Developing sensorless techniques for estimating battery expansion is essential for effective mechanical state monitoring,improving the accuracy of digital twin simulation and abnormality detection.Therefore,this paper...Developing sensorless techniques for estimating battery expansion is essential for effective mechanical state monitoring,improving the accuracy of digital twin simulation and abnormality detection.Therefore,this paper presents a data-driven approach to expansion estimation using electromechanical coupled models with machine learning.The proposed method integrates reduced-order impedance models with data-driven mechanical models,coupling the electrochemical and mechanical states through the state of charge(SOC)and mechanical pressure within a state estimation framework.The coupling relationship was established through experimental insights into pressure-related impedance parameters and the nonlinear mechanical behavior with SOC and pressure.The data-driven model was interpreted by introducing a novel swelling coefficient defined by component stiffnesses to capture the nonlinear mechanical behavior across various mechanical constraints.Sensitivity analysis of the impedance model shows that updating model parameters with pressure can reduce the mean absolute error of simulated voltage by 20 mV and SOC estimation error by 2%.The results demonstrate the model's estimation capabilities,achieving a root mean square error of less than 1 kPa when the maximum expansion force is from 30 kPa to 120 kPa,outperforming calibrated stiffness models and other machine learning techniques.The model's robustness and generalizability are further supported by its effective handling of SOC estimation and pressure measurement errors.This work highlights the importance of the proposed framework in enhancing state estimation and fault diagnosis for lithium-ion batteries.展开更多
Background:Due to the widespread use of cell phone devices today,numerous re-search studies have focused on the adverse effects of electromagnetic radiation on human neuropsychological and reproductive systems.In most...Background:Due to the widespread use of cell phone devices today,numerous re-search studies have focused on the adverse effects of electromagnetic radiation on human neuropsychological and reproductive systems.In most studies,oxidative stress has been identified as the primary pathophysiological mechanism underlying the harmful effects of electromagnetic waves.This paper aims to provide a holistic review of the protective effects of melatonin against cell phone-induced electromag-netic waves on various organs.Methods:This study is a systematic review of articles chosen by searching Google Scholar,PubMed,Embase,Scopus,Web of Science,and Science Direct using the key-words‘melatonin’,‘cell phone radiation’,and‘animal model’.The search focused on articles written in English,which were reviewed and evaluated.The PRISMA process was used to review the articles chosen for the study,and the JBI checklist was used to check the quality of the reviewed articles.Results:In the final review of 11 valid quality-checked articles,the effects of me-latonin in the intervention group,the effects of electromagnetic waves in the case group,and the amount of melatonin in the chosen organ,i.e.brain,skin,eyes,testis and the kidney were thoroughly examined.The review showed that electromagnetic waves increase cellular anti-oxidative activity in different tissues such as the brain,the skin,the eyes,the testis,and the kidneys.Melatonin can considerably augment the anti-oxidative system of cells and protect tissues;these measurements were sig-nificantly increased in control groups.Electromagnetic waves can induce tissue atro-phy and cell death in various organs including the brain and the skin and this effect was highly decreased by melatonin.Conclusion:Our review confirms that melatonin effectively protects the organs of an-imal models against electromagnetic waves.In light of this conclusion and the current world-wide use of melatonin,future studies should advance to the stages of human clinical trials.We also recommend that more research in the field of melatonin physi-ology is conducted in order to protect exposed cells from dying and that melatonin should be considered as a pharmaceutical option for treating the complications result-ing from electromagnetic waves in humans.展开更多
Measurements from geomagnetic satellites continue to underpin advances in geomagnetic field models that describe Earth's internally generated magnetic field.Here,we present a new field model,MSCM,that integrates v...Measurements from geomagnetic satellites continue to underpin advances in geomagnetic field models that describe Earth's internally generated magnetic field.Here,we present a new field model,MSCM,that integrates vector and scalar data from the Swarm,China Seismo-Electromagnetic Satellite(CSES),and Macao Science Satellite-1(MSS-1)missions.The model spans from 2014.0 to 2024.5,incorporating the core,lithospheric,and magnetospheric fields,and it shows characteristics similar to other published models based on different data.For the first time,we demonstrate that it is possible to successfully construct a geomagnetic field model that incorporates CSES vector data,albeit one in which the radial and azimuthal CSES vector components are Huber downweighted.We further show that data from the MSS-1 can be integrated within an explicitly smoothed,fully time-dependent model description.Using the MSCM,we identify new behavior of the South Atlantic Anomaly,the broad region of low magnetic field intensity over the southern Atlantic.This prominent feature appears split into a western part and an eastern part,each with its own intensity minimum.Since 2015,the principal western minimum has undergone only modest intensity decreases of 290 nT and westward motion of 20 km per year,whereas the recently formed eastern minimum has shown a 2–3 times greater intensity drop of 730 nT with no apparent east-west motion.展开更多
Numerical models are crucial for quantifying the ocean-atmosphere interactions associated with the El Niño-Southern Oscillation(ENSO)phenomenon in the tropical Pacific.Current coupled models often exhibit signifi...Numerical models are crucial for quantifying the ocean-atmosphere interactions associated with the El Niño-Southern Oscillation(ENSO)phenomenon in the tropical Pacific.Current coupled models often exhibit significant biases and inter-model differences in simulating ENSO,underscoring the need for alternative modeling approaches.The Regional Ocean Modeling System(ROMS)is a sophisticated ocean model widely used for regional studies and has been coupled with various atmospheric models.However,its application in simulating ENSO processes on a basin scale in the tropical Pacific has not been explored.For the first time,this study presents the development of a basin-scale hybrid coupled model(HCM)for the tropical Pacific,integrating ROMS with a statistical atmospheric model that captures the interannual relationships between sea surface temperature(SST)and wind stress anomalies.The HCM is evaluated for its capability to simulate the annual mean,seasonal,and interannual variations of the oceanic state in the tropical Pacific.Results demonstrate that the model effectively reproduces the ENSO cycle,with a dominant oscillation period of approximately two years.The ROMS-based HCM developed here offers an efficient and robust tool for investigating climate variability in the tropical Pacific.展开更多
Ice load on underwater vehicles breaking through ice covers from underneath is a significant concern for researchers in polar exploration,and the research on this problem is still in its early stages.Both mechanical e...Ice load on underwater vehicles breaking through ice covers from underneath is a significant concern for researchers in polar exploration,and the research on this problem is still in its early stages.Both mechanical experimental measurement and numerical simulation pose research challenges.This study focuses on the ice load of a cylinder structure breaking upward through the ice sheet form underneath in the Small Ice Model Basin of China Ship Scientific Research Center(CSSRC SIMB).A high-speed camera system was employed to observe the ice sheet failure during the tests,in which,with the loading position as center,local radial cracks and circumferential cracks were generated.A load sensor was used to measure the overall ice load during this process.Meanwhile,a numerical model was developed using LS-DYNA for validation and comparison.With this model,numerical simulation was conducted under various ice thicknesses and upgoing speeds to analyze the instantaneous curves of ice load.The calculation results were statistically analyzed under different working conditions to determine the influence of the factors on the ice load of the cylinder.The study explores the measurement method about ice load of objects vertically breaking through model ice sheet and is expected to provide some fundamental insights into the safety design of underwater structures operating in ice waters.展开更多
Objective:To evaluate the value of rehabilitation nursing based on mind mapping model combined with psychological intervention for patients with nephrotic syndrome(NS).Methods:A total of 60 patients with NS who visite...Objective:To evaluate the value of rehabilitation nursing based on mind mapping model combined with psychological intervention for patients with nephrotic syndrome(NS).Methods:A total of 60 patients with NS who visited our hospital from January 2024 to December 2024 were selected as samples and randomly divided into groups.The observation group received rehabilitation nursing based on the mind mapping model combined with psychological intervention,while the control group received routine intervention.The differences in emotional scores,self-care ability scores,compliance,and complications were compared between the two groups.Results:The anxiety(SAS)and depression(SDS)scores of the observation group were lower than those of the control group,while the self-care ability scale(ESCA)score was higher than that of the control group(P<0.05).The compliance rate of the observation group was higher than that of the control group(P<0.05).The complication rate of NS in the observation group was lower than that in the control group(P<0.05).Conclusion:Rehabilitation nursing based on the mind mapping model combined with psychological intervention can enhance self-care ability,reduce negative emotions,and reduce complications in NS nursing,which is efficient and feasible.展开更多
Cardiac arrest(CA)is a critical condition in the field of cardiovascular medicine.Despite successful resuscitation,patients continue to have a high mortality rate,largely due to post CA syndrome(PCAS).However,the inju...Cardiac arrest(CA)is a critical condition in the field of cardiovascular medicine.Despite successful resuscitation,patients continue to have a high mortality rate,largely due to post CA syndrome(PCAS).However,the injury and pathophysiological mechanisms underlying PCAS remain unclear.Experimental animal models are valuable tools for exploring the etiology,pathogenesis,and potential interventions for CA and PCAS.Current CA animal models include electrical induction of ventricular fibrillation(VF),myocardial infarction,high potassium,asphyxia,and hemorrhagic shock.Although these models do not fully replicate the complexity of clinical CA,the mechanistic insights they provide remain highly relevant,including post-CA brain injury(PCABI),post-CA myocardial dysfunction(PAMD),systemic ischaemia/reperfusion injury(IRI),and the persistent precipitating pathology.Summarizing the methods of establishing CA models,the challenges encountered in the modeling process,and the mechanisms of PCAS can provide a foundation for developing standardized CA modeling protocols.展开更多
To map the rock joints in the underground rock mass,a method was proposed to semiautomatically detect the rock joints from borehole imaging logs using a deep learning algorithm.First,450 images containing rock joints ...To map the rock joints in the underground rock mass,a method was proposed to semiautomatically detect the rock joints from borehole imaging logs using a deep learning algorithm.First,450 images containing rock joints were selected from borehole ZKZ01 in the Rumei hydropower station.These images were labeled to establish ground truth which was subdivided into training,validation,and testing data.Second,the YOLO v2 model with optimal parameter settings was constructed.Third,the training and validation data were used for model training,while the test data was used to generate the precision-recall curve for prediction evaluation.Fourth,the trained model was applied to a new borehole ZKZ02 to verify the feasibility of the model.There were 12 rock joints detected from the selected images in borehole ZKZ02 and four geometric parameters for each rock joint were determined by sinusoidal curve fitting.The average precision of the trained model reached 0.87.展开更多
Neuromyelitis optica spectrum disorders are neuroinflammatory demyelinating disorders that lead to permanent visual loss and motor dysfunction.To date,no effective treatment exists as the exact causative mechanism rem...Neuromyelitis optica spectrum disorders are neuroinflammatory demyelinating disorders that lead to permanent visual loss and motor dysfunction.To date,no effective treatment exists as the exact causative mechanism remains unknown.Therefore,experimental models of neuromyelitis optica spectrum disorders are essential for exploring its pathogenesis and in screening for therapeutic targets.Since most patients with neuromyelitis optica spectrum disorders are seropositive for IgG autoantibodies against aquaporin-4,which is highly expressed on the membrane of astrocyte endfeet,most current experimental models are based on aquaporin-4-IgG that initially targets astrocytes.These experimental models have successfully simulated many pathological features of neuromyelitis optica spectrum disorders,such as aquaporin-4 loss,astrocytopathy,granulocyte and macrophage infiltration,complement activation,demyelination,and neuronal loss;however,they do not fully capture the pathological process of human neuromyelitis optica spectrum disorders.In this review,we summarize the currently known pathogenic mechanisms and the development of associated experimental models in vitro,ex vivo,and in vivo for neuromyelitis optica spectrum disorders,suggest potential pathogenic mechanisms for further investigation,and provide guidance on experimental model choices.In addition,this review summarizes the latest information on pathologies and therapies for neuromyelitis optica spectrum disorders based on experimental models of aquaporin-4-IgG-seropositive neuromyelitis optica spectrum disorders,offering further therapeutic targets and a theoretical basis for clinical trials.展开更多
The study aims to investigate county-level variations of the COVID-19 disease and vaccination rate. The COVID-19 data was acquired from usafact.org, and the vaccination records were acquired from the Ohio vaccination ...The study aims to investigate county-level variations of the COVID-19 disease and vaccination rate. The COVID-19 data was acquired from usafact.org, and the vaccination records were acquired from the Ohio vaccination tracker dashboard. GIS-based exploratory analysis was conducted to select four variables (poverty, black race, population density, and vaccination) to explain COVID-19 occurrence during the study period. Consequently, spatial statistical techniques such as Moran’s I, Hot Spot Analysis, Spatial Lag Model (SLM), and Spatial Error Model (SEM) were used to explain the COVID-19 occurrence and vaccination rate across the 88 counties in Ohio. The result of the Local Moran’s I analysis reveals that the epicenters of COVID-19 and vaccination followed the same patterns. Indeed, counties like Summit, Franklin, Fairfield, Hamilton, and Medina were categorized as epicenters for both COVID-19 occurrence and vaccination rate. The SEM seems to be the best model for both COVID-19 and vaccination rates, with R2 values of 0.68 and 0.70, respectively. The GWR analysis proves to be better than Ordinary Least Squares (OLS), and the distribution of R2 in the GWR is uneven throughout the study area for both COVID-19 cases and vaccinations. Some counties have a high R2 of up to 0.70 for both COVID-19 cases and vaccinations. The outcomes of the regression analyses show that the SEM models can explain 68% - 70% of COVID-19 cases and vaccination across the entire counties within the study period. COVID-19 cases and vaccination rates exhibited significant positive associations with black race and poverty throughout the study area.展开更多
The equivalent source(ES)method in the spherical coordinate system has been widely applied to processing,reduction,field modeling,and geophysical and geological interpretation of satellite magnetic anomaly data.Howeve...The equivalent source(ES)method in the spherical coordinate system has been widely applied to processing,reduction,field modeling,and geophysical and geological interpretation of satellite magnetic anomaly data.However,the inversion for the ES model suffers from nonuniqueness and instability,which remain unresolved.To mitigate these issues,we introduce both the minimum and flattest models into the model objective function as an alternative regularization approach in the spherical ES method.We first present the methods,then analyze the accuracy of forward calculation and test the proposed ES method in this study by using synthetic data.The experimental results from simulation data indicate that our proposed regularization effectively suppresses the Backus effect and mitigates inversion instability in the low-latitude region.Finally,we apply the proposed method to magnetic anomaly data from China Seismo-Electromagnetic Satellite-1(CSES-1)and Macao Science Satellite-1(MSS-1)magnetic measurements over Africa by constructing an ES model of the large-scale lithospheric magnetic field.Compared with existing global lithospheric magnetic field models,our ES model demonstrates good consistency at high altitudes and predicts more stable fields at low altitudes.Furthermore,we derive the reduction to the pole(RTP)magnetic anomaly fields and the apparent susceptibility contrast distribution based on the ES model.The latter correlates well with the regional tectonic framework in Africa and surroundings.展开更多
To investigate the mechanisms underlying the onset and progression of ischemic stroke,some methods have been proposed that can simultaneously monitor and create embolisms in the animal cerebral cortex.However,these me...To investigate the mechanisms underlying the onset and progression of ischemic stroke,some methods have been proposed that can simultaneously monitor and create embolisms in the animal cerebral cortex.However,these methods often require complex systems and the effect of age on cerebral embolism has not been adequately studied,although ischemic stroke is strongly age-related.In this study,we propose an optical-resolution photoacoustic microscopy-based visualized photothrombosis methodology to create and monitor ischemic stroke in mice simultaneously using a 532 nm pulsed laser.We observed the molding process in mice of different ages and presented age-dependent vascular embolism differentiation.Moreover,we integrated optical coherence tomography angiography to investigate age-associated trends in cerebrovascular variability following a stroke.Our imaging data and quantitative analyses underscore the differential cerebrovascular responses to stroke in mice of different ages,thereby highlighting the technique's potential for evaluating cerebrovascular health and unraveling age-related mechanisms involved in ischemic strokes.展开更多
In the era of AI,especially large models,the importance of open source has become increasingly prominent.First,open source allows innovation to avoid starting from scratch.Through iterative innovation,it promotes tech...In the era of AI,especially large models,the importance of open source has become increasingly prominent.First,open source allows innovation to avoid starting from scratch.Through iterative innovation,it promotes technical exchanges and learning globally.Second,resources required for large model R&D are difficult for a single institution to obtain.The evaluation of general large models also requires the participation of experts from various industries.Third,without open source collaboration,it is difficult to form a unified upper-layer software ecosystem.Therefore,open source has become an important cooperation mechanism to promote the development of AI and large models.There are two cases to illustrate how open source and international standards interact with each other.展开更多
In this study,we used an extensive sampling network established in central Romania to develop tree height and crown length models.Our analysis included more than 18,000 tree measurements from five different species.In...In this study,we used an extensive sampling network established in central Romania to develop tree height and crown length models.Our analysis included more than 18,000 tree measurements from five different species.Instead of building univariate models for each response variable,we employed a multivariate approach using seemingly unrelated mixed-effects models.These models incorporated variables related to species mixture,tree and stand size,competition,and stand structure.With the inclusion of additional variables in the multivariate seemingly unrelated mixed-effects models,the accuracy of the height prediction models improved by over 10% for all species,whereas the improvement in the crown length models was considerably smaller.Our findings indicate that trees in mixed stands tend to have shorter heights but longer crowns than those in pure stands.We also observed that trees in homogeneous stand structures have shorter crown lengths than those in heterogeneous stands.By employing a multivariate mixed-effects modelling framework,we were able to perform cross-model random-effect predictions,leading to a significant increase in accuracy when both responses were used to calibrate the model.In contrast,the improvement in accuracy was marginal when only height was used for calibration.We demonstrate how multivariate mixed-effects models can be effectively used to develop multi-response allometric models that can be easily calibrated with a limited number of observations while simultaneously achieving better-aligned projections.展开更多
The constitutive model is essential for predicting the deformation and stability of rocksoil mass.The estimation of constitutive model parameters is a necessary and important task for the reliable characterization of ...The constitutive model is essential for predicting the deformation and stability of rocksoil mass.The estimation of constitutive model parameters is a necessary and important task for the reliable characterization of mechanical behaviors.However,constitutive model parameters cannot be evaluated accurately with a limited amount of test data,resulting in uncertainty in the prediction of stress-strain curves.This paper proposes a Bayesian analysis framework to address this issue.It combines the Bayesian updating with the structural reliability and adaptive conditional sampling methods to assess the equation parameter of constitutive models.Based on the triaxial and ring shear tests on shear zone soils from the Huangtupo landslide,a statistical damage constitutive model and a critical state hypoplastic constitutive model were used to demonstrate the effectiveness of the proposed framework.Moreover,the parameter uncertainty effects of the damage constitutive model on landslide stability were investigated.Results show that reasonable assessments of the constitutive model parameter can be well realized.The variability of stress-strain curves is strongly related to the model prediction performance.The estimation uncertainty of constitutive model parameters should not be ignored for the landslide stability calculation.Our study provides a reference for uncertainty analysis and parameter assessment of the constitutive model.展开更多
The global rise in energy demand, particularly in remote and sparsely populated regions, necessitates innovative and cost-effective electrical distribution solutions. Traditional Rural Electrification (RE) methods, li...The global rise in energy demand, particularly in remote and sparsely populated regions, necessitates innovative and cost-effective electrical distribution solutions. Traditional Rural Electrification (RE) methods, like Conventional Rural Electrification (CRE), have proven economically unfeasible in such areas due to high infrastructure costs and low electricity demand. Consequently, Unconventional Rural Electrification (URE) technologies, such as Capacitor Coupled Substations (CCS), are gaining attention as viable alternatives. This study presents the design and simulation of an 80 kW CCS system, which taps power directly from a 132 kV transmission line to supply low-voltage consumers. The critical components of the CCS, the capacitors are calculated, then a MATLAB/Simulink model with the attained results is executed. Mathematical representation and state-space representation for maintaining the desired tapped voltage area also developed. The research further explores the feasibility and operational performance of this CCS configuration, aiming to address the challenges of rural electrification by offering a sustainable and scalable solution. The results show that the desired value of the tapped voltage can be achieved at any level of High Voltage (HV) with the selection of capacitors that are correctly rated. With an adequately designed control strategy, the research also shows that tapped voltage can be attained under both steady-state and dynamic loads. By leveraging CCS technology, the study demonstrates the potential for delivering reliable electricity to underserved areas, highlighting the system’s practicality and effectiveness in overcoming the limitations of conventional distribution methods.展开更多
We present an analysis of the color-dipole picture for determination of the gluon density at low-x which is obtained from the Altarelli-Martinelli equation by expansion at distinct points of expansion.The dipole cross...We present an analysis of the color-dipole picture for determination of the gluon density at low-x which is obtained from the Altarelli-Martinelli equation by expansion at distinct points of expansion.The dipole cross-sections with respect to the improved saturation model of Bartels–Golec-Biernat–Kowalski are obtained in a wide range of transverse sizes r and compared with the Golec-Biernat-Ẅu sthoff model.We find that the model gives a good description of the dipole cross-section at large r which confirms saturation and matches the perturbative QCD result at a small r due to the significant role of the running of the gluon distribution.展开更多
Highway planning requires geological surveys and stability analysis of the surrounding area.In the early stage of the survey,the modeling and stability analysis of the survey area can be carried out by using GIS softw...Highway planning requires geological surveys and stability analysis of the surrounding area.In the early stage of the survey,the modeling and stability analysis of the survey area can be carried out by using GIS software to intuitively understand the topography of the study area.The use of DEM to extract terrain factors can be used for simple stability analysis and the source data is easy to obtain,simple to operate,fast to analyze,and reliable analysis results.In this paper,taking the X104 road section in Ganxian County as an example,the ArcGIS platform is used to carry out 3D modeling visualization and stability analysis,and the stability evaluation map of the study area is obtained.展开更多
Offline policy evaluation,evaluating and selecting complex policies for decision-making by only using offline datasets is important in reinforcement learning.At present,the model-based offline policy evaluation(MBOPE)...Offline policy evaluation,evaluating and selecting complex policies for decision-making by only using offline datasets is important in reinforcement learning.At present,the model-based offline policy evaluation(MBOPE)is widely welcomed because of its easy to implement and good performance.MBOPE directly approximates the unknown value of a given policy using the Monte Carlo method given the estimated transition and reward functions of the environment.Usually,multiple models are trained,and then one of them is selected to be used.However,a challenge remains in selecting an appropriate model from those trained for further use.The authors first analyse the upper bound of the difference between the approximated value and the unknown true value.Theoretical results show that this difference is related to the trajectories generated by the given policy on the learnt model and the prediction error of the transition and reward functions at these generated data points.Based on the theoretical results,a new criterion is proposed to tell which trained model is better suited for evaluating the given policy.At last,the effectiveness of the proposed criterion is demonstrated on both benchmark and synthetic offline datasets.展开更多
This study is devoted to a novel fractional friction-damage model for quasi-brittle rock materials subjected to cyclic loadings in the framework of micromechanics.The total damage of material describing the microstruc...This study is devoted to a novel fractional friction-damage model for quasi-brittle rock materials subjected to cyclic loadings in the framework of micromechanics.The total damage of material describing the microstructural degradation is decomposed into two parts:an instantaneous part arising from monotonic loading and a fatigue-related one induced by cyclic loading,relating to the initiation and propagation of microcracks.The inelastic deformation arises directly from frictional sliding along microcracks,inherently coupled with the damage effect.A fractional plastic flow rule is introduced using stress-fractional plasticity operations and covariant transformation approach,instead of classical plastic flow function.Additionally,the progression of fatigue damage is intricately tied to subcracks and can be calculated through application of a convolution law.The number of loading cycles serves as an integration variable,establishing a connection between inelastic deformation and the evolution of fatigue damage.In order to verify the accuracy of the proposed model,comparison between analytical solutions and experimental data are carried out on three different rocks subjected to conventional triaxial compression and cyclic loading tests.The evolution of damage variables is also investigated along with the cumulative deformation and fatigue lifetime.The improvement of the fractional model is finally discussed by comparing with an existing associated fatigue model in literature.展开更多
基金Fund supported this work for Excellent Youth Scholars of China(Grant No.52222708)the National Natural Science Foundation of China(Grant No.51977007)+1 种基金Part of this work is supported by the research project“SPEED”(03XP0585)at RWTH Aachen Universityfunded by the German Federal Ministry of Education and Research(BMBF)。
文摘Developing sensorless techniques for estimating battery expansion is essential for effective mechanical state monitoring,improving the accuracy of digital twin simulation and abnormality detection.Therefore,this paper presents a data-driven approach to expansion estimation using electromechanical coupled models with machine learning.The proposed method integrates reduced-order impedance models with data-driven mechanical models,coupling the electrochemical and mechanical states through the state of charge(SOC)and mechanical pressure within a state estimation framework.The coupling relationship was established through experimental insights into pressure-related impedance parameters and the nonlinear mechanical behavior with SOC and pressure.The data-driven model was interpreted by introducing a novel swelling coefficient defined by component stiffnesses to capture the nonlinear mechanical behavior across various mechanical constraints.Sensitivity analysis of the impedance model shows that updating model parameters with pressure can reduce the mean absolute error of simulated voltage by 20 mV and SOC estimation error by 2%.The results demonstrate the model's estimation capabilities,achieving a root mean square error of less than 1 kPa when the maximum expansion force is from 30 kPa to 120 kPa,outperforming calibrated stiffness models and other machine learning techniques.The model's robustness and generalizability are further supported by its effective handling of SOC estimation and pressure measurement errors.This work highlights the importance of the proposed framework in enhancing state estimation and fault diagnosis for lithium-ion batteries.
基金Deputy for Research and Technology,Kermanshah University of Medical Sciences,Grant/Award Number:4030031。
文摘Background:Due to the widespread use of cell phone devices today,numerous re-search studies have focused on the adverse effects of electromagnetic radiation on human neuropsychological and reproductive systems.In most studies,oxidative stress has been identified as the primary pathophysiological mechanism underlying the harmful effects of electromagnetic waves.This paper aims to provide a holistic review of the protective effects of melatonin against cell phone-induced electromag-netic waves on various organs.Methods:This study is a systematic review of articles chosen by searching Google Scholar,PubMed,Embase,Scopus,Web of Science,and Science Direct using the key-words‘melatonin’,‘cell phone radiation’,and‘animal model’.The search focused on articles written in English,which were reviewed and evaluated.The PRISMA process was used to review the articles chosen for the study,and the JBI checklist was used to check the quality of the reviewed articles.Results:In the final review of 11 valid quality-checked articles,the effects of me-latonin in the intervention group,the effects of electromagnetic waves in the case group,and the amount of melatonin in the chosen organ,i.e.brain,skin,eyes,testis and the kidney were thoroughly examined.The review showed that electromagnetic waves increase cellular anti-oxidative activity in different tissues such as the brain,the skin,the eyes,the testis,and the kidneys.Melatonin can considerably augment the anti-oxidative system of cells and protect tissues;these measurements were sig-nificantly increased in control groups.Electromagnetic waves can induce tissue atro-phy and cell death in various organs including the brain and the skin and this effect was highly decreased by melatonin.Conclusion:Our review confirms that melatonin effectively protects the organs of an-imal models against electromagnetic waves.In light of this conclusion and the current world-wide use of melatonin,future studies should advance to the stages of human clinical trials.We also recommend that more research in the field of melatonin physi-ology is conducted in order to protect exposed cells from dying and that melatonin should be considered as a pharmaceutical option for treating the complications result-ing from electromagnetic waves in humans.
基金supported by the National Natural Science Foundation of China(Grant No.42274003)PWL was supported by Swarm DISC(Swarm Data,Innovation,and Science Cluster)+2 种基金funded by the European Space Agency(ESAContract No.4000109587)HFR acknowledges funding from the UK Natural Environment Research Council(Grant No.NE/V010867/1)。
文摘Measurements from geomagnetic satellites continue to underpin advances in geomagnetic field models that describe Earth's internally generated magnetic field.Here,we present a new field model,MSCM,that integrates vector and scalar data from the Swarm,China Seismo-Electromagnetic Satellite(CSES),and Macao Science Satellite-1(MSS-1)missions.The model spans from 2014.0 to 2024.5,incorporating the core,lithospheric,and magnetospheric fields,and it shows characteristics similar to other published models based on different data.For the first time,we demonstrate that it is possible to successfully construct a geomagnetic field model that incorporates CSES vector data,albeit one in which the radial and azimuthal CSES vector components are Huber downweighted.We further show that data from the MSS-1 can be integrated within an explicitly smoothed,fully time-dependent model description.Using the MSCM,we identify new behavior of the South Atlantic Anomaly,the broad region of low magnetic field intensity over the southern Atlantic.This prominent feature appears split into a western part and an eastern part,each with its own intensity minimum.Since 2015,the principal western minimum has undergone only modest intensity decreases of 290 nT and westward motion of 20 km per year,whereas the recently formed eastern minimum has shown a 2–3 times greater intensity drop of 730 nT with no apparent east-west motion.
基金Supported by the Laoshan Laboratory(No.LSKJ 202202404)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB 42000000)+1 种基金the National Natural Science Foundation of China(NSFC)(No.42030410)the Startup Foundation for Introducing Talent of NUIST,and the Jiangsu Innovation Research Group(No.JSSCTD 202346)。
文摘Numerical models are crucial for quantifying the ocean-atmosphere interactions associated with the El Niño-Southern Oscillation(ENSO)phenomenon in the tropical Pacific.Current coupled models often exhibit significant biases and inter-model differences in simulating ENSO,underscoring the need for alternative modeling approaches.The Regional Ocean Modeling System(ROMS)is a sophisticated ocean model widely used for regional studies and has been coupled with various atmospheric models.However,its application in simulating ENSO processes on a basin scale in the tropical Pacific has not been explored.For the first time,this study presents the development of a basin-scale hybrid coupled model(HCM)for the tropical Pacific,integrating ROMS with a statistical atmospheric model that captures the interannual relationships between sea surface temperature(SST)and wind stress anomalies.The HCM is evaluated for its capability to simulate the annual mean,seasonal,and interannual variations of the oceanic state in the tropical Pacific.Results demonstrate that the model effectively reproduces the ENSO cycle,with a dominant oscillation period of approximately two years.The ROMS-based HCM developed here offers an efficient and robust tool for investigating climate variability in the tropical Pacific.
文摘Ice load on underwater vehicles breaking through ice covers from underneath is a significant concern for researchers in polar exploration,and the research on this problem is still in its early stages.Both mechanical experimental measurement and numerical simulation pose research challenges.This study focuses on the ice load of a cylinder structure breaking upward through the ice sheet form underneath in the Small Ice Model Basin of China Ship Scientific Research Center(CSSRC SIMB).A high-speed camera system was employed to observe the ice sheet failure during the tests,in which,with the loading position as center,local radial cracks and circumferential cracks were generated.A load sensor was used to measure the overall ice load during this process.Meanwhile,a numerical model was developed using LS-DYNA for validation and comparison.With this model,numerical simulation was conducted under various ice thicknesses and upgoing speeds to analyze the instantaneous curves of ice load.The calculation results were statistically analyzed under different working conditions to determine the influence of the factors on the ice load of the cylinder.The study explores the measurement method about ice load of objects vertically breaking through model ice sheet and is expected to provide some fundamental insights into the safety design of underwater structures operating in ice waters.
文摘Objective:To evaluate the value of rehabilitation nursing based on mind mapping model combined with psychological intervention for patients with nephrotic syndrome(NS).Methods:A total of 60 patients with NS who visited our hospital from January 2024 to December 2024 were selected as samples and randomly divided into groups.The observation group received rehabilitation nursing based on the mind mapping model combined with psychological intervention,while the control group received routine intervention.The differences in emotional scores,self-care ability scores,compliance,and complications were compared between the two groups.Results:The anxiety(SAS)and depression(SDS)scores of the observation group were lower than those of the control group,while the self-care ability scale(ESCA)score was higher than that of the control group(P<0.05).The compliance rate of the observation group was higher than that of the control group(P<0.05).The complication rate of NS in the observation group was lower than that in the control group(P<0.05).Conclusion:Rehabilitation nursing based on the mind mapping model combined with psychological intervention can enhance self-care ability,reduce negative emotions,and reduce complications in NS nursing,which is efficient and feasible.
基金supported by the National Key Research and Development Program(2021YFC3002205)the Postgraduate Research and Innovation Program of Tianjin Municipal Education Commission(2022BKY113),China.
文摘Cardiac arrest(CA)is a critical condition in the field of cardiovascular medicine.Despite successful resuscitation,patients continue to have a high mortality rate,largely due to post CA syndrome(PCAS).However,the injury and pathophysiological mechanisms underlying PCAS remain unclear.Experimental animal models are valuable tools for exploring the etiology,pathogenesis,and potential interventions for CA and PCAS.Current CA animal models include electrical induction of ventricular fibrillation(VF),myocardial infarction,high potassium,asphyxia,and hemorrhagic shock.Although these models do not fully replicate the complexity of clinical CA,the mechanistic insights they provide remain highly relevant,including post-CA brain injury(PCABI),post-CA myocardial dysfunction(PAMD),systemic ischaemia/reperfusion injury(IRI),and the persistent precipitating pathology.Summarizing the methods of establishing CA models,the challenges encountered in the modeling process,and the mechanisms of PCAS can provide a foundation for developing standardized CA modeling protocols.
基金supported by the National Key R&D Program of China(No.2023YFC3081200)the National Natural Science Foundation of China(No.42077264)。
文摘To map the rock joints in the underground rock mass,a method was proposed to semiautomatically detect the rock joints from borehole imaging logs using a deep learning algorithm.First,450 images containing rock joints were selected from borehole ZKZ01 in the Rumei hydropower station.These images were labeled to establish ground truth which was subdivided into training,validation,and testing data.Second,the YOLO v2 model with optimal parameter settings was constructed.Third,the training and validation data were used for model training,while the test data was used to generate the precision-recall curve for prediction evaluation.Fourth,the trained model was applied to a new borehole ZKZ02 to verify the feasibility of the model.There were 12 rock joints detected from the selected images in borehole ZKZ02 and four geometric parameters for each rock joint were determined by sinusoidal curve fitting.The average precision of the trained model reached 0.87.
文摘Neuromyelitis optica spectrum disorders are neuroinflammatory demyelinating disorders that lead to permanent visual loss and motor dysfunction.To date,no effective treatment exists as the exact causative mechanism remains unknown.Therefore,experimental models of neuromyelitis optica spectrum disorders are essential for exploring its pathogenesis and in screening for therapeutic targets.Since most patients with neuromyelitis optica spectrum disorders are seropositive for IgG autoantibodies against aquaporin-4,which is highly expressed on the membrane of astrocyte endfeet,most current experimental models are based on aquaporin-4-IgG that initially targets astrocytes.These experimental models have successfully simulated many pathological features of neuromyelitis optica spectrum disorders,such as aquaporin-4 loss,astrocytopathy,granulocyte and macrophage infiltration,complement activation,demyelination,and neuronal loss;however,they do not fully capture the pathological process of human neuromyelitis optica spectrum disorders.In this review,we summarize the currently known pathogenic mechanisms and the development of associated experimental models in vitro,ex vivo,and in vivo for neuromyelitis optica spectrum disorders,suggest potential pathogenic mechanisms for further investigation,and provide guidance on experimental model choices.In addition,this review summarizes the latest information on pathologies and therapies for neuromyelitis optica spectrum disorders based on experimental models of aquaporin-4-IgG-seropositive neuromyelitis optica spectrum disorders,offering further therapeutic targets and a theoretical basis for clinical trials.
文摘The study aims to investigate county-level variations of the COVID-19 disease and vaccination rate. The COVID-19 data was acquired from usafact.org, and the vaccination records were acquired from the Ohio vaccination tracker dashboard. GIS-based exploratory analysis was conducted to select four variables (poverty, black race, population density, and vaccination) to explain COVID-19 occurrence during the study period. Consequently, spatial statistical techniques such as Moran’s I, Hot Spot Analysis, Spatial Lag Model (SLM), and Spatial Error Model (SEM) were used to explain the COVID-19 occurrence and vaccination rate across the 88 counties in Ohio. The result of the Local Moran’s I analysis reveals that the epicenters of COVID-19 and vaccination followed the same patterns. Indeed, counties like Summit, Franklin, Fairfield, Hamilton, and Medina were categorized as epicenters for both COVID-19 occurrence and vaccination rate. The SEM seems to be the best model for both COVID-19 and vaccination rates, with R2 values of 0.68 and 0.70, respectively. The GWR analysis proves to be better than Ordinary Least Squares (OLS), and the distribution of R2 in the GWR is uneven throughout the study area for both COVID-19 cases and vaccinations. Some counties have a high R2 of up to 0.70 for both COVID-19 cases and vaccinations. The outcomes of the regression analyses show that the SEM models can explain 68% - 70% of COVID-19 cases and vaccination across the entire counties within the study period. COVID-19 cases and vaccination rates exhibited significant positive associations with black race and poverty throughout the study area.
基金supported by the National Natural Science Foundation of China(Grant Nos.42250103 and 42174090)the Opening Fund of Key Laboratory of Geological Survey and Evaluation of Ministry of Education(Grant No.GLAB2023ZR02)the MOST Special Fund from the State Key Laboratory of Geological Processes and Mineral Resources(Grant No.MSFGPMR2022-4).
文摘The equivalent source(ES)method in the spherical coordinate system has been widely applied to processing,reduction,field modeling,and geophysical and geological interpretation of satellite magnetic anomaly data.However,the inversion for the ES model suffers from nonuniqueness and instability,which remain unresolved.To mitigate these issues,we introduce both the minimum and flattest models into the model objective function as an alternative regularization approach in the spherical ES method.We first present the methods,then analyze the accuracy of forward calculation and test the proposed ES method in this study by using synthetic data.The experimental results from simulation data indicate that our proposed regularization effectively suppresses the Backus effect and mitigates inversion instability in the low-latitude region.Finally,we apply the proposed method to magnetic anomaly data from China Seismo-Electromagnetic Satellite-1(CSES-1)and Macao Science Satellite-1(MSS-1)magnetic measurements over Africa by constructing an ES model of the large-scale lithospheric magnetic field.Compared with existing global lithospheric magnetic field models,our ES model demonstrates good consistency at high altitudes and predicts more stable fields at low altitudes.Furthermore,we derive the reduction to the pole(RTP)magnetic anomaly fields and the apparent susceptibility contrast distribution based on the ES model.The latter correlates well with the regional tectonic framework in Africa and surroundings.
基金supported by University of Macao,China,Nos.MYRG2022-00054-FHS and MYRG-GRG2023-00038-FHS-UMDF(to ZY)the Macao Science and Technology Development Fund,China,Nos.FDCT0048/2021/AGJ and FDCT0020/2019/AMJ and FDCT 0011/2018/A1(to ZY)Natural Science Foundation of Guangdong Province of China,No.EF017/FHS-YZ/2021/GDSTC(to ZY)。
文摘To investigate the mechanisms underlying the onset and progression of ischemic stroke,some methods have been proposed that can simultaneously monitor and create embolisms in the animal cerebral cortex.However,these methods often require complex systems and the effect of age on cerebral embolism has not been adequately studied,although ischemic stroke is strongly age-related.In this study,we propose an optical-resolution photoacoustic microscopy-based visualized photothrombosis methodology to create and monitor ischemic stroke in mice simultaneously using a 532 nm pulsed laser.We observed the molding process in mice of different ages and presented age-dependent vascular embolism differentiation.Moreover,we integrated optical coherence tomography angiography to investigate age-associated trends in cerebrovascular variability following a stroke.Our imaging data and quantitative analyses underscore the differential cerebrovascular responses to stroke in mice of different ages,thereby highlighting the technique's potential for evaluating cerebrovascular health and unraveling age-related mechanisms involved in ischemic strokes.
文摘In the era of AI,especially large models,the importance of open source has become increasingly prominent.First,open source allows innovation to avoid starting from scratch.Through iterative innovation,it promotes technical exchanges and learning globally.Second,resources required for large model R&D are difficult for a single institution to obtain.The evaluation of general large models also requires the participation of experts from various industries.Third,without open source collaboration,it is difficult to form a unified upper-layer software ecosystem.Therefore,open source has become an important cooperation mechanism to promote the development of AI and large models.There are two cases to illustrate how open source and international standards interact with each other.
基金supported by the European Union and the Romanian Government through the Competitiveness Operational Programme 2014–2020, under the project“Increasing the economic competitiveness of the forestry sector and the quality of life through knowledge transfer,technology and CDI skills”(CRESFORLIFE),ID P 40 380/105506, subsidiary contract no. 17/2020partially by the FORCLIMSOC Nucleu Programme (Contract 12N/2023)+2 种基金project PN 23090101CresPerfInst project (Contract 34PFE/December 30, 2021)“Increasing the institutional capacity and performance of INCDS ‘Marin Drǎcea’in RDI activities-CresPer”LM was financially supported by the Research Council of Finland's flagship ecosystem for Forest-Human-Machine Interplay–Building Resilience, Redefining Value Networks and Enabling Meaningful Experiences (UNITE)(decision number 357909)
文摘In this study,we used an extensive sampling network established in central Romania to develop tree height and crown length models.Our analysis included more than 18,000 tree measurements from five different species.Instead of building univariate models for each response variable,we employed a multivariate approach using seemingly unrelated mixed-effects models.These models incorporated variables related to species mixture,tree and stand size,competition,and stand structure.With the inclusion of additional variables in the multivariate seemingly unrelated mixed-effects models,the accuracy of the height prediction models improved by over 10% for all species,whereas the improvement in the crown length models was considerably smaller.Our findings indicate that trees in mixed stands tend to have shorter heights but longer crowns than those in pure stands.We also observed that trees in homogeneous stand structures have shorter crown lengths than those in heterogeneous stands.By employing a multivariate mixed-effects modelling framework,we were able to perform cross-model random-effect predictions,leading to a significant increase in accuracy when both responses were used to calibrate the model.In contrast,the improvement in accuracy was marginal when only height was used for calibration.We demonstrate how multivariate mixed-effects models can be effectively used to develop multi-response allometric models that can be easily calibrated with a limited number of observations while simultaneously achieving better-aligned projections.
基金supported by the Opening Fund of Key Laboratory of Geological Survey and Evaluation of Ministry of Education(No.GLAB 2024ZR03)the National Natural Science Foundation of China(No.42407248)+2 种基金the Guizhou Provincial Basic Research Program(Natural Science)(No.QKHJC-[2023]-YB066)the Key Laboratory of Smart Earth(No.KF2023YB04-02)the Fundamental Research Funds for the Central Universities。
文摘The constitutive model is essential for predicting the deformation and stability of rocksoil mass.The estimation of constitutive model parameters is a necessary and important task for the reliable characterization of mechanical behaviors.However,constitutive model parameters cannot be evaluated accurately with a limited amount of test data,resulting in uncertainty in the prediction of stress-strain curves.This paper proposes a Bayesian analysis framework to address this issue.It combines the Bayesian updating with the structural reliability and adaptive conditional sampling methods to assess the equation parameter of constitutive models.Based on the triaxial and ring shear tests on shear zone soils from the Huangtupo landslide,a statistical damage constitutive model and a critical state hypoplastic constitutive model were used to demonstrate the effectiveness of the proposed framework.Moreover,the parameter uncertainty effects of the damage constitutive model on landslide stability were investigated.Results show that reasonable assessments of the constitutive model parameter can be well realized.The variability of stress-strain curves is strongly related to the model prediction performance.The estimation uncertainty of constitutive model parameters should not be ignored for the landslide stability calculation.Our study provides a reference for uncertainty analysis and parameter assessment of the constitutive model.
文摘The global rise in energy demand, particularly in remote and sparsely populated regions, necessitates innovative and cost-effective electrical distribution solutions. Traditional Rural Electrification (RE) methods, like Conventional Rural Electrification (CRE), have proven economically unfeasible in such areas due to high infrastructure costs and low electricity demand. Consequently, Unconventional Rural Electrification (URE) technologies, such as Capacitor Coupled Substations (CCS), are gaining attention as viable alternatives. This study presents the design and simulation of an 80 kW CCS system, which taps power directly from a 132 kV transmission line to supply low-voltage consumers. The critical components of the CCS, the capacitors are calculated, then a MATLAB/Simulink model with the attained results is executed. Mathematical representation and state-space representation for maintaining the desired tapped voltage area also developed. The research further explores the feasibility and operational performance of this CCS configuration, aiming to address the challenges of rural electrification by offering a sustainable and scalable solution. The results show that the desired value of the tapped voltage can be achieved at any level of High Voltage (HV) with the selection of capacitors that are correctly rated. With an adequately designed control strategy, the research also shows that tapped voltage can be attained under both steady-state and dynamic loads. By leveraging CCS technology, the study demonstrates the potential for delivering reliable electricity to underserved areas, highlighting the system’s practicality and effectiveness in overcoming the limitations of conventional distribution methods.
文摘We present an analysis of the color-dipole picture for determination of the gluon density at low-x which is obtained from the Altarelli-Martinelli equation by expansion at distinct points of expansion.The dipole cross-sections with respect to the improved saturation model of Bartels–Golec-Biernat–Kowalski are obtained in a wide range of transverse sizes r and compared with the Golec-Biernat-Ẅu sthoff model.We find that the model gives a good description of the dipole cross-section at large r which confirms saturation and matches the perturbative QCD result at a small r due to the significant role of the running of the gluon distribution.
基金National Undergraduate Training Program for Innovation and Entrepreneurship(Project No.:202310407006)。
文摘Highway planning requires geological surveys and stability analysis of the surrounding area.In the early stage of the survey,the modeling and stability analysis of the survey area can be carried out by using GIS software to intuitively understand the topography of the study area.The use of DEM to extract terrain factors can be used for simple stability analysis and the source data is easy to obtain,simple to operate,fast to analyze,and reliable analysis results.In this paper,taking the X104 road section in Ganxian County as an example,the ArcGIS platform is used to carry out 3D modeling visualization and stability analysis,and the stability evaluation map of the study area is obtained.
文摘Offline policy evaluation,evaluating and selecting complex policies for decision-making by only using offline datasets is important in reinforcement learning.At present,the model-based offline policy evaluation(MBOPE)is widely welcomed because of its easy to implement and good performance.MBOPE directly approximates the unknown value of a given policy using the Monte Carlo method given the estimated transition and reward functions of the environment.Usually,multiple models are trained,and then one of them is selected to be used.However,a challenge remains in selecting an appropriate model from those trained for further use.The authors first analyse the upper bound of the difference between the approximated value and the unknown true value.Theoretical results show that this difference is related to the trajectories generated by the given policy on the learnt model and the prediction error of the transition and reward functions at these generated data points.Based on the theoretical results,a new criterion is proposed to tell which trained model is better suited for evaluating the given policy.At last,the effectiveness of the proposed criterion is demonstrated on both benchmark and synthetic offline datasets.
基金Fundamental Research Funds for the Central Universities(Grant No.B230201059)for the support.
文摘This study is devoted to a novel fractional friction-damage model for quasi-brittle rock materials subjected to cyclic loadings in the framework of micromechanics.The total damage of material describing the microstructural degradation is decomposed into two parts:an instantaneous part arising from monotonic loading and a fatigue-related one induced by cyclic loading,relating to the initiation and propagation of microcracks.The inelastic deformation arises directly from frictional sliding along microcracks,inherently coupled with the damage effect.A fractional plastic flow rule is introduced using stress-fractional plasticity operations and covariant transformation approach,instead of classical plastic flow function.Additionally,the progression of fatigue damage is intricately tied to subcracks and can be calculated through application of a convolution law.The number of loading cycles serves as an integration variable,establishing a connection between inelastic deformation and the evolution of fatigue damage.In order to verify the accuracy of the proposed model,comparison between analytical solutions and experimental data are carried out on three different rocks subjected to conventional triaxial compression and cyclic loading tests.The evolution of damage variables is also investigated along with the cumulative deformation and fatigue lifetime.The improvement of the fractional model is finally discussed by comparing with an existing associated fatigue model in literature.