A novel method to estimate DOA of coherent signals impinging on a uniform circular array( UCA) is presented in this paper. A virtual uniform linear array (VULA) is first derived by using spatial DFT technique, transfo...A novel method to estimate DOA of coherent signals impinging on a uniform circular array( UCA) is presented in this paper. A virtual uniform linear array (VULA) is first derived by using spatial DFT technique, transforming the UCA from element space to phase mode space to obtain the properties of ordinary ULA, and then the well known spatial smoothing technique is applied to the VULA so that the lost rank of covariance matrix due to signal coherence can be retrieved. This method makes it feasible to use the simple MUSIC algorithm to estimate DOA of coherent signals impinging on a UCA without heavy computation burden. Simulation results strongly verify the effectiveness of the algorithm.展开更多
[Objectives]To provide a reference for the promotion of appropriate row spacing configuration modes for cotton planting in the Bortala Mongol Autonomous Prefecture of Xinjiang.[Methods]Xinluzao 63 was employed as the ...[Objectives]To provide a reference for the promotion of appropriate row spacing configuration modes for cotton planting in the Bortala Mongol Autonomous Prefecture of Xinjiang.[Methods]Xinluzao 63 was employed as the research subject to examine the effects of three different configuration modes:three rows with one film,four rows with one film,and six rows with one film,on the growth and development of cotton,as well as on yield and the amount of residual film in the field.[Results]In comparison to the configuration modes of four rows with one film and six rows with one film,the development process in the row spacing configuration mode of three rows with one film was accelerated by 1-4 d.This configuration mode exhibited variability in several agronomic traits,particularly in plant height,the number of fruiting branches per plant,and the number of leaves per plant,with the observed trend indicating T3>T2>T1.Conversely,the height of the first fruiting branch node displayed an inverse trend.In terms of yield composition,no significant differences were observed in boll weight and yield among various configuration modes.However,T3 exhibited the highest boll weight at 5.68 g and a yield of 462.67 kg/667 m 2.Additionally,significant differences were noted in harvesting density and the number of bolls per plant.T3 demonstrated the lowest harvesting density at 1.11×104 plants/666.7 m 2,the highest number of bolls per plant at 8.63,and the highest boll opening rate at 97.48%.Furthermore,T3 also resulted in the least amount of agricultural film residue during the current season.[Conclusions]Among the three planting configuration modes examined,the low-density planting configuration mode consisting of three rows and one film demonstrated a significant advantage at the individual plant level.This approach yielded results comparable to those of the high density planting configuration mode while also reducing costs.Furthermore,low density planting positively influenced the cotton boll opening rate,leading to a decreased amount of residual film and promoting ecological health within the agricultural land.展开更多
One of the important issues in the system identification and the spectrum analysis is the frequency resolution, i.e., the capability of distinguishing between two or more closely spaced frequency components. In the mo...One of the important issues in the system identification and the spectrum analysis is the frequency resolution, i.e., the capability of distinguishing between two or more closely spaced frequency components. In the modal identification by the empirical mode decomposition (EMD) method, because of the separating capability of the method, it is still a challenge to consistently and reliably identify the parameters of structures of which modes are not well separated. A new method is introduced to generate the intrin- sic mode functions (IMFs) through the filtering algorithm based on the wavelet packet decomposition (GIFWPD). In this paper, it is demonstrated that the CIFWPD method alone has a good capability of separating close modes, even under the severe condition beyond the critical frequency ratio limit which makes it impossible to separate two closely spaced harmonics by the EMD method. However, the GIFWPD-only based method is impelled to use a very fine sampling frequency with consequent prohibitive computational costs. Therefore, in order to decrease the computational load by reducing the amount of samples and improve the effectiveness of separation by increasing the frequency ratio, the present paper uses a combination of the complex envelope displacement analysis (CEDA) and the GIFWPD method. For the validation, two examples from the previous works are taken to show the results obtained by the GIFWPD-only based method and by combining the CEDA with the GIFWPD method.展开更多
An adaptive sliding mode control (ASMC) law is proposed in decentralized scheme for trajectory tracking control of a new concept space robot. Each joint of the system is a free ball joint capable of rotating with th...An adaptive sliding mode control (ASMC) law is proposed in decentralized scheme for trajectory tracking control of a new concept space robot. Each joint of the system is a free ball joint capable of rotating with three degrees of freedom (DOF). A cluster of control moment gyroscopes (CMGs) is mounted on each link and the base to actuate the system. The modified Rodrigues parameters (MRPs) are employed to describe the angular displacements, and the equations of motion are derived using Kane's equations. The controller for each link or the base is designed sep- arately in decentralized scheme. The unknown disturbances, inertia parameter uncertainties and nonlinear uncertainties are classified as a "lumped" matched uncertainty with unknown upper bound, and a continuous sliding mode control (SMC) law is proposed, in which the control gain is tuned by the improved adaptation laws for the upper bound on norm of the uncertainty. A gen- eral amplification function is designed and incorporated in the adaptation laws to reduce the control error without conspicuously increasing the magnitude of the control input. Uniformly ultimate boundedness of the closed loop system is proved by Lyapunov's method. Simulation results based on a three-link system verify the effectiveness of the proposed controller.展开更多
A new quantitative concept is introduced in this paper, which may be used to facilitate the measurement of the controllability of a subspace similar to subspace controllability degree. Then the concrete form of the su...A new quantitative concept is introduced in this paper, which may be used to facilitate the measurement of the controllability of a subspace similar to subspace controllability degree. Then the concrete form of the subspace controllability degree of a flexible structure is derived, and the errors of subspace controllability degree and dynamical response caused by the substitution of a repeated mode subspace for a closely spaced mode subspace are discussed. All the results show that this substitution is rational under some conditions.展开更多
A fault tolerant control methodology based adaptive sliding mode(ASM) backstepping is proposed for near space vehicle(NSV) attitude control system under engine faults. The proposed scheme combined adaptive backsteppin...A fault tolerant control methodology based adaptive sliding mode(ASM) backstepping is proposed for near space vehicle(NSV) attitude control system under engine faults. The proposed scheme combined adaptive backstepping with the sliding mode control strategy could guarantee the system’s stability and track desired signals under external disturbances and engine faults. Firstly, attitude mode description and the engine faulty model are given. Secondly, a nominal control law is designed.Thirdly, a sliding mode observer is given later in order to estimate both the information of engine faults and external disturbances. An adaptive sliding mode technology based on the previous nominal control law is developed via updating faulty parameters. Finally,analyze the system’s fault-tolerant performance and reliability through experiment simulation, which verifies the proposed design of fault-tolerant control can tolerate engine faults, as well as the strong robustness for external disturbance.展开更多
The problem of spacecraft attitude regulation based on the reaction of arm motion has attracted extensive attentions from both engineering and academic fields.Most of the solutions of the manipulator’s motion trackin...The problem of spacecraft attitude regulation based on the reaction of arm motion has attracted extensive attentions from both engineering and academic fields.Most of the solutions of the manipulator’s motion tracking problem just achieve asymptotical stabilization performance,so that these controllers cannot realize precise attitude regulation because of the existence of non-holonomic constraints.Thus,sliding mode control algorithms are adopted to stabilize the tracking error with zero transient process.Due to the switching effects of the variable structure controller,once the tracking error reaches the designed hyper-plane,it will be restricted to this plane permanently even with the existence of external disturbances.Thus,precise attitude regulation can be achieved.Furthermore,taking the non-zero initial tracking errors and chattering phenomenon into consideration,saturation functions are used to replace sign functions to smooth the control torques.The relations between the upper bounds of tracking errors and the controller parameters are derived to reveal physical characteristic of the controller.Mathematical models of free-floating space manipulator are established and simulations are conducted in the end.The results show that the spacecraft’s attitude can be regulated to the position as desired by using the proposed algorithm,the steady state error is 0.000 2 rad.In addition,the joint tracking trajectory is smooth,the joint tracking errors converges to zero quickly with a satisfactory continuous joint control input.The proposed research provides a feasible solution for spacecraft attitude regulation by using arm motion,and improves the precision of the spacecraft attitude regulation.展开更多
This paper studies the tracking control problem of a free-floating space robot in a task space. Considering the model uncertainties and external disturbance, a robust sliding mode controller is proposed using the Lyap...This paper studies the tracking control problem of a free-floating space robot in a task space. Considering the model uncertainties and external disturbance, a robust sliding mode controller is proposed using the Lyapunov direct method and dissipative theory. To eliminate the chattering phenomenon, an radial basis function (RBF) neural network is applied to replace the discontinuous part of the control signal. A novel on-line learning method of the weights and parameters of the RBF neural network established using Lyapunov function assures the stability of the system. It is proved that the proposed controller can guarantee that the L2 gain from disturbance to tracking error is lower than the given index y. Simulation results show that the control method is valid.展开更多
Much attention has been focused on the use of scalar modes for space division multiplexing (SDM). Alternative vector mode bases offer another solution set for SDM, expanding the available trade-offs in system perfor...Much attention has been focused on the use of scalar modes for space division multiplexing (SDM). Alternative vector mode bases offer another solution set for SDM, expanding the available trade-offs in system performance and complexity. We present two types of ring core fiber conceived and designed to explore SDM with fibers exhibiting low interactions between supported modes. We review demonstrations of fiber data transmis- sion tbr two separate vector mode bases: one for orbital angular momentum (OAM) modes and one for linearly polarized vector (LPV) modes. The OAM mode demon- strations include short transmissions using commercially available transceivers, as well as kilometer length transmission at extended data rates. The LPV demonstra- tions span kilometer length transmissions at high data rate with coherent detection, as well as a radio over fiber experiment with direct detection of narrowband signals.展开更多
文摘A novel method to estimate DOA of coherent signals impinging on a uniform circular array( UCA) is presented in this paper. A virtual uniform linear array (VULA) is first derived by using spatial DFT technique, transforming the UCA from element space to phase mode space to obtain the properties of ordinary ULA, and then the well known spatial smoothing technique is applied to the VULA so that the lost rank of covariance matrix due to signal coherence can be retrieved. This method makes it feasible to use the simple MUSIC algorithm to estimate DOA of coherent signals impinging on a UCA without heavy computation burden. Simulation results strongly verify the effectiveness of the algorithm.
基金Supported by China Agriculture(Cotton)Research System(CARS-15-46)Intellectual Aid Xinjiang Innovation and Expansion Talent Program of Xinjiang Uygur Autonomous Region(2024500207).
文摘[Objectives]To provide a reference for the promotion of appropriate row spacing configuration modes for cotton planting in the Bortala Mongol Autonomous Prefecture of Xinjiang.[Methods]Xinluzao 63 was employed as the research subject to examine the effects of three different configuration modes:three rows with one film,four rows with one film,and six rows with one film,on the growth and development of cotton,as well as on yield and the amount of residual film in the field.[Results]In comparison to the configuration modes of four rows with one film and six rows with one film,the development process in the row spacing configuration mode of three rows with one film was accelerated by 1-4 d.This configuration mode exhibited variability in several agronomic traits,particularly in plant height,the number of fruiting branches per plant,and the number of leaves per plant,with the observed trend indicating T3>T2>T1.Conversely,the height of the first fruiting branch node displayed an inverse trend.In terms of yield composition,no significant differences were observed in boll weight and yield among various configuration modes.However,T3 exhibited the highest boll weight at 5.68 g and a yield of 462.67 kg/667 m 2.Additionally,significant differences were noted in harvesting density and the number of bolls per plant.T3 demonstrated the lowest harvesting density at 1.11×104 plants/666.7 m 2,the highest number of bolls per plant at 8.63,and the highest boll opening rate at 97.48%.Furthermore,T3 also resulted in the least amount of agricultural film residue during the current season.[Conclusions]Among the three planting configuration modes examined,the low-density planting configuration mode consisting of three rows and one film demonstrated a significant advantage at the individual plant level.This approach yielded results comparable to those of the high density planting configuration mode while also reducing costs.Furthermore,low density planting positively influenced the cotton boll opening rate,leading to a decreased amount of residual film and promoting ecological health within the agricultural land.
基金supported by the State Key Program of National Natural Science of China (No. 11232009)the Shanghai Leading Academic Discipline Project (No. S30106)
文摘One of the important issues in the system identification and the spectrum analysis is the frequency resolution, i.e., the capability of distinguishing between two or more closely spaced frequency components. In the modal identification by the empirical mode decomposition (EMD) method, because of the separating capability of the method, it is still a challenge to consistently and reliably identify the parameters of structures of which modes are not well separated. A new method is introduced to generate the intrin- sic mode functions (IMFs) through the filtering algorithm based on the wavelet packet decomposition (GIFWPD). In this paper, it is demonstrated that the CIFWPD method alone has a good capability of separating close modes, even under the severe condition beyond the critical frequency ratio limit which makes it impossible to separate two closely spaced harmonics by the EMD method. However, the GIFWPD-only based method is impelled to use a very fine sampling frequency with consequent prohibitive computational costs. Therefore, in order to decrease the computational load by reducing the amount of samples and improve the effectiveness of separation by increasing the frequency ratio, the present paper uses a combination of the complex envelope displacement analysis (CEDA) and the GIFWPD method. For the validation, two examples from the previous works are taken to show the results obtained by the GIFWPD-only based method and by combining the CEDA with the GIFWPD method.
基金supported by the National Natural Science Foundation of China(No.11272027)
文摘An adaptive sliding mode control (ASMC) law is proposed in decentralized scheme for trajectory tracking control of a new concept space robot. Each joint of the system is a free ball joint capable of rotating with three degrees of freedom (DOF). A cluster of control moment gyroscopes (CMGs) is mounted on each link and the base to actuate the system. The modified Rodrigues parameters (MRPs) are employed to describe the angular displacements, and the equations of motion are derived using Kane's equations. The controller for each link or the base is designed sep- arately in decentralized scheme. The unknown disturbances, inertia parameter uncertainties and nonlinear uncertainties are classified as a "lumped" matched uncertainty with unknown upper bound, and a continuous sliding mode control (SMC) law is proposed, in which the control gain is tuned by the improved adaptation laws for the upper bound on norm of the uncertainty. A gen- eral amplification function is designed and incorporated in the adaptation laws to reduce the control error without conspicuously increasing the magnitude of the control input. Uniformly ultimate boundedness of the closed loop system is proved by Lyapunov's method. Simulation results based on a three-link system verify the effectiveness of the proposed controller.
基金The project supported by the National Natural Science Foundation of Chinathe Doctoral Research Foundation of Chinese Ministry of Education.
文摘A new quantitative concept is introduced in this paper, which may be used to facilitate the measurement of the controllability of a subspace similar to subspace controllability degree. Then the concrete form of the subspace controllability degree of a flexible structure is derived, and the errors of subspace controllability degree and dynamical response caused by the substitution of a repeated mode subspace for a closely spaced mode subspace are discussed. All the results show that this substitution is rational under some conditions.
基金supported by the National Natural Science Foundation of China(6140321061601228+3 种基金61603191)the Natural Science Foundation of Jiangsu(BK20161021)the Nanjing University of Posts and Telecommunications Science Foundation(NY214173)the Open Program of Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing(3DL201607)
文摘A fault tolerant control methodology based adaptive sliding mode(ASM) backstepping is proposed for near space vehicle(NSV) attitude control system under engine faults. The proposed scheme combined adaptive backstepping with the sliding mode control strategy could guarantee the system’s stability and track desired signals under external disturbances and engine faults. Firstly, attitude mode description and the engine faulty model are given. Secondly, a nominal control law is designed.Thirdly, a sliding mode observer is given later in order to estimate both the information of engine faults and external disturbances. An adaptive sliding mode technology based on the previous nominal control law is developed via updating faulty parameters. Finally,analyze the system’s fault-tolerant performance and reliability through experiment simulation, which verifies the proposed design of fault-tolerant control can tolerate engine faults, as well as the strong robustness for external disturbance.
基金supported by National Natural Science Foundation of China(Grant No.61175098)
文摘The problem of spacecraft attitude regulation based on the reaction of arm motion has attracted extensive attentions from both engineering and academic fields.Most of the solutions of the manipulator’s motion tracking problem just achieve asymptotical stabilization performance,so that these controllers cannot realize precise attitude regulation because of the existence of non-holonomic constraints.Thus,sliding mode control algorithms are adopted to stabilize the tracking error with zero transient process.Due to the switching effects of the variable structure controller,once the tracking error reaches the designed hyper-plane,it will be restricted to this plane permanently even with the existence of external disturbances.Thus,precise attitude regulation can be achieved.Furthermore,taking the non-zero initial tracking errors and chattering phenomenon into consideration,saturation functions are used to replace sign functions to smooth the control torques.The relations between the upper bounds of tracking errors and the controller parameters are derived to reveal physical characteristic of the controller.Mathematical models of free-floating space manipulator are established and simulations are conducted in the end.The results show that the spacecraft’s attitude can be regulated to the position as desired by using the proposed algorithm,the steady state error is 0.000 2 rad.In addition,the joint tracking trajectory is smooth,the joint tracking errors converges to zero quickly with a satisfactory continuous joint control input.The proposed research provides a feasible solution for spacecraft attitude regulation by using arm motion,and improves the precision of the spacecraft attitude regulation.
基金the National High-Tech Research & Development Program, China
文摘This paper studies the tracking control problem of a free-floating space robot in a task space. Considering the model uncertainties and external disturbance, a robust sliding mode controller is proposed using the Lyapunov direct method and dissipative theory. To eliminate the chattering phenomenon, an radial basis function (RBF) neural network is applied to replace the discontinuous part of the control signal. A novel on-line learning method of the weights and parameters of the RBF neural network established using Lyapunov function assures the stability of the system. It is proved that the proposed controller can guarantee that the L2 gain from disturbance to tracking error is lower than the given index y. Simulation results show that the control method is valid.
文摘Much attention has been focused on the use of scalar modes for space division multiplexing (SDM). Alternative vector mode bases offer another solution set for SDM, expanding the available trade-offs in system performance and complexity. We present two types of ring core fiber conceived and designed to explore SDM with fibers exhibiting low interactions between supported modes. We review demonstrations of fiber data transmis- sion tbr two separate vector mode bases: one for orbital angular momentum (OAM) modes and one for linearly polarized vector (LPV) modes. The OAM mode demon- strations include short transmissions using commercially available transceivers, as well as kilometer length transmission at extended data rates. The LPV demonstra- tions span kilometer length transmissions at high data rate with coherent detection, as well as a radio over fiber experiment with direct detection of narrowband signals.