期刊文献+
共找到311篇文章
< 1 2 16 >
每页显示 20 50 100
Modeling and analysis of maneuver laws based on higher order multi-resolution dynamic mode decomposition for hypersonic glide vehicles
1
作者 Zichu Liu Yudong Hu +2 位作者 Changsheng Gao Wuxing Jing Xudong Ji 《Defence Technology(防务技术)》 2025年第6期34-47,共14页
The precise characterization of hypersonic glide vehicle(HGV) maneuver laws in complex flight scenarios still faces challenges. Non-stationary changes in flight state due to abrupt changes in maneuver modes place high... The precise characterization of hypersonic glide vehicle(HGV) maneuver laws in complex flight scenarios still faces challenges. Non-stationary changes in flight state due to abrupt changes in maneuver modes place high demands on the accuracy of modeling methods. To address this issue, a novel maneuver laws modeling and analysis method based on higher order multi-resolution dynamic mode decomposition(HMDMD) is proposed in this work. A joint time-space-frequency decomposition of the vehicle's state sequence in the complex flight scenario is achieved with the higher order Koopman assumption and standard multi-resolution dynamic mode decomposition, and an approximate dynamic model is established. The maneuver laws can be reconstructed and analyzed with extracted multi-scale spatiotemporal modes with clear physical meaning. Based on the dynamic model of HGV, two flight scenarios are established with constant angle of attack and complex maneuver laws, respectively. Simulation results demonstrate that the maneuver laws obtained using the HMDMD method are highly consistent with those derived from the real dynamic model, the modeling accuracy is better than other common modeling methods, and the method has strong interpretability. 展开更多
关键词 Hypersonic glide vehicle Dynamic mode decomposition Higher order koopman assumption Manoeuvre law modeling INTERPRETABILITY
在线阅读 下载PDF
Random noise attenuation by f–x spatial projection-based complex empirical mode decomposition predictive filtering 被引量:7
2
作者 马彦彦 李国发 +2 位作者 王钧 周辉 张保江 《Applied Geophysics》 SCIE CSCD 2015年第1期47-54,121,共9页
The frequency–space(f–x) empirical mode decomposition(EMD) denoising method has two limitations when applied to nonstationary seismic data. First, subtracting the first intrinsic mode function(IMF) results in ... The frequency–space(f–x) empirical mode decomposition(EMD) denoising method has two limitations when applied to nonstationary seismic data. First, subtracting the first intrinsic mode function(IMF) results in signal damage and limited denoising. Second, decomposing the real and imaginary parts of complex data may lead to inconsistent decomposition numbers. Thus, we propose a new method named f–x spatial projection-based complex empirical mode decomposition(CEMD) prediction filtering. The proposed approach directly decomposes complex seismic data into a series of complex IMFs(CIMFs) using the spatial projection-based CEMD algorithm and then applies f–x predictive filtering to the stationary CIMFs to improve the signal-to-noise ratio. Synthetic and real data examples were used to demonstrate the performance of the new method in random noise attenuation and seismic signal preservation. 展开更多
关键词 Complex empirical mode decomposition complex intrinsic mode functions f–x predictive filtering random noise attenuation
在线阅读 下载PDF
FAST IMPLEMENTATION OF ORTHOGONAL EMPIRICAL MODE DECOMPOSITION AND ITS APPLIGA-TION INTO HARMONIC DETECTION 被引量:2
3
作者 QIN Yi QIN Shuren MAO Yongfang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2008年第2期93-98,共6页
Since the empirical mode decomposition (EMD) lacks strict orthogonality, the method of orthogonal empirical mode decomposition (OEMD) is innovationally proposed. The primary thought of this method is to obtain the... Since the empirical mode decomposition (EMD) lacks strict orthogonality, the method of orthogonal empirical mode decomposition (OEMD) is innovationally proposed. The primary thought of this method is to obtain the intrinsic mode function (IMF) and the residual function by auto-adaptive band-pass filtering. OEMD is proved to preserve strict orthogonality and completeness theoretically, and the orthogonal basis function of OEMD is generated, then an algorithm to implement OEMD fast, IMF binary searching algorithm is built based on the point that the analytical band-pass filtering preserves perfect band-pass feature in the frequency domain. The application into harmonic detection shows that OEMD successfully conquers mode aliasing, avoids the occurrence of false mode, and is featured by fast computing speed. Furthermore, it can achieve harmonic detection accurately combined with the least square method. 展开更多
关键词 Empirical mode decomposition Orthogonal empirical mode decomposition Analytic band-pass filtering Binary searching Harmonic detection
在线阅读 下载PDF
Improved random noise attenuation using f-x empirical mode decomposition and local similarity 被引量:6
4
作者 甘叔玮 王守东 +3 位作者 陈阳康 陈江龙 钟巍 张成林 《Applied Geophysics》 SCIE CSCD 2016年第1期127-134,220,共9页
Conventional f-x empirical mode decomposition(EMD) is an effective random noise attenuation method for use with seismic profiles mainly containing horizontal events.However,when a seismic event is not horizontal,the... Conventional f-x empirical mode decomposition(EMD) is an effective random noise attenuation method for use with seismic profiles mainly containing horizontal events.However,when a seismic event is not horizontal,the use of f-x EMD is harmful to most useful signals.Based on the framework of f-x EMD,this study proposes an improved denoising approach that retrieves lost useful signals by detecting effective signal points in a noise section using local similarity and then designing a weighting operator for retrieving signals.Compared with conventional f-x EMD,f-x predictive filtering,and f-x empirical mode decomposition predictive filtering,the new approach can preserve more useful signals and obtain a relatively cleaner denoised image.Synthetic and field data examples are shown as test performances of the proposed approach,thereby verifying the effectiveness of this method. 展开更多
关键词 Random noise attenuation f-x empirical mode decomposition local similarity dipping event
在线阅读 下载PDF
Source Separation of Diesel Engine Vibration Based on the Empirical Mode Decomposition and Independent Component Analysis 被引量:21
5
作者 DU Xianfeng LI Zhijun +3 位作者 BI Fengrong ZHANG Junhong WANG Xia SHAO Kang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2012年第3期557-563,共7页
Vibration signals from diesel engine contain many different components mainly caused by combustion and mechanism operations,several blind source separation techniques are available for decomposing the signal into its ... Vibration signals from diesel engine contain many different components mainly caused by combustion and mechanism operations,several blind source separation techniques are available for decomposing the signal into its components in the case of multichannel measurements,such as independent component analysis(ICA).However,the source separation of vibration signal from single-channel is impossible.In order to study the source separation from single-channel signal for the purpose of source extraction,the combination method of empirical mode decomposition(EMD) and ICA is proposed in diesel engine signal processing.The performance of the described methods of EMD-wavelet and EMD-ICA in vibration signal application is compared,and the results show that EMD-ICA method outperforms the other,and overcomes the drawback of ICA in the case of single-channel measurement.The independent source signal components can be separated and identified effectively from one-channel measurement by EMD-ICA.Hence,EMD-ICA improves the extraction and identification abilities of source signals from diesel engine vibration measurements. 展开更多
关键词 empirical mode decomposition independent component analysis source separation single-channel signal
在线阅读 下载PDF
A transition prediction method for flow over airfoils based on high-order dynamic mode decomposition 被引量:11
6
作者 Mengmeng WU Zhonghua HAN +3 位作者 Han NIE Wenping SONG Soledad Le CLAINCHE Esteban FERRER 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2019年第11期2408-2421,共14页
This article presents a novel approach for predicting transition locations over airfoils,which are used to activate turbulence model in a Reynolds-averaged Navier-Stokes flow solver.This approach combines Dynamic Mode... This article presents a novel approach for predicting transition locations over airfoils,which are used to activate turbulence model in a Reynolds-averaged Navier-Stokes flow solver.This approach combines Dynamic Mode Decomposition(DMD)with e^Ncriterion.The core idea is to use a spatial DMD analysis to extract the modes of unstable perturbations from a steady flowfield and substitute the local Linear Stability Theory(LST)analysis to quantify the spatial growth of Tollmien–Schlichting(TS)waves.Transition is assumed to take place at the stream-wise location where the most amplified mode’s N-factor reaches a prescribed threshold and a turbulence model is activated thereafter.To improve robustness,the high-order version of DMD technique(known as HODMD)is employed.A theoretical derivation is conducted to interpret how a spatial highorder DMD analysis can extract the growth rate of the unsteady perturbations.The new method is validated by transition predictions of flows over a low-speed Natural-Laminar-Flow(NLF)airfoil NLF0416 at various angles of attack and a transonic NLF airfoil NPU-LSC-72613.The transition locations predicted by our HODMD/e^Nmethod agree well with experimental data and compare favorably to those obtained by some existing methods■.It is shown that the proposed method is able to predict transition locations for flows over different types of airfoils and offers the potential for application to 3D wings as well as more complex configurations. 展开更多
关键词 AIRFOIL Dynamic mode decomposition(DMD) e^N criterion Navier-Stokes equations Transition prediction
原文传递
Improvement of the Mirror Extending in Empirical Mode Decomposition Method and the Technology for Eliminating Frequency Mixing 被引量:32
7
作者 赵进平 《High Technology Letters》 EI CAS 2002年第3期40-47,共8页
The mirror extending approach proposed by Zhao and Huang in EMD method is improved in this paper. Mirror extending manner of data is kept unchanged, but the approach for determining envelopes is changed. When the end ... The mirror extending approach proposed by Zhao and Huang in EMD method is improved in this paper. Mirror extending manner of data is kept unchanged, but the approach for determining envelopes is changed. When the end of data is obviously not extremum, the envelope is determined by the first inner extremum and the image value in the mirror, ignoring the value on the end. This improvement eliminates the frequency compression near the end and decreases the error. Meanwhile, tridiagonal equations are used and the calculation speed is much increased. The temporal process curve is more important in reflecting the real physical process and comparable with other phenomena. Frequency mixing in IMFs makes it impossible. A high frequency reconstruction (HFR) approach is proposed to eliminate common frequency mixing and reconstruct an IMF with all high frequency portions. By this approach, the IMFs without frequency mixing are obtained to express significative processes. The high frequency information restored in high frequency IMF can be extracted by general spectrum method. After obtaining IMFs by EMD method, some of the theoretical and technological issues still exist when using the IMFs. The consistency of IMFs with real physical process is discussed in detail. By virtue of the approach proposed in this paper, the EMD method can be widely used in various fields. 展开更多
关键词 empirical mode decomposition mirror extending intrinsic mode function high frequency reconstruction frequency mixing
在线阅读 下载PDF
Regional features of the temperature trend in China based on Empirical Mode Decomposition 被引量:8
8
作者 SUN Xian LIN Zhenshan +1 位作者 CHENG Xiaoxia JIANG Chuangye 《Journal of Geographical Sciences》 SCIE CSCD 2008年第2期166-176,共11页
By the Empirical Mode Decomposition method, we analyzed the observed monthly average temperature in more than 700 stations from 1951-2001 over China. Simultaneously, the temperature variability of each station is calc... By the Empirical Mode Decomposition method, we analyzed the observed monthly average temperature in more than 700 stations from 1951-2001 over China. Simultaneously, the temperature variability of each station is calculated by this method, and classification chart of long term trend and temperature variability distributing chart of China are obtained, supported by GIS, 1 kmxl km resolution. The results show that: in recent 50 years, the temperature has increased by more than 0.4~C/10a in most parts of northern China, while in Southwest China and the middle and lower Yangtze Valley, the increase is not significant. The areas with a negative temperature change rate are distributed sporadically in Southwest China. Meanwhile, the temperature data from 1881 to 2001 in nine study regions in China are also analyzed, indicating that in the past 100 years, the temperature has been increasing all the way in Northeast China, North China, South China, Northwest China and Xinjiang and declining in Southwest China. An inverse ‘V-shaped’ trend is also found in Central China. But in Tibet the change is less significant. 展开更多
关键词 China TEMPERATURE empirical mode decomposition intrinsic mode function
在线阅读 下载PDF
Microseismic signal denoising by combining variational mode decomposition with permutation entropy 被引量:7
9
作者 Zhang Xing-Li Cao Lian-Yue +2 位作者 Chen Yan Jia Rui-Sheng Lu Xin-Ming 《Applied Geophysics》 SCIE CSCD 2022年第1期65-80,144,145,共18页
Remarkable progress has been achieved on microseismic signal denoising in recent years,which is the basic component for rock-burst detection.However,its denoising effectiveness remains unsatisfactory.To extract the ef... Remarkable progress has been achieved on microseismic signal denoising in recent years,which is the basic component for rock-burst detection.However,its denoising effectiveness remains unsatisfactory.To extract the effective microseismic signal from polluted noisy signals,a novel microseismic signal denoising method that combines the variational mode decomposition(VMD)and permutation entropy(PE),which we denote as VMD–PE,is proposed in this paper.VMD is a recently introduced technique for adaptive signal decomposition,where K is an important decomposing parameter that determines the number of modes.VMD provides a predictable eff ect on the nature of detected modes.In this work,we present a method that addresses the problem of selecting an appropriate K value by constructing a simulation signal whose spectrum is similar to that of a mine microseismic signal and apply this value to the VMD–PE method.In addition,PE is developed to identify the relevant effective microseismic signal modes,which are reconstructed to realize signal filtering.The experimental results show that the VMD–PE method remarkably outperforms the empirical mode decomposition(EMD)–VMD filtering and detrended fl uctuation analysis(DFA)–VMD denoising methods of the simulated and real microseismic signals.We expect that this novel method can inspire and help evaluate new ideas in this field. 展开更多
关键词 DENOISING Microseismic signal Permutation entropy Variational mode decomposition
在线阅读 下载PDF
Satellite fault diagnosis method based on predictive filter and empirical mode decomposition 被引量:9
10
作者 Yi Shen Yingchun Zhang Zhenhua Wang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第1期83-87,共5页
A novel satellite fault diagnosis scheme is presented based on the predictive filter and empirical mode composition(EMD).First,the predictive filter is utilized to obtain the fault estimation,which is corrupted by n... A novel satellite fault diagnosis scheme is presented based on the predictive filter and empirical mode composition(EMD).First,the predictive filter is utilized to obtain the fault estimation,which is corrupted by noise.Then the EMD method is introduced to decompose the fault estimation into a finite number of intrinsic mode functions and extract the trend of faults for fault diagnosis.The proposed scheme has the ability of diagnosing both abrupt and incipient faults of the actuator in a satellite attitude control subsystem.A mathematical simulation is given to illustrate the effectiveness of the proposed scheme. 展开更多
关键词 satellite fault diagnosis predictive filter empirical mode decomposition(EMD).
在线阅读 下载PDF
A novel noise reduction technique for underwater acoustic signals based on complete ensemble empirical mode decomposition with adaptive noise,minimum mean square variance criterion and least mean square adaptive filter 被引量:9
11
作者 Yu-xing Li Long Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第3期543-554,共12页
Underwater acoustic signal processing is one of the research hotspots in underwater acoustics.Noise reduction of underwater acoustic signals is the key to underwater acoustic signal processing.Owing to the complexity ... Underwater acoustic signal processing is one of the research hotspots in underwater acoustics.Noise reduction of underwater acoustic signals is the key to underwater acoustic signal processing.Owing to the complexity of marine environment and the particularity of underwater acoustic channel,noise reduction of underwater acoustic signals has always been a difficult challenge in the field of underwater acoustic signal processing.In order to solve the dilemma,we proposed a novel noise reduction technique for underwater acoustic signals based on complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN),minimum mean square variance criterion(MMSVC) and least mean square adaptive filter(LMSAF).This noise reduction technique,named CEEMDAN-MMSVC-LMSAF,has three main advantages:(i) as an improved algorithm of empirical mode decomposition(EMD) and ensemble EMD(EEMD),CEEMDAN can better suppress mode mixing,and can avoid selecting the number of decomposition in variational mode decomposition(VMD);(ii) MMSVC can identify noisy intrinsic mode function(IMF),and can avoid selecting thresholds of different permutation entropies;(iii) for noise reduction of noisy IMFs,LMSAF overcomes the selection of deco mposition number and basis function for wavelet noise reduction.Firstly,CEEMDAN decomposes the original signal into IMFs,which can be divided into noisy IMFs and real IMFs.Then,MMSVC and LMSAF are used to detect identify noisy IMFs and remove noise components from noisy IMFs.Finally,both denoised noisy IMFs and real IMFs are reconstructed and the final denoised signal is obtained.Compared with other noise reduction techniques,the validity of CEEMDAN-MMSVC-LMSAF can be proved by the analysis of simulation signals and real underwater acoustic signals,which has the better noise reduction effect and has practical application value.CEEMDAN-MMSVC-LMSAF also provides a reliable basis for the detection,feature extraction,classification and recognition of underwater acoustic signals. 展开更多
关键词 Underwater acoustic signal Noise reduction Empirical mode decomposition(EMD) Ensemble EMD(EEMD) Complete EEMD with adaptive noise(CEEMDAN) Minimum mean square variance criterion(MMSVC) Least mean square adaptive filter(LMSAF) Ship-radiated noise
在线阅读 下载PDF
Fused empirical mode decomposition and wavelets for locating combined damage in a truss-type structure through vibration analysis 被引量:4
12
作者 Arturo GARCIA-PEREZ Juan P. AMEZQUITA-SANCHEZ +3 位作者 Aurelio DOMINGUEZ-GONZALEZ Ramin SEDAGHATI Roque OSORNIO-RIOS Rene J. ROMERO-TRONCOSO 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2013年第9期615-630,共16页
Structural health monitoring (SHM) is a relevant topic for civil systems and involves the monitoring, data processing and interpretation to evaluate the condition of a structure, in order to detect damage. In real str... Structural health monitoring (SHM) is a relevant topic for civil systems and involves the monitoring, data processing and interpretation to evaluate the condition of a structure, in order to detect damage. In real structures, two or more sites or types of damage can be present at the same time. It has been shown that one kind of damaged condition can interfere with the detection of another kind of damage, leading to an incorrect assessment about the structure condition. Identifying combined damage on structures still represents a challenge for condition monitoring, because the reliable identification of a combined damaged condition is a difficult task. Thus, this work presents a fusion of methodologies, where a single wavelet-packet and the empirical mode decomposition (EMD) method are combined with artificial neural networks (ANNs) for the automated and online identification-location of single or multiple-combined damage in a scaled model of a five-bay truss-type structure. Results showed that the proposed methodology is very efficient and reliable for identifying and locating the three kinds of damage, as well as their combinations. Therefore, this methodology could be applied to detection-location of damage in real truss-type structures, which would help to improve the characteristics and life span of real structures. 展开更多
关键词 Truss structure Vibration Spectral analysis Wavelet packet transform Empirical mode decomposition Artificialneural network (ANN)
原文传递
Landslide displacement prediction based on optimized empirical mode decomposition and deep bidirectional long short-term memory network 被引量:4
13
作者 ZHANG Ming-yue HAN Yang +1 位作者 YANG Ping WANG Cong-ling 《Journal of Mountain Science》 SCIE CSCD 2023年第3期637-656,共20页
There are two technical challenges in predicting slope deformation.The first one is the random displacement,which could not be decomposed and predicted by numerically resolving the observed accumulated displacement an... There are two technical challenges in predicting slope deformation.The first one is the random displacement,which could not be decomposed and predicted by numerically resolving the observed accumulated displacement and time series of a landslide.The second one is the dynamic evolution of a landslide,which could not be feasibly simulated simply by traditional prediction models.In this paper,a dynamic model of displacement prediction is introduced for composite landslides based on a combination of empirical mode decomposition with soft screening stop criteria(SSSC-EMD)and deep bidirectional long short-term memory(DBi-LSTM)neural network.In the proposed model,the time series analysis and SSSC-EMD are used to decompose the observed accumulated displacements of a slope into three components,viz.trend displacement,periodic displacement,and random displacement.Then,by analyzing the evolution pattern of a landslide and its key factors triggering landslides,appropriate influencing factors are selected for each displacement component,and DBi-LSTM neural network to carry out multi-datadriven dynamic prediction for each displacement component.An accumulated displacement prediction has been obtained by a summation of each component.For accuracy verification and engineering practicability of the model,field observations from two known landslides in China,the Xintan landslide and the Bazimen landslide were collected for comparison and evaluation.The case study verified that the model proposed in this paper can better characterize the"stepwise"deformation characteristics of a slope.As compared with long short-term memory(LSTM)neural network,support vector machine(SVM),and autoregressive integrated moving average(ARIMA)model,DBi-LSTM neural network has higher accuracy in predicting the periodic displacement of slope deformation,with the mean absolute percentage error reduced by 3.063%,14.913%,and 13.960%respectively,and the root mean square error reduced by 1.951 mm,8.954 mm and 7.790 mm respectively.Conclusively,this model not only has high prediction accuracy but also is more stable,which can provide new insight for practical landslide prevention and control engineering. 展开更多
关键词 Landslide displacement Empirical mode decomposition Soft screening stop criteria Deep bidirectional long short-term memory neural network Xintan landslide Bazimen landslide
原文传递
Application of empirical mode decomposition based energy ratio to vortex flowmeter state diagnosis 被引量:4
14
作者 孙志强 张宏建 《Journal of Central South University》 SCIE EI CAS 2009年第1期154-159,共6页
To improve the measurement performance, a method for diagnosing the state of vortex flowmeter under various flow conditions was presented. The raw sensor signal of the vortex flowmeter was adaptively decomposed into i... To improve the measurement performance, a method for diagnosing the state of vortex flowmeter under various flow conditions was presented. The raw sensor signal of the vortex flowmeter was adaptively decomposed into intrinsic mode functions using the empirical mode decomposition approach. Based on the empirical mode decomposition results, the energy of each intrinsic mode function was extracted, and the vortex energy ratio was proposed to analyze how the perturbation in the flow affected the measurement performance of the vortex flowmeter. The relationship between the vortex energy ratio of the signal and the flow condition was established. The results show that the vortex energy ratio is sensitive to the flow condition and ideal for the characterization of the vortex flowmeter signal. Moreover, the vortex energy ratio under normal flow condition is greater than 80%, which can be adopted as an indicator to diagnose the state of a vortex flowmeter. 展开更多
关键词 flow state diagnosis energy ratio vortex flowmeter empirical mode decomposition
在线阅读 下载PDF
Investigation of flow unsteadiness in a highly-loaded compressor cascade using a dynamic mode decomposition method 被引量:3
15
作者 Guangyao AN Yanhui WU +2 位作者 Jinhua LANG Zhiyang CHEN Xiaobing ZHOU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第5期275-290,共16页
Unsteady flow in the hub endwall region has long been a hot topic in the turbomachinery community.However important it is to the performance of the whole engine,the coherent unsteady flow phenomena are still not well ... Unsteady flow in the hub endwall region has long been a hot topic in the turbomachinery community.However important it is to the performance of the whole engine,the coherent unsteady flow phenomena are still not well understood.In this paper,the complex flow field in the hub endwall of a cantilevered compressor cascade has been investigated through numerical approach.The predicted results were validated by experimental data.To highlight the dominant flow structures among irregular and chaotic motions of various vortices,a Dynamic Mode Decomposition(DMD)method was utilized.The results show that there exist three dominant periodic flow structures:the oscillation of the leakage vortex,a circumferential migration of a Breakdown Induced Vortex(BIV)and the fluctuation of the passage vortex.These three coherent structures all together form a self-sustained closed loop which accounts for the flow unsteadiness of the studied cascade.During this process,the BIV plays a key role in inducing the flow unsteadiness.Only if the BIV is strong enough to affect the passage vortex,the flow unsteadiness occurs.This study expands current knowledge base of flow unsteadiness in a compressor environment,and shows the efficacy of the DMD method for revealing the origin of flow unsteadiness. 展开更多
关键词 CASCADE COMPRESSOR Dynamic mode decomposition(DMD) ENDWALL Unsteady flow Vortex breakdown
原文传递
Pressure fluctuation signal analysis of pump based on ensemble empirical mode decomposition method 被引量:3
16
作者 Hong PAN Min-sheng BU 《Water Science and Engineering》 EI CAS CSCD 2014年第2期227-235,共9页
Pressure fluctuations, which are inevitable in the operation of pumps, have a strong non-stationary characteristic and contain a great deal of important information representing the operation conditions. With an axial... Pressure fluctuations, which are inevitable in the operation of pumps, have a strong non-stationary characteristic and contain a great deal of important information representing the operation conditions. With an axial-flow pump as an example, a new method for time-frequency analysis based on the ensemble empirical mode decomposition (EEMD) method is proposed for research on the characteristics of pressure fluctuations. First, the pressure fluctuation signals are preprocessed with the empirical mode decomposition (EMD) method, and intrinsic mode functions (IMFs) are extracted. Second, the EEMD method is used to extract more precise decomposition results, and the number of iterations is determined according to the number of IMFs produced by the EMD method. Third, correlation coefficients between IMFs produced by the EMD and EEMD methods and the original signal are calculated, and the most sensitive IMFs are chosen to analyze the frequency spectrum. Finally, the operation conditions of the pump are identified with the frequency features. The results show that, compared with the EMD method, the EEMD method can improve the time-frequency resolution and extract main vibration components from pressure fluctuation signals. 展开更多
关键词 pressure fluctuation ensemble empirical mode decomposition intrinsic modefunction correlation coefficient
在线阅读 下载PDF
Quantitative detection of locomotive wheel polygonization under non-stationary conditions by adaptive chirp mode decomposition 被引量:4
17
作者 Shiqian Chen Kaiyun Wang +3 位作者 Ziwei Zhou Yunfan Yang Zaigang Chen Wanming Zhai 《Railway Engineering Science》 2022年第2期129-147,共19页
Wheel polygonal wear is a common and severe defect,which seriously threatens the running safety and reliability of a railway vehicle especially a locomotive.Due to non-stationary running conditions(e.g.,traction and b... Wheel polygonal wear is a common and severe defect,which seriously threatens the running safety and reliability of a railway vehicle especially a locomotive.Due to non-stationary running conditions(e.g.,traction and braking)of the locomotive,the passing frequencies of a polygonal wheel will exhibit time-varying behaviors,which makes it too difficult to effectively detect the wheel defect.Moreover,most existing methods only achieve qualitative fault diagnosis and they cannot accurately identify defect levels.To address these issues,this paper reports a novel quantitative method for fault detection of wheel polygonization under non-stationary conditions based on a recently proposed adaptive chirp mode decomposition(ACMD)approach.Firstly,a coarse-to-fine method based on the time–frequency ridge detection and ACMD is developed to accurately estimate a time-varying gear meshing frequency and thus obtain a wheel rotating frequency from a vibration acceleration signal of a motor.After the rotating frequency is obtained,signal resampling and order analysis techniques are applied to an acceleration signal of an axle box to identify harmonic orders related to polygonal wear.Finally,the ACMD is combined with an inertial algorithm to estimate polygonal wear amplitudes.Not only a dynamics simulation but a field test was carried out to show that the proposed method can effectively detect both harmonic orders and their amplitudes of the wheel polygonization under non-stationary conditions. 展开更多
关键词 Wheel polygonal wear Fault diagnosis Nonstationary condition Adaptive mode decomposition Time–frequency analysis
在线阅读 下载PDF
Study on the Improvement of the Application of Complete Ensemble Empirical Mode Decomposition with Adaptive Noise in Hydrology Based on RBFNN Data Extension Technology 被引量:3
18
作者 Jinping Zhang Youlai Jin +2 位作者 Bin Sun Yuping Han Yang Hong 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第2期755-770,共16页
The complex nonlinear and non-stationary features exhibited in hydrologic sequences make hydrological analysis and forecasting difficult.Currently,some hydrologists employ the complete ensemble empirical mode decompos... The complex nonlinear and non-stationary features exhibited in hydrologic sequences make hydrological analysis and forecasting difficult.Currently,some hydrologists employ the complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN)method,a new time-frequency analysis method based on the empirical mode decomposition(EMD)algorithm,to decompose non-stationary raw data in order to obtain relatively stationary components for further study.However,the endpoint effect in CEEMDAN is often neglected,which can lead to decomposition errors that reduce the accuracy of the research results.In this study,we processed an original runoff sequence using the radial basis function neural network(RBFNN)technique to obtain the extension sequence before utilizing CEEMDAN decomposition.Then,we compared the decomposition results of the original sequence,RBFNN extension sequence,and standard sequence to investigate the influence of the endpoint effect and RBFNN extension on the CEEMDAN method.The results indicated that the RBFNN extension technique effectively reduced the error of medium and low frequency components caused by the endpoint effect.At both ends of the components,the extension sequence more accurately reflected the true fluctuation characteristics and variation trends.These advances are of great significance to the subsequent study of hydrology.Therefore,the CEEMDAN method,combined with an appropriate extension of the original runoff series,can more precisely determine multi-time scale characteristics,and provide a credible basis for the analysis of hydrologic time series and hydrological forecasting. 展开更多
关键词 Complete ensemble empirical mode decomposition with adaptive noise data extension radial basis function neural network multi-time scales RUNOFF
在线阅读 下载PDF
A bearing fault feature extraction method based on cepstrum pre-whitening and a quantitative law of symplectic geometry mode decomposition 被引量:3
19
作者 Chen Yiya Jia Minping Yan Xiaoan 《Journal of Southeast University(English Edition)》 EI CAS 2021年第1期33-41,共9页
In order to extract the fault feature of the bearing effectively and prevent the impact components caused by bearing damage being interfered with by discrete frequency components and background noise,a method of fault... In order to extract the fault feature of the bearing effectively and prevent the impact components caused by bearing damage being interfered with by discrete frequency components and background noise,a method of fault feature extraction based on cepstrum pre-whitening(CPW)and a quantitative law of symplectic geometry mode decomposition(SGMD)is proposed.First,CPW is performed on the original signal to enhance the impact feature of bearing fault and remove the periodic frequency components from complex vibration signals.The pre-whitening signal contains only background noise and non-stationary shock caused by damage.Secondly,a quantitative law that the number of effective eigenvalues of the Hamilton matrix is twice the number of frequency components in the signal during SGMD is found,and the quantitative law is verified by simulation and theoretical derivation.Finally,the trajectory matrix of the pre-whitening signal is constructed and SGMD is performed.According to the quantitative law,the corresponding feature vector is selected to reconstruct the signal.The Hilbert envelope spectrum analysis is performed to extract fault features.Simulation analysis and application examples prove that the proposed method can clearly extract the fault feature of bearings. 展开更多
关键词 cepstrum pre-whitening symplectic geometry mode decomposition EIGENVALUE quantitative law feature extraction
在线阅读 下载PDF
Application of empirical mode decomposition in early diagnosis of magnetic memory signal 被引量:2
20
作者 冷建成 徐敏强 张嘉钟 《Journal of Central South University》 SCIE EI CAS 2010年第3期549-553,共5页
In order to eliminate noise interference of metal magnetic memory signal in early diagnosis of stress concentration zones and metal defects, the empirical mode decomposition method combined with the magnetic field gra... In order to eliminate noise interference of metal magnetic memory signal in early diagnosis of stress concentration zones and metal defects, the empirical mode decomposition method combined with the magnetic field gradient characteristic was proposed. A compressive force periodically acting upon a casing pipe led to appreciable deformation, and magnetic signals were measured by a magnetic indicator TSC-1M-4. The raw magnetic memory signal was first decomposed into different intrinsic mode functions and a residue, and the magnetic field gradient distribution of the subsequent reconstructed signal was obtained. The experimental results show that the gradient around 350 mm represents the maximum value ignoring the marginal effect, and there is a good correlation between the real maximum field gradient and the stress concentration zone. The wavelet transform associated with envelop analysis also exhibits this gradient characteristic, indicating that the proposed method is effective for early identifying critical zones. 展开更多
关键词 metal magnetic memory noise interference early diagnosis empirical mode decomposition magnetic field gradient stress concentration ZONES envelop analysis
在线阅读 下载PDF
上一页 1 2 16 下一页 到第
使用帮助 返回顶部