SBCS),was... Systematic bias is a type of model error that can affect the accuracy of data assimilation and forecasting that must be addressed.An online bias correction scheme called the sequential bias correction scheme(SBCS),was developed using the6 h average bias to correct the systematic bias during model integration.The primary purpose of this study is to investigate the impact of the SBCS in the high-resolution China Meteorological Administration Meso-scale(CMA-MESO)numerical weather prediction(NWP)model to reduce the systematic bias and to improve the data assimilation and forecast results through this method.The SBCS is improved upon and applied to the CMA-MESO 3-km model in this study.Four-week sequential data assimilation and forecast experiments,driven by rapid update and cycling(RUC),were conducted for the period from 2–29 May 2022.In terms of the characteristics of systematic bias,both the background and analysis show diurnal bias,and these large biases are affected by complex underlying surfaces(e.g.,oceans,coasts,and mountains).After the application of the SBCS,the results of the data assimilation show that the SBCS can reduce the systematic bias of the background and yield a neutral to slightly positive result for the analysis fields.In addition,the SBCS can reduce forecast errors and improve forecast results,especially for surface variables.The above results indicate that this scheme has good prospects for high-resolution regional NWP models. 展开更多
关键词 numerical weather prediction model error systematic bias bias correction SBCS
在线阅读 下载PDF
Geometric error measuring,modeling,and compensation for CNC machine tools:A review 被引量:14
14
作者 Zhao ZHANG Feng JIANG +3 位作者 Ming LUO Baohai WU Dinghua ZHANG Kai TANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第2期163-198,共36页
Geometric error,mainly due to imperfect geometry and dimensions of machine components,is one of the major error sources of machine tools.Considering that geometric error has significant effects on the machining qualit... Geometric error,mainly due to imperfect geometry and dimensions of machine components,is one of the major error sources of machine tools.Considering that geometric error has significant effects on the machining quality of manufactured parts,it has been a popular topic for academic and industrial research for many years.A great deal of research work has been carried out since the 1970s for solving the problem and improving the machining accuracy.Researchers have studied how to measure,detect,model,identify,reduce,and compensate the geometric errors.This paper presents a thorough review of the latest research activities and gives an overview of the state of the art in understanding changes in machine tool performance due to geometric errors.Recent advances in measuring the geometrical errors of machine tools are summarized,and different kinds of error identification methods of translational axes and rotation axes are illustrated respectively.Besides,volumetric geometric error modeling,tracing,and compensation techniques for five-axis machine tools are emphatically introduced.Finally,research challenges in order to improve the volumetric accuracy of machine tools are also highlighted. 展开更多
关键词 error compensation error identification error measurement error modeling Geometric error Machine tools
原文传递
基于Hybrid Model的浙江省太阳总辐射估算及其时空分布特征
15
作者 顾婷婷 潘娅英 张加易 《气象科学》 2025年第2期176-181,共6页
利用浙江省两个辐射站的观测资料,对地表太阳辐射模型Hybrid Model在浙江省的适用性进行评估分析。在此基础上,利用Hybrid Model重建浙江省71个站点1971—2020年的地表太阳辐射日数据集,并分析其时空变化特征。结果表明:Hybrid Model模... 利用浙江省两个辐射站的观测资料,对地表太阳辐射模型Hybrid Model在浙江省的适用性进行评估分析。在此基础上,利用Hybrid Model重建浙江省71个站点1971—2020年的地表太阳辐射日数据集,并分析其时空变化特征。结果表明:Hybrid Model模拟效果良好,和A-P模型计算结果进行对比,杭州站的平均误差、均方根误差、平均绝对百分比误差分别为2.01 MJ·m^(-2)、2.69 MJ·m^(-2)和18.02%,而洪家站的平均误差、均方根误差、平均绝对百分比误差分别为1.41 MJ·m^(-2)、1.85 MJ·m^(-2)和11.56%,误差均低于A-P模型,且Hybrid Model在各月模拟的误差波动较小。浙江省近50 a平均地表总辐射在3733~5060 MJ·m^(-2),高值区主要位于浙北平原及滨海岛屿地区。1971—2020年浙江省太阳总辐射呈明显减少的趋势,气候倾向率为-72 MJ·m^(-2)·(10 a)^(-1),并在1980s初和2000年中期发生了突变减少。 展开更多
关键词 Hybrid model 太阳总辐射 误差分析 时空分布
在线阅读 下载PDF
Automatic modeling algorithm of stochastic error for inertial sensors
16
作者 Luodi Zhao Long Zhao 《Control Theory and Technology》 EI CSCD 2024年第1期81-91,共11页
This paper proposes an automatic algorithm to determine the properties of stochastic processes and their parameters for inertial error. The proposed approach is based on a recently developed method called the generali... This paper proposes an automatic algorithm to determine the properties of stochastic processes and their parameters for inertial error. The proposed approach is based on a recently developed method called the generalized method of wavelet moments (GMWM), whose estimator was proven to be consistent and asymptotically normally distributed. This algorithm is suitable mainly (but not only) for the combination of several stochastic processes, where the model identification and parameter estimation are quite difficult for the traditional methods, such as the Allan variance and the power spectral density analysis. This algorithm further explores the complete stochastic error models and the candidate model ranking criterion to realize automatic model identification and determination. The best model is selected by making the trade-off between the model accuracy and the model complexity. The validation of this approach is verified by practical examples of model selection for MEMS-IMUs (micro-electro-mechanical system inertial measurement units) in varying dynamic conditions. 展开更多
关键词 GMWM Stochastic process Inertial sensor Sensor calibration error model Allan variance
原文传递
Virtual Reality-based Teleoperation with Robustness Against Modeling Errors 被引量:3
17
作者 蒋再男 刘宏 +1 位作者 王捷 黄剑斌 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2009年第3期325-333,共9页
This article investigates virtual reality (VR)-based teleoperation with robustness against modeling errors. VR technology is an effective way to overcome the large time delay during space robot teleoperation. However,... This article investigates virtual reality (VR)-based teleoperation with robustness against modeling errors. VR technology is an effective way to overcome the large time delay during space robot teleoperation. However, it depends highly on the accuracy of model. Model errors between the virtual and real environment exist inevitably. The existing way to deal with the problem is by means of either model matching or robot compliance control. As distinct from the existing methods, this article tries to combine m... 展开更多
关键词 space robot TELEOPERATION virtual reality model error visual recognition compliance control
原文传递
Spatial Modeling of COVID-19 Occurrence and Vaccination Rate across Counties in Ohio State from Jan. 2020 to April 2023
18
作者 Olawale Oluwafemi Oluwaseun Ibukun +3 位作者 Yaw Kwarteng Kehinde Adebowale Yahaya Danjuma Samson Mela 《Journal of Geographic Information System》 2025年第1期80-96,共17页
The study aims to investigate county-level variations of the COVID-19 disease and vaccination rate. The COVID-19 data was acquired from usafact.org, and the vaccination records were acquired from the Ohio vaccination ... The study aims to investigate county-level variations of the COVID-19 disease and vaccination rate. The COVID-19 data was acquired from usafact.org, and the vaccination records were acquired from the Ohio vaccination tracker dashboard. GIS-based exploratory analysis was conducted to select four variables (poverty, black race, population density, and vaccination) to explain COVID-19 occurrence during the study period. Consequently, spatial statistical techniques such as Moran’s I, Hot Spot Analysis, Spatial Lag Model (SLM), and Spatial Error Model (SEM) were used to explain the COVID-19 occurrence and vaccination rate across the 88 counties in Ohio. The result of the Local Moran’s I analysis reveals that the epicenters of COVID-19 and vaccination followed the same patterns. Indeed, counties like Summit, Franklin, Fairfield, Hamilton, and Medina were categorized as epicenters for both COVID-19 occurrence and vaccination rate. The SEM seems to be the best model for both COVID-19 and vaccination rates, with R2 values of 0.68 and 0.70, respectively. The GWR analysis proves to be better than Ordinary Least Squares (OLS), and the distribution of R2 in the GWR is uneven throughout the study area for both COVID-19 cases and vaccinations. Some counties have a high R2 of up to 0.70 for both COVID-19 cases and vaccinations. The outcomes of the regression analyses show that the SEM models can explain 68% - 70% of COVID-19 cases and vaccination across the entire counties within the study period. COVID-19 cases and vaccination rates exhibited significant positive associations with black race and poverty throughout the study area. 展开更多
关键词 COVID-19 Prevalence COVID-19 Vaccination OHIO Spatial Lag model Spatial error model
在线阅读 下载PDF
Accuracy allocation method for five-axis machine tools based on geometric error cost sensitivity prioritizing tool direction deviation
19
作者 Xiaojian LIU Ao JIAO +7 位作者 Yang WANG Guodong YI Xiangyu GAO Xiaochen ZHANG Yiming ZHANG Yangjian JI Shuyou ZHANG Jianrong TAN 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 2025年第7期635-651,共17页
Accuracy allocation is crucial in the accuracy design of machining tools.Current accuracy allocation methods primarily focus on positional deviation,with little consideration for tool direction deviation.To address th... Accuracy allocation is crucial in the accuracy design of machining tools.Current accuracy allocation methods primarily focus on positional deviation,with little consideration for tool direction deviation.To address this issue,we propose a geometric error cost sensitivity-based accuracy allocation method for five-axis machine tools.A geometric error model consisting of 4l error components is constructed based on homogeneous transformation matrices.Volumetric points with positional and tool direction deviations are randomly sampled to evaluate the accuracy of the machine tool.The sensitivity of each error component at these sampling points is analyzed using the Sobol method.To balance the needs of geometric precision and manufacturing cost,a geometric error cost sensitivity function is developed to estimate the required cost.By allocating error components affecting tool direction deviation first and the remaining components second,this allocation scheme ensures that both deviations meet the requirements.We also perform numerical simulation of a BC-type(B-axis and C-axis type)five-axis machine tool to validate the method.The results show that the new allocation scheme reduces the total geometric error cost by 27.8%compared to a uniform allocation scheme,and yields the same positional and tool direction machining accuracies. 展开更多
关键词 Five-axis machine tool Accuracy allocation Geometric error modeling error cost sensitivity Tool direction deviation priority
原文传递
基于Modelica-LSTM双驱动的数字孪生机床热误差补偿模型构建
20
作者 孙丽 王诗灏 +3 位作者 姜锋 关咏臻 徐家淳 刘荣玺 《制造技术与机床》 北大核心 2025年第10期205-213,共9页
针对数控机床在高速、高负载运行中因热变形导致的热误差问题,提出一种基于Modelica多领域建模与长短期记忆网络(long short-term memory,LSTM)联合驱动的热误差补偿方法。通过Modelica构建机床机械、电气、热力学多物理场耦合的高保真... 针对数控机床在高速、高负载运行中因热变形导致的热误差问题,提出一种基于Modelica多领域建模与长短期记忆网络(long short-term memory,LSTM)联合驱动的热误差补偿方法。通过Modelica构建机床机械、电气、热力学多物理场耦合的高保真数字孪生模型,结合LSTM对机理模型未覆盖的非线性动态误差进行数据驱动补偿。实验以五轴数控加工中心DMG MORI DMU 50为对象,在预热、阶梯加载及扰动工况下采集温度、振动和热误差数据,验证模型性能。结果表明,Modelica-LSTM双驱动模型相较于单一Modelica机理模型,均方根误差降低51.2%,补偿后误差波动幅度减少72%,在高温及动态工况下显著提升预测精度。该方法为高精密机床热误差补偿提供了物理与数据协同驱动的有效解决方案。 展开更多
关键词 数控机床 热误差补偿 modelICA 长短期记忆网络 多领域建模 数字孪生
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部