This paper presents particle breakage and the mobilized drained shear strengths of sand with the purpose of clarifying the influence of particle breakage on the mobilized shear strengths of sand. Several drained triax...This paper presents particle breakage and the mobilized drained shear strengths of sand with the purpose of clarifying the influence of particle breakage on the mobilized shear strengths of sand. Several drained triaxial tests were carried out on Silica sand No.5 under 3 MPa confining pressure to produce the pre-crushed sands in simulating the high- pressure shear process on soil to result in particle breakage, and then the pre-crushed sands were re- sheared in series of drained triaxial tests to investigate the mobilized strengths of the pre-crushed sands in detecting the influence of particle breakage. It was found that, by deteriorating strain-stress behavior, particle breakage resulted in change of stress-dilataney behavior in translation and rotation of the relation of the dilatancy factor and the effective principal stress ratio. For a given initial void ratio, particle breakage resulted in impairment of dilatancy behavior of soil to be more contractive in deterioration of the mobilized friction angle and the mobilized dilatancy angle and reduction of void ratio. However, particle breakage resulted in increase of the mobilized basic friction angle especially before failure. In addition, the influence of particle breakage on the mobilized strengths was revealed to be influenced by the shear stress-strain state.展开更多
To investigate a possible therapeutic mechanism of cell therapy in the field of cerebral palsy using granulocyte-colony stimulating factor(G-CSF)-mobilized peripheral blood mononuclear cells(m PBMCs),we compared t...To investigate a possible therapeutic mechanism of cell therapy in the field of cerebral palsy using granulocyte-colony stimulating factor(G-CSF)-mobilized peripheral blood mononuclear cells(m PBMCs),we compared the expression of inflammatory cytokines and neurotrophic factors in PBMCs and m PBMCs from children with cerebral palsy to those from healthy adult donors and to cord blood mononuclear cells donated from healthy newborns.No significant differences in expression of neurotrophic factors were found between PBMCs and m PBMCs.However,in cerebral palsy children,the expression of interleukin-6 was significantly increased in m PBMCs as compared to PBMCs,and the expression of interleukin-3 was significantly decreased in m PBMCs as compared to PBMCs.In healthy adults,the expression levels of both interleukin-1βand interleukin-6 were significantly increased in m PBMCs as compared to PBMCs.The expression of brain-derived neurotrophic factors in m PBMC from cerebral palsy children was significantly higher than that in the cord blood or m PBMCs from healthy adults.The expression of G-CSF in m PBMCs from cerebral palsy children was comparable to that in the cord blood but significantly higher than that in m PBMCs from healthy adults.Lower expression of pro-inflammatory cytokines(interleukin-1β,interleukin-3,and-6)and higher expression of anti-inflammatory cytokines(interleukin-8 and interleukin-9)were observed from the cord blood and m PBMCs from cerebral palsy children rather than from healthy adults.These findings indicate that m PBMCs from cerebral palsy and cord blood mononuclear cells from healthy newborns have the potential to become seed cells for treatment of cerebral palsy.展开更多
AIM:To study the immunophenotype of hematopoietic progenitor cells from cord blood (CB) grafts (n = 39) in comparison with adult apheresis grafts (AG, n = 229) and pre-apheresis peripheral blood (PAPB) samples (n = 90...AIM:To study the immunophenotype of hematopoietic progenitor cells from cord blood (CB) grafts (n = 39) in comparison with adult apheresis grafts (AG, n = 229) and pre-apheresis peripheral blood (PAPB) samples (n = 908) using flow cytometry analysis.METHODS: First, we performed a qualitative analysis of CD34+ cell sub-populations in both CB and PAPB grafts using the standardized ISHAGE protocol and a wide panel of 20 monoclonal antibodies. Next, we stud-ied some parameters, such as the age of mothers and the weight of newborns, which can influence the qual-ity and the quantity of CD34+ cells from CB. RESULTS: We found that the percentage of apoptotic cells was high in CB in comparison to PAPB (PAPB: 4.6% ± 2.6% vs CB: 53.4% ± 5.2%, P < 0.001). In CB, the weight of newborn and the age of the mother have the influence on CD34+ cells. The follow-up of Ag CD133in the ISHAGE double platform protocol in association with CD45, CD34 and the 7’AAD shows an equal rate between the two cell populations CD133+CD45+CD34+ high and CD34+CD45+ high with a higher percentage. So, is the inclusion of Ac CD133 necessary in the pres-ent panel included in the ISHAGE methodflLast part, we showed a signif icant presence of interferon γ in CB in comparison to PAPB, the annexin showing the high number of apoptotic cells in CB. CONCLUSION: This study demonstrates that many different obstetric factors must be taken into account when processing and cryo-banking umbilical CB units for transplantation.展开更多
In piled and geosynthetic-reinforced(PGR) embankment, the arching behavior determines the overburden load on piles and subsoils. Placement of geosynthetic is effective in reducing the relative displacement between pil...In piled and geosynthetic-reinforced(PGR) embankment, the arching behavior determines the overburden load on piles and subsoils. Placement of geosynthetic is effective in reducing the relative displacement between pile and subsoil. When the mobilized shear stress is less than the shear strength, partially developed arching will occur. Consequently, existing analytical methods, adopting the ultimate shear strength failure criterion, need to be improved. This study developed a simplified 2 D analytical method, which is based on the developing arching effect, to evaluate the load redistribution of the PGR embankment. Then, the influences of embankment height and internal friction angle, subsoil depth, ratio of pile cap width to pile clear spacing(RPC) and geosynthetic tensile stiffness on the critical height ratio, stress concentration ratio, soil arching ratio, geosynthetic tension and axial strain were investigated. This study suggests that a RPC of 1:1.0 and a one-way of single-layer geosynthetic tensile stiffness of 2000 kN/m should be considered as the sensitivity thresholds for the PGR embankment.展开更多
Mobilized energy storage(MES)can provide a variety of services for power systems,including peak shaving,frequency regulation,and congestion alleviation.In this paper,we develop an MES sharing approach based on tempora...Mobilized energy storage(MES)can provide a variety of services for power systems,including peak shaving,frequency regulation,and congestion alleviation.In this paper,we develop an MES sharing approach based on temporal-spatial network(TSN)toward systemwide temporal-spatial flexibility enhancement,specifically in which the heavy-duty vehicles can exchange batteries at the energy storage stations connected with power grids.To achieve the temporal-spatial coordination of transportation and power systems,we propose a coordinated scheduling model.A decentralized algorithm based on the improved optimality condition decomposition(OCD)algorithm is proposed to address the information asymmetry between transportation and power systems while enhancing computational efficiency.Case studies based on IEEE 30-/118-bus and transportation systems demonstrate that MESs using the proposed approach can significantly improve the utilization of batteries while reducing operating costs by over 40%compared with stationary energy storages(SESs).展开更多
CHINA.5G Base Stations See Strong Growth.China witnessed substantial growth in the number of 5G base stations in 2025,according to data from the Ministry of Industry and Information Technology.As of the end of October...CHINA.5G Base Stations See Strong Growth.China witnessed substantial growth in the number of 5G base stations in 2025,according to data from the Ministry of Industry and Information Technology.As of the end of October 2025,the total number of 5G base stations in the country reached around 4.76 million,with a net increase of 507,000 from the end of last year,accounting for 37 percent of all mobile base stations.展开更多
To ensure an uninterrupted power supply,mobile power sources(MPS)are widely deployed in power grids during emergencies.Comprising mobile emergency generators(MEGs)and mobile energy storage systems(MESS),MPS are capabl...To ensure an uninterrupted power supply,mobile power sources(MPS)are widely deployed in power grids during emergencies.Comprising mobile emergency generators(MEGs)and mobile energy storage systems(MESS),MPS are capable of supplying power to critical loads and serving as backup sources during grid contingencies,offering advantages such as flexibility and high resilience through electricity delivery via transportation networks.This paper proposes a design method for a 400 V–10 kV Dual-Winding Induction Generator(DWIG)intended for MEG applications,employing an improved particle swarmoptimization(PSO)algorithmbased on a back-propagation neural network(BPNN).A parameterized finite element(FE)model of the DWIG is established to derive constraints on its dimensional parameters,thereby simplifying the optimization space.Through sensitivity analysis between temperature rise and electromagnetic loss of the DWIG,the main factors influencing the machine’s temperature are identified,and electromagnetic loss is determined as the optimization objective.To obtain an accurate fitting function between electromagnetic loss and dimensional parameters,the BPNN is employed to predict the nonlinear relationship between the optimization objective and the parameters.The Latin hypercube sampling(LHS)method is used for random sampling in the FE model analysis for training,testing,and validation,which is then applied to compute the cost function in the PSO.Based on the relationships obtained by the BPNN,the PSO algorithm evaluates the fitness and cost functions to determine the optimal design point.The proposed optimization method is validated by comparing simulation results between the initial design and the optimized design.展开更多
BACKGROUND The therapeutic role of neurodynamic mobilization in improving lower limb function in patients with mild post-traumatic knee osteoarthritis remains poorly understood.AIM To further elucidate the role of neu...BACKGROUND The therapeutic role of neurodynamic mobilization in improving lower limb function in patients with mild post-traumatic knee osteoarthritis remains poorly understood.AIM To further elucidate the role of neurodynamic mobilization in facilitating knee joint functional recovery.METHODS Thirty-two patients with post-traumatic knee osteoarthritis treated at Chonghua Hospital of Traditional Chinese Medicine(Guilin)from March 2024 to August 2025 were randomly assigned to a control group(n=16)or an intervention group(n=16).Both groups received eight weeks of conventional treatment;and the intervention group additionally underwent neurodynamic mobilization.Outcomes including pain assessed by the visual analogue scale,active range of motion,Lysholm score,stork stand test,single hop test,and Y-balance test were assessed before and after the intervention.RESULTS There were no significant differences between the two groups in baseline characteristics,including gender,age,body mass index,or surgical side(P>0.05).Two-way repeated-measures analysis of variance demonstrated significant time×group interaction effects for the visual analogue scale score(F=13.364,P<0.05),Lysholm knee score(F=20.385,P<0.05),stork stand test(F=103.756,P<0.05),and Y-balance test score(F=8.089,P<0.05).CONCLUSION Neurodynamic mobilization effectively reduces pain,improves knee function,and enhances lower limb balance in patients with mild post-traumatic knee osteoarthritis.展开更多
At present,energy consumption is one of the main bottlenecks in autonomous mobile robot development.To address the challenge of high energy consumption in path planning for autonomous mobile robots navigating unknown ...At present,energy consumption is one of the main bottlenecks in autonomous mobile robot development.To address the challenge of high energy consumption in path planning for autonomous mobile robots navigating unknown and complex environments,this paper proposes an Attention-Enhanced Dueling Deep Q-Network(ADDueling DQN),which integrates a multi-head attention mechanism and a prioritized experience replay strategy into a Dueling-DQN reinforcement learning framework.A multi-objective reward function,centered on energy efficiency,is designed to comprehensively consider path length,terrain slope,motion smoothness,and obstacle avoidance,enabling optimal low-energy trajectory generation in 3D space from the source.The incorporation of a multihead attention mechanism allows the model to dynamically focus on energy-critical state features—such as slope gradients and obstacle density—thereby significantly improving its ability to recognize and avoid energy-intensive paths.Additionally,the prioritized experience replay mechanism accelerates learning from key decision-making experiences,suppressing inefficient exploration and guiding the policy toward low-energy solutions more rapidly.The effectiveness of the proposed path planning algorithm is validated through simulation experiments conducted in multiple off-road scenarios.Results demonstrate that AD-Dueling DQN consistently achieves the lowest average energy consumption across all tested environments.Moreover,the proposed method exhibits faster convergence and greater training stability compared to baseline algorithms,highlighting its global optimization capability under energy-aware objectives in complex terrains.This study offers an efficient and scalable intelligent control strategy for the development of energy-conscious autonomous navigation systems.展开更多
Background The effects of donor characteristics on CD34+ cell dose remain controversial. Recently, we developed a novel haploidentical transplant protocol, in which mixture allografts of granulocyte colony-stimulatin...Background The effects of donor characteristics on CD34+ cell dose remain controversial. Recently, we developed a novel haploidentical transplant protocol, in which mixture allografts of granulocyte colony-stimulating factor (G-CSF)- primed bone marrow (G-BM) and G-CSF-mobilized peripheral blood (G-PB) were used. The aim of this study was to investigate the effects of donor characteristics on CD34+ cell dose in mixture allografts of G-BM and G-PB. Methods A total of 162 healthy adult donors, who underwent bone marrow harvest and peripheral blood collection between January 2009 and November 2010 in Peking University People's Hospital, were prospectively investigated. G-CSF was administered subcutaneously at a dose of 5 pg/kg once a day for 5-6 consecutive days. Bone marrow and peripheral blood stem cells were harvested on the fourth day and fifth day, respectively. A final total CD34+ cell dose less than 2× 106 cells/kg recipient body weight was considered a poor mobilization. Results Of the 162 donors, 31 (19.1%) did not attain this threshold. The obtained median CD34+ cell doses in bone marrow, peripheral blood, and mixture allografts were 0.83×106/kg, 2.40×106/kg, and 3.47×106/kg, respectively. Multiple regression analysis showed that donor age had a significant negative effect on CD34+ cell dose in either G-BM, or G-PB, or mixture allografts of G-BM and G-PB. And a 1-year increase in age was associated with a 5.6% decrease in the odds of achieving mobilization cutoff. No significant correlation was found for donor gender, body mass index (BMI), and weight. Conclusion Donor age is the only factor among the four parameters, including age, gender, weight, and BMI, that influence CD34+ cell dose in mixture allografts of G-BM and G-PB, and younger donors should be chosen to obtain sufficient CD34+ cells for transplantation.展开更多
BACKGROUND Our mission is to cure hematopoietic malignancies through cell therapy.Time to transplant is a key challenge resulting in mortality of patients needing a transplant.Previous studies reported CD146+mesenchym...BACKGROUND Our mission is to cure hematopoietic malignancies through cell therapy.Time to transplant is a key challenge resulting in mortality of patients needing a transplant.Previous studies reported CD146+mesenchymal stem cells(MSCs)regulating hematopoiesis in bone marrow(BM).In 2013,the study reported the existence in the synovium of a MSC subset,co-expressing CD73 and CD39,with greater osteo-chondrogenic potency and ability to produce adenosine.This subset expressed CD146,known to be associated with pericytes.AIM To investigate the presence and characterization of the CD73+CD39+CD146+MSC subset in BM.Furthermore,we explored the existence of this subset in mobilized blood.METHODS BM cells were culture expanded up to passage 4.Flow cytometry was used to verify expression of CD73,CD39,and CD146 markers.Cell sorting was performed via BDFACS AriaTM Fusion.The subset was assessed for defined MSC characteristics and perivascular localization in BM sections.Peripheral blood derived MSCs were obtained through apheresis performed at Gift of Life under Institutional Review Board donor consent.RESULTS Our findings demonstrated that the combination of CD73,CD39,and CD146 enabled the identification and purification of a subset of MSCs from culture-expanded BM,up to passage 4.This subset exhibited a CD45-CD73+CD39+CD146+phenotype,along with self-renewal and multipotency abilities,and was located in perivascular areas of BM sections.Additionally,this subset was found in both single and dual-mobilized leukopaks.CONCLUSION The CD73+CD39+CD146+cell subset showed self-renewal and multipotency abilities and was located in perivascular areas of BM.Such cell subset was also reported in single and dual-mobilized leukopaks.展开更多
The utilization and storage of CO_(2) emissions from oil production and consumption in the upstream oil industry will contribute to sustainable development.CO_(2) flooding is the key technology for the upstream oil in...The utilization and storage of CO_(2) emissions from oil production and consumption in the upstream oil industry will contribute to sustainable development.CO_(2) flooding is the key technology for the upstream oil industry to transition to sustainable development.However,there is a significant challenge in achieving high recovery and storage efficiency in unconventional reservoirs,particularly in underde-veloped countries.Numerous studies have indicated that the limited sweep range caused by premature gas channeling of CO_(2) is a crucial bottleneck that hinders the enhancement of recovery,storage efficiency and safety.This review provides a comprehensive summary of the research and technical advancements regarding the front sweep characteristics of CO_(2) during migration.It particularly focuses on the char-acteristics,applicable stages,and research progress of different technologies used for regulating CO_(2) flooding sweep.Finally,based on the current application status and development trends,the review offers insights into the future research direction for these technologies.It is concluded that the front migration characteristics of CO_(2) play a crucial role in determining the macroscopic sweep range.The focus of future research lies in achieving cross-scale correlation and information coupling of CO_(2) migration processes.Currently,the influence weight of permeability,injection speed,pressure and other parameters on the characteristics of‘fingering-gas channeling’is still not well clear.There is an urgent need to establish prediction model and early warning mechanism that considers multi-parameters and cross-scale gas channeling degrees,in order to create effective strategies for prevention and control.There are currently three technologies available for sweep regulation:flow field intervention,mobility reduction,and gas channeling plugging.To expand the sweep effectively,it is important to systematically integrate these technologies based on their regulation characteristics and applicable stages.This can be achieved by constructing an intelligent synergistic hierarchical segmented regulation technology known as‘flow field intervention+mobility regulation+channel plugging chemically’.This work is expected to provide valuable insights for achieving conformance control of CO_(2)-EOR and safe storage of CO_(2).展开更多
Based on the experimental results of casting thin section,low temperature nitrogen adsorption,high pressure mercury injection,nuclear magnetic resonance T2 spectrum,contact angle and oil-water interfacial tension,the ...Based on the experimental results of casting thin section,low temperature nitrogen adsorption,high pressure mercury injection,nuclear magnetic resonance T2 spectrum,contact angle and oil-water interfacial tension,the relationship between pore throat structure and crude oil mobility characteristics of full particle sequence reservoirs in the Lower Permian Fengcheng Formation of Mahu Sag,Junggar Basin,are revealed.(1)With the decrease of reservoir particle size,the volume of pores connected by large throats and the volume of large pores show a decreasing trend,and the distribution and peak ranges of throat and pore radius shift to smaller size in an orderly manner.The upper limits of throat radius,porosity and permeability of unconventional reservoirs in Fengcheng Formation are approximately 0.7μm,8%and 0.1×10^(−3)μm^(2),respectively.(2)As the reservoir particle size decreases,the distribution and peak ranges of pores hosting retained oil and movable oil are shifted to a smaller size in an orderly manner.With the increase of driving pressure,the amount of retained and movable oil of the larger particle reservoir samples shows a more obvious trend of decreasing and increasing,respectively.(3)With the increase of throat radius,the driving pressure of reservoir with different particle levels presents three stages,namely rapid decrease,slow decrease and stabilization.The oil driving pressures of various reservoirs and the differences of them decrease with the increase of temperature and obviously decrease with the increase of throat radius.According to the above experimental analysis,it is concluded that the deep shale oil of Fengcheng Formation in Mahu Sag has great potential for production under geological conditions.展开更多
Current you only look once(YOLO)-based algorithm model is facing the challenge of overwhelming parameters and calculation complexity under the printed circuit board(PCB)defect detection application scenario.In order t...Current you only look once(YOLO)-based algorithm model is facing the challenge of overwhelming parameters and calculation complexity under the printed circuit board(PCB)defect detection application scenario.In order to solve this problem,we propose a new method,which combined the lightweight network mobile vision transformer(Mobile Vi T)with the convolutional block attention module(CBAM)mechanism and the new regression loss function.This method needed less computation resources,making it more suitable for embedded edge detection devices.Meanwhile,the new loss function improved the positioning accuracy of the bounding box and enhanced the robustness of the model.In addition,experiments on public datasets demonstrate that the improved model achieves an average accuracy of 87.9%across six typical defect detection tasks,while reducing computational costs by nearly 90%.It significantly reduces the model's computational requirements while maintaining accuracy,ensuring reliable performance for edge deployment.展开更多
Building anion-derived solid electrolyte interphase(SEI)with enriched LiF is considered the most promising strategy to address inferior safety features and poor cyclability of lithium-metal batteries(LMBs).Herein,we d...Building anion-derived solid electrolyte interphase(SEI)with enriched LiF is considered the most promising strategy to address inferior safety features and poor cyclability of lithium-metal batteries(LMBs).Herein,we discover that,instead of direct electron transfer from surface polar groups to bis(trifluoromethanesulfonyl)imide(TFSI-)for inducing a LiF-rich SEI,the dipole-induced fluorinated-anion decomposition reaction begins with the adsorption of Li ions and is highly dependent on their mobility on the polar surface.To demonstrate this,a single-layer graphdiyne on MXene(sGDY@MXene)heterostructure has been successfully fabricated and integrated into polypropylene separators.It is found that the adsorbed Li ions connect electron-donating sGDY@MXene to TFSI-,facilitating interfacial charge transfer for TFSI-decomposition.However,this does not capture the entire picture.The sGDY@MXene also renders the adsorbed Li ions with high mobility,enabling them to reach optimal reaction sites and expedite their coordination processes with O on O=S=O and F on the broken–CF_3~-,facilitating bond cleavage.In contrast,immobilized Li ions on the more lithiophilic pristine MXene retard these cleavage processes.Consequently,the decomposition reaction is accelerated on sGDY@MXene.This work highlights the dedicate balance between lithiophilicity and Li-ion mobility in effectively promoting a LiF-rich SEI for the long-term stability of LMBs.展开更多
Ten physical and environmental variables collected from an on-the-go soil sensor at two field sites (MF3E and MF11S) in Mississippi, USA, were analyzed to assess soil variability and the interrelationships among the m...Ten physical and environmental variables collected from an on-the-go soil sensor at two field sites (MF3E and MF11S) in Mississippi, USA, were analyzed to assess soil variability and the interrelationships among the measurements. At MF3E, moderate variability was observed in apparent electrical conductivity shallow (ECas), slope, and ECa ratio measurements, with coefficients of variation ranging from 20% to 27%. In contrast, MF11S exhibited higher variability, particularly in ECas and ECad (deep) measurements, which exceeded 30% in their coefficient of variation values, indicating significant differences in soil composition and moisture content. Correlation analysis revealed strong positive relationships between the near-infrared-to-red ratio and red reflectance (r = 0.897***) soil values at MF3E. MF11S demonstrated a strong negative correlation between ECas and ECad readings with the x-coordinate (r ***). Scatter plots and fitted models illustrated the complexity of relationships, with many showing nonlinear trends. These findings emphasize the need for continuous monitoring and advanced modeling to understand the dynamic nature of soil properties and their implications for agricultural practices. Future research should explore the underlying mechanisms driving variability in the soil characteristics to enhance soil management strategies at the study sites.展开更多
Control signaling is mandatory for the operation and management of all types of communication networks,including the Third Generation Partnership Project(3GPP)mobile broadband networks.However,they consume important a...Control signaling is mandatory for the operation and management of all types of communication networks,including the Third Generation Partnership Project(3GPP)mobile broadband networks.However,they consume important and scarce network resources such as bandwidth and processing power.There have been several reports of these control signaling turning into signaling storms halting network operations and causing the respective Telecom companies big financial losses.This paper draws its motivation from such real network disaster incidents attributed to signaling storms.In this paper,we present a thorough survey of the causes,of the signaling storm problems in 3GPP-based mobile broadband networks and discuss in detail their possible solutions and countermeasures.We provide relevant analytical models to help quantify the effect of the potential causes and benefits of their corresponding solutions.Another important contribution of this paper is the comparison of the possible causes and solutions/countermeasures,concerning their effect on several important network aspects such as architecture,additional signaling,fidelity,etc.,in the form of a table.This paper presents an update and an extension of our earlier conference publication.To our knowledge,no similar survey study exists on the subject.展开更多
The tight sandstone reservoirs in the first sub-member of Chang 7 member(Chang 71)of Triassic Yanchang Formation in the Jiyuan area,Ordos Basin,show significant variations in microscopic pore-throat structure(PTS)and ...The tight sandstone reservoirs in the first sub-member of Chang 7 member(Chang 71)of Triassic Yanchang Formation in the Jiyuan area,Ordos Basin,show significant variations in microscopic pore-throat structure(PTS)and fluid mobility due to the influences of the northeast and northwest dual provenance systems.This study performed multiple experimental analyses on nine samples from the area to determine the petrological and petrophysical properties,as well as the PTS characteristics of reservoirs in different provenance-controlled regions.On this basis,the pore-throat size distribution(PSD)obtained from high-pressure mercury injection(HPMI)was utilized to convert the NMR movable fluid T2spectrum,allowing for quantitative characterization of the full PSD and the occurrence characteristics of movable fluids.A systematic analysis was conducted on the primary controlling factors affecting fluid mobility in the reservoir.The results indicated that the lithology in the eastern and western regions is lithic arkose.The eastern sandstones,being farther from the provenance,exhibit higher contents of feldspar and lithic fragments,along with the development of more dissolution pores.The reservoir possesses good petrophysical properties,low displacement pressure,and high pore-throat connectivity and homogeneity,indicating strong fluid mobility.In contrast,the western sandstones,being nearer to the provenance,exhibit poor grain sorting,high contents of lithic fragments,strong compaction and cementation effects,resulting in poor petrophysical properties,and strong pore-throat heterogeneity,revealing weak fluid mobility.The range of full PSD in the eastern reservoir is wider than that in the western reservoir,with relatively well-developed macropores.The macropores are the primary space for occurrence of movable fluids,and controls the fluid mobility of the reservoir.The effective porosity of movable fluids(EPMF)quantitatively represents the pore space occupied by movable fluids within the reservoir and correlates well with porosity,permeability,and PTS parameters,making it a valuable parameter for evaluating fluid mobility.Under the multi-provenance system,the eastern and western reservoirs underwent different sedimentation and diagenesis processes,resulting in differential distribution of reservoir mineral components and pore types,which in turn affects the PTS heterogeneity and reservoir quality.The composition and content of reservoir minerals are intrinsic factors influencing fluid mobility,while the microscopic PTS is the primary factor controlling it.Low clay mineral content,welldeveloped macropores,and weak pore-throat heterogeneity all contribute to the storage and seepage of reservoir fluids.展开更多
基金The financial assistance by China Scholarship Council (Grant No. 2011671035)the National Basic Research Program of China (973 Program) (Grant No. 2013CB733201)+3 种基金Key Program of Chinese Academy of Sciences (Grant No. KZZDEW-05-01)One-Hundred Talents Program of Chinese Academy of Sciences (SU Li-jun)CAS "Light of West China" Program (Grant No. Y6R2250250)Youth Fund of Institute of Mountain Hazards and Environment, Chinese Academy of Sciences (Grant No. Y6K2110110)
文摘This paper presents particle breakage and the mobilized drained shear strengths of sand with the purpose of clarifying the influence of particle breakage on the mobilized shear strengths of sand. Several drained triaxial tests were carried out on Silica sand No.5 under 3 MPa confining pressure to produce the pre-crushed sands in simulating the high- pressure shear process on soil to result in particle breakage, and then the pre-crushed sands were re- sheared in series of drained triaxial tests to investigate the mobilized strengths of the pre-crushed sands in detecting the influence of particle breakage. It was found that, by deteriorating strain-stress behavior, particle breakage resulted in change of stress-dilataney behavior in translation and rotation of the relation of the dilatancy factor and the effective principal stress ratio. For a given initial void ratio, particle breakage resulted in impairment of dilatancy behavior of soil to be more contractive in deterioration of the mobilized friction angle and the mobilized dilatancy angle and reduction of void ratio. However, particle breakage resulted in increase of the mobilized basic friction angle especially before failure. In addition, the influence of particle breakage on the mobilized strengths was revealed to be influenced by the shear stress-strain state.
基金supported by the Research Fund of Hanyang University(HY-2012)
文摘To investigate a possible therapeutic mechanism of cell therapy in the field of cerebral palsy using granulocyte-colony stimulating factor(G-CSF)-mobilized peripheral blood mononuclear cells(m PBMCs),we compared the expression of inflammatory cytokines and neurotrophic factors in PBMCs and m PBMCs from children with cerebral palsy to those from healthy adult donors and to cord blood mononuclear cells donated from healthy newborns.No significant differences in expression of neurotrophic factors were found between PBMCs and m PBMCs.However,in cerebral palsy children,the expression of interleukin-6 was significantly increased in m PBMCs as compared to PBMCs,and the expression of interleukin-3 was significantly decreased in m PBMCs as compared to PBMCs.In healthy adults,the expression levels of both interleukin-1βand interleukin-6 were significantly increased in m PBMCs as compared to PBMCs.The expression of brain-derived neurotrophic factors in m PBMC from cerebral palsy children was significantly higher than that in the cord blood or m PBMCs from healthy adults.The expression of G-CSF in m PBMCs from cerebral palsy children was comparable to that in the cord blood but significantly higher than that in m PBMCs from healthy adults.Lower expression of pro-inflammatory cytokines(interleukin-1β,interleukin-3,and-6)and higher expression of anti-inflammatory cytokines(interleukin-8 and interleukin-9)were observed from the cord blood and m PBMCs from cerebral palsy children rather than from healthy adults.These findings indicate that m PBMCs from cerebral palsy and cord blood mononuclear cells from healthy newborns have the potential to become seed cells for treatment of cerebral palsy.
文摘AIM:To study the immunophenotype of hematopoietic progenitor cells from cord blood (CB) grafts (n = 39) in comparison with adult apheresis grafts (AG, n = 229) and pre-apheresis peripheral blood (PAPB) samples (n = 908) using flow cytometry analysis.METHODS: First, we performed a qualitative analysis of CD34+ cell sub-populations in both CB and PAPB grafts using the standardized ISHAGE protocol and a wide panel of 20 monoclonal antibodies. Next, we stud-ied some parameters, such as the age of mothers and the weight of newborns, which can influence the qual-ity and the quantity of CD34+ cells from CB. RESULTS: We found that the percentage of apoptotic cells was high in CB in comparison to PAPB (PAPB: 4.6% ± 2.6% vs CB: 53.4% ± 5.2%, P < 0.001). In CB, the weight of newborn and the age of the mother have the influence on CD34+ cells. The follow-up of Ag CD133in the ISHAGE double platform protocol in association with CD45, CD34 and the 7’AAD shows an equal rate between the two cell populations CD133+CD45+CD34+ high and CD34+CD45+ high with a higher percentage. So, is the inclusion of Ac CD133 necessary in the pres-ent panel included in the ISHAGE methodflLast part, we showed a signif icant presence of interferon γ in CB in comparison to PAPB, the annexin showing the high number of apoptotic cells in CB. CONCLUSION: This study demonstrates that many different obstetric factors must be taken into account when processing and cryo-banking umbilical CB units for transplantation.
基金Project(51508279) supported by the National Natural Science Foundation of ChinaProject(KFJ170104) supported by the Open Fund of National Engineering Laboratory of Highway Maintenance Technology of Changsha University of Science & Technology, China+1 种基金Project(BK20150885) supported by the Jiangsu Provincial Natural Science Fund, ChinaProject(2019003) supported by the Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering of Hohai University, China。
文摘In piled and geosynthetic-reinforced(PGR) embankment, the arching behavior determines the overburden load on piles and subsoils. Placement of geosynthetic is effective in reducing the relative displacement between pile and subsoil. When the mobilized shear stress is less than the shear strength, partially developed arching will occur. Consequently, existing analytical methods, adopting the ultimate shear strength failure criterion, need to be improved. This study developed a simplified 2 D analytical method, which is based on the developing arching effect, to evaluate the load redistribution of the PGR embankment. Then, the influences of embankment height and internal friction angle, subsoil depth, ratio of pile cap width to pile clear spacing(RPC) and geosynthetic tensile stiffness on the critical height ratio, stress concentration ratio, soil arching ratio, geosynthetic tension and axial strain were investigated. This study suggests that a RPC of 1:1.0 and a one-way of single-layer geosynthetic tensile stiffness of 2000 kN/m should be considered as the sensitivity thresholds for the PGR embankment.
基金supported by National Natural Science Foundation of China(No.52277092)Chinese Association of Science and Technology Young Elite Scientists Sponsorship Program(No.YESS20210227).
文摘Mobilized energy storage(MES)can provide a variety of services for power systems,including peak shaving,frequency regulation,and congestion alleviation.In this paper,we develop an MES sharing approach based on temporal-spatial network(TSN)toward systemwide temporal-spatial flexibility enhancement,specifically in which the heavy-duty vehicles can exchange batteries at the energy storage stations connected with power grids.To achieve the temporal-spatial coordination of transportation and power systems,we propose a coordinated scheduling model.A decentralized algorithm based on the improved optimality condition decomposition(OCD)algorithm is proposed to address the information asymmetry between transportation and power systems while enhancing computational efficiency.Case studies based on IEEE 30-/118-bus and transportation systems demonstrate that MESs using the proposed approach can significantly improve the utilization of batteries while reducing operating costs by over 40%compared with stationary energy storages(SESs).
文摘CHINA.5G Base Stations See Strong Growth.China witnessed substantial growth in the number of 5G base stations in 2025,according to data from the Ministry of Industry and Information Technology.As of the end of October 2025,the total number of 5G base stations in the country reached around 4.76 million,with a net increase of 507,000 from the end of last year,accounting for 37 percent of all mobile base stations.
基金funded by the Science and Technology Projects of State Grid Corporation of China(Project No.J2024136).
文摘To ensure an uninterrupted power supply,mobile power sources(MPS)are widely deployed in power grids during emergencies.Comprising mobile emergency generators(MEGs)and mobile energy storage systems(MESS),MPS are capable of supplying power to critical loads and serving as backup sources during grid contingencies,offering advantages such as flexibility and high resilience through electricity delivery via transportation networks.This paper proposes a design method for a 400 V–10 kV Dual-Winding Induction Generator(DWIG)intended for MEG applications,employing an improved particle swarmoptimization(PSO)algorithmbased on a back-propagation neural network(BPNN).A parameterized finite element(FE)model of the DWIG is established to derive constraints on its dimensional parameters,thereby simplifying the optimization space.Through sensitivity analysis between temperature rise and electromagnetic loss of the DWIG,the main factors influencing the machine’s temperature are identified,and electromagnetic loss is determined as the optimization objective.To obtain an accurate fitting function between electromagnetic loss and dimensional parameters,the BPNN is employed to predict the nonlinear relationship between the optimization objective and the parameters.The Latin hypercube sampling(LHS)method is used for random sampling in the FE model analysis for training,testing,and validation,which is then applied to compute the cost function in the PSO.Based on the relationships obtained by the BPNN,the PSO algorithm evaluates the fitness and cost functions to determine the optimal design point.The proposed optimization method is validated by comparing simulation results between the initial design and the optimized design.
基金Supported by the Central Guided Local Science and Technology Development Fund Project for Science and Technology Innovation Base Construction,No.Guike ZY24212046National Natural Science Foundation of China,No.U22A2092+3 种基金Guangxi Education Science“the 14th Five-Year Plan”2024 Special Project“Research on Steam Education Practice in Rehabilitation Engineering”,No.2024ZJY304the Research Basic Ability Enhancement Program for Young and Middle-aged Teachers of Guangxi,No.2025KY2255the Innovation Project of GUET Graduate Education,No.2025YCXB010Natural Science Research Project of Guilin Life and Health Career Technical College,No.2025GKKY04.
文摘BACKGROUND The therapeutic role of neurodynamic mobilization in improving lower limb function in patients with mild post-traumatic knee osteoarthritis remains poorly understood.AIM To further elucidate the role of neurodynamic mobilization in facilitating knee joint functional recovery.METHODS Thirty-two patients with post-traumatic knee osteoarthritis treated at Chonghua Hospital of Traditional Chinese Medicine(Guilin)from March 2024 to August 2025 were randomly assigned to a control group(n=16)or an intervention group(n=16).Both groups received eight weeks of conventional treatment;and the intervention group additionally underwent neurodynamic mobilization.Outcomes including pain assessed by the visual analogue scale,active range of motion,Lysholm score,stork stand test,single hop test,and Y-balance test were assessed before and after the intervention.RESULTS There were no significant differences between the two groups in baseline characteristics,including gender,age,body mass index,or surgical side(P>0.05).Two-way repeated-measures analysis of variance demonstrated significant time×group interaction effects for the visual analogue scale score(F=13.364,P<0.05),Lysholm knee score(F=20.385,P<0.05),stork stand test(F=103.756,P<0.05),and Y-balance test score(F=8.089,P<0.05).CONCLUSION Neurodynamic mobilization effectively reduces pain,improves knee function,and enhances lower limb balance in patients with mild post-traumatic knee osteoarthritis.
文摘At present,energy consumption is one of the main bottlenecks in autonomous mobile robot development.To address the challenge of high energy consumption in path planning for autonomous mobile robots navigating unknown and complex environments,this paper proposes an Attention-Enhanced Dueling Deep Q-Network(ADDueling DQN),which integrates a multi-head attention mechanism and a prioritized experience replay strategy into a Dueling-DQN reinforcement learning framework.A multi-objective reward function,centered on energy efficiency,is designed to comprehensively consider path length,terrain slope,motion smoothness,and obstacle avoidance,enabling optimal low-energy trajectory generation in 3D space from the source.The incorporation of a multihead attention mechanism allows the model to dynamically focus on energy-critical state features—such as slope gradients and obstacle density—thereby significantly improving its ability to recognize and avoid energy-intensive paths.Additionally,the prioritized experience replay mechanism accelerates learning from key decision-making experiences,suppressing inefficient exploration and guiding the policy toward low-energy solutions more rapidly.The effectiveness of the proposed path planning algorithm is validated through simulation experiments conducted in multiple off-road scenarios.Results demonstrate that AD-Dueling DQN consistently achieves the lowest average energy consumption across all tested environments.Moreover,the proposed method exhibits faster convergence and greater training stability compared to baseline algorithms,highlighting its global optimization capability under energy-aware objectives in complex terrains.This study offers an efficient and scalable intelligent control strategy for the development of energy-conscious autonomous navigation systems.
文摘Background The effects of donor characteristics on CD34+ cell dose remain controversial. Recently, we developed a novel haploidentical transplant protocol, in which mixture allografts of granulocyte colony-stimulating factor (G-CSF)- primed bone marrow (G-BM) and G-CSF-mobilized peripheral blood (G-PB) were used. The aim of this study was to investigate the effects of donor characteristics on CD34+ cell dose in mixture allografts of G-BM and G-PB. Methods A total of 162 healthy adult donors, who underwent bone marrow harvest and peripheral blood collection between January 2009 and November 2010 in Peking University People's Hospital, were prospectively investigated. G-CSF was administered subcutaneously at a dose of 5 pg/kg once a day for 5-6 consecutive days. Bone marrow and peripheral blood stem cells were harvested on the fourth day and fifth day, respectively. A final total CD34+ cell dose less than 2× 106 cells/kg recipient body weight was considered a poor mobilization. Results Of the 162 donors, 31 (19.1%) did not attain this threshold. The obtained median CD34+ cell doses in bone marrow, peripheral blood, and mixture allografts were 0.83×106/kg, 2.40×106/kg, and 3.47×106/kg, respectively. Multiple regression analysis showed that donor age had a significant negative effect on CD34+ cell dose in either G-BM, or G-PB, or mixture allografts of G-BM and G-PB. And a 1-year increase in age was associated with a 5.6% decrease in the odds of achieving mobilization cutoff. No significant correlation was found for donor gender, body mass index (BMI), and weight. Conclusion Donor age is the only factor among the four parameters, including age, gender, weight, and BMI, that influence CD34+ cell dose in mixture allografts of G-BM and G-PB, and younger donors should be chosen to obtain sufficient CD34+ cells for transplantation.
文摘BACKGROUND Our mission is to cure hematopoietic malignancies through cell therapy.Time to transplant is a key challenge resulting in mortality of patients needing a transplant.Previous studies reported CD146+mesenchymal stem cells(MSCs)regulating hematopoiesis in bone marrow(BM).In 2013,the study reported the existence in the synovium of a MSC subset,co-expressing CD73 and CD39,with greater osteo-chondrogenic potency and ability to produce adenosine.This subset expressed CD146,known to be associated with pericytes.AIM To investigate the presence and characterization of the CD73+CD39+CD146+MSC subset in BM.Furthermore,we explored the existence of this subset in mobilized blood.METHODS BM cells were culture expanded up to passage 4.Flow cytometry was used to verify expression of CD73,CD39,and CD146 markers.Cell sorting was performed via BDFACS AriaTM Fusion.The subset was assessed for defined MSC characteristics and perivascular localization in BM sections.Peripheral blood derived MSCs were obtained through apheresis performed at Gift of Life under Institutional Review Board donor consent.RESULTS Our findings demonstrated that the combination of CD73,CD39,and CD146 enabled the identification and purification of a subset of MSCs from culture-expanded BM,up to passage 4.This subset exhibited a CD45-CD73+CD39+CD146+phenotype,along with self-renewal and multipotency abilities,and was located in perivascular areas of BM sections.Additionally,this subset was found in both single and dual-mobilized leukopaks.CONCLUSION The CD73+CD39+CD146+cell subset showed self-renewal and multipotency abilities and was located in perivascular areas of BM.Such cell subset was also reported in single and dual-mobilized leukopaks.
基金National Key Research and Development Program of China(No.2023YFB4104204)National Natural Science Foundation of China(No.U23B2090).
文摘The utilization and storage of CO_(2) emissions from oil production and consumption in the upstream oil industry will contribute to sustainable development.CO_(2) flooding is the key technology for the upstream oil industry to transition to sustainable development.However,there is a significant challenge in achieving high recovery and storage efficiency in unconventional reservoirs,particularly in underde-veloped countries.Numerous studies have indicated that the limited sweep range caused by premature gas channeling of CO_(2) is a crucial bottleneck that hinders the enhancement of recovery,storage efficiency and safety.This review provides a comprehensive summary of the research and technical advancements regarding the front sweep characteristics of CO_(2) during migration.It particularly focuses on the char-acteristics,applicable stages,and research progress of different technologies used for regulating CO_(2) flooding sweep.Finally,based on the current application status and development trends,the review offers insights into the future research direction for these technologies.It is concluded that the front migration characteristics of CO_(2) play a crucial role in determining the macroscopic sweep range.The focus of future research lies in achieving cross-scale correlation and information coupling of CO_(2) migration processes.Currently,the influence weight of permeability,injection speed,pressure and other parameters on the characteristics of‘fingering-gas channeling’is still not well clear.There is an urgent need to establish prediction model and early warning mechanism that considers multi-parameters and cross-scale gas channeling degrees,in order to create effective strategies for prevention and control.There are currently three technologies available for sweep regulation:flow field intervention,mobility reduction,and gas channeling plugging.To expand the sweep effectively,it is important to systematically integrate these technologies based on their regulation characteristics and applicable stages.This can be achieved by constructing an intelligent synergistic hierarchical segmented regulation technology known as‘flow field intervention+mobility regulation+channel plugging chemically’.This work is expected to provide valuable insights for achieving conformance control of CO_(2)-EOR and safe storage of CO_(2).
基金Supported by Leading Talent Program of Autonomous Region(2022TSYCLJ0070)PetroChina Prospective and Basic Technological Project(2021DJ0108)Natural Science Foundation for Outstanding Young People in Shandong Province(ZR2022YQ30).
文摘Based on the experimental results of casting thin section,low temperature nitrogen adsorption,high pressure mercury injection,nuclear magnetic resonance T2 spectrum,contact angle and oil-water interfacial tension,the relationship between pore throat structure and crude oil mobility characteristics of full particle sequence reservoirs in the Lower Permian Fengcheng Formation of Mahu Sag,Junggar Basin,are revealed.(1)With the decrease of reservoir particle size,the volume of pores connected by large throats and the volume of large pores show a decreasing trend,and the distribution and peak ranges of throat and pore radius shift to smaller size in an orderly manner.The upper limits of throat radius,porosity and permeability of unconventional reservoirs in Fengcheng Formation are approximately 0.7μm,8%and 0.1×10^(−3)μm^(2),respectively.(2)As the reservoir particle size decreases,the distribution and peak ranges of pores hosting retained oil and movable oil are shifted to a smaller size in an orderly manner.With the increase of driving pressure,the amount of retained and movable oil of the larger particle reservoir samples shows a more obvious trend of decreasing and increasing,respectively.(3)With the increase of throat radius,the driving pressure of reservoir with different particle levels presents three stages,namely rapid decrease,slow decrease and stabilization.The oil driving pressures of various reservoirs and the differences of them decrease with the increase of temperature and obviously decrease with the increase of throat radius.According to the above experimental analysis,it is concluded that the deep shale oil of Fengcheng Formation in Mahu Sag has great potential for production under geological conditions.
基金supported by the National Natural Science Foundation of China(Nos.62373215,62373219 and 62073193)the Natural Science Foundation of Shandong Province(No.ZR2023MF100)+1 种基金the Key Projects of the Ministry of Industry and Information Technology(No.TC220H057-2022)the Independently Developed Instrument Funds of Shandong University(No.zy20240201)。
文摘Current you only look once(YOLO)-based algorithm model is facing the challenge of overwhelming parameters and calculation complexity under the printed circuit board(PCB)defect detection application scenario.In order to solve this problem,we propose a new method,which combined the lightweight network mobile vision transformer(Mobile Vi T)with the convolutional block attention module(CBAM)mechanism and the new regression loss function.This method needed less computation resources,making it more suitable for embedded edge detection devices.Meanwhile,the new loss function improved the positioning accuracy of the bounding box and enhanced the robustness of the model.In addition,experiments on public datasets demonstrate that the improved model achieves an average accuracy of 87.9%across six typical defect detection tasks,while reducing computational costs by nearly 90%.It significantly reduces the model's computational requirements while maintaining accuracy,ensuring reliable performance for edge deployment.
基金the financial support from the National Natural Science Foundation of China(Nos.52272242,52174387,and 52403339)Key Research and Development Program of Henan Province(No.231111240600)。
文摘Building anion-derived solid electrolyte interphase(SEI)with enriched LiF is considered the most promising strategy to address inferior safety features and poor cyclability of lithium-metal batteries(LMBs).Herein,we discover that,instead of direct electron transfer from surface polar groups to bis(trifluoromethanesulfonyl)imide(TFSI-)for inducing a LiF-rich SEI,the dipole-induced fluorinated-anion decomposition reaction begins with the adsorption of Li ions and is highly dependent on their mobility on the polar surface.To demonstrate this,a single-layer graphdiyne on MXene(sGDY@MXene)heterostructure has been successfully fabricated and integrated into polypropylene separators.It is found that the adsorbed Li ions connect electron-donating sGDY@MXene to TFSI-,facilitating interfacial charge transfer for TFSI-decomposition.However,this does not capture the entire picture.The sGDY@MXene also renders the adsorbed Li ions with high mobility,enabling them to reach optimal reaction sites and expedite their coordination processes with O on O=S=O and F on the broken–CF_3~-,facilitating bond cleavage.In contrast,immobilized Li ions on the more lithiophilic pristine MXene retard these cleavage processes.Consequently,the decomposition reaction is accelerated on sGDY@MXene.This work highlights the dedicate balance between lithiophilicity and Li-ion mobility in effectively promoting a LiF-rich SEI for the long-term stability of LMBs.
文摘Ten physical and environmental variables collected from an on-the-go soil sensor at two field sites (MF3E and MF11S) in Mississippi, USA, were analyzed to assess soil variability and the interrelationships among the measurements. At MF3E, moderate variability was observed in apparent electrical conductivity shallow (ECas), slope, and ECa ratio measurements, with coefficients of variation ranging from 20% to 27%. In contrast, MF11S exhibited higher variability, particularly in ECas and ECad (deep) measurements, which exceeded 30% in their coefficient of variation values, indicating significant differences in soil composition and moisture content. Correlation analysis revealed strong positive relationships between the near-infrared-to-red ratio and red reflectance (r = 0.897***) soil values at MF3E. MF11S demonstrated a strong negative correlation between ECas and ECad readings with the x-coordinate (r ***). Scatter plots and fitted models illustrated the complexity of relationships, with many showing nonlinear trends. These findings emphasize the need for continuous monitoring and advanced modeling to understand the dynamic nature of soil properties and their implications for agricultural practices. Future research should explore the underlying mechanisms driving variability in the soil characteristics to enhance soil management strategies at the study sites.
基金the Deanship of Graduate Studies and Scientific Research at Qassim University for financial support(QU-APC-2024-9/1).
文摘Control signaling is mandatory for the operation and management of all types of communication networks,including the Third Generation Partnership Project(3GPP)mobile broadband networks.However,they consume important and scarce network resources such as bandwidth and processing power.There have been several reports of these control signaling turning into signaling storms halting network operations and causing the respective Telecom companies big financial losses.This paper draws its motivation from such real network disaster incidents attributed to signaling storms.In this paper,we present a thorough survey of the causes,of the signaling storm problems in 3GPP-based mobile broadband networks and discuss in detail their possible solutions and countermeasures.We provide relevant analytical models to help quantify the effect of the potential causes and benefits of their corresponding solutions.Another important contribution of this paper is the comparison of the possible causes and solutions/countermeasures,concerning their effect on several important network aspects such as architecture,additional signaling,fidelity,etc.,in the form of a table.This paper presents an update and an extension of our earlier conference publication.To our knowledge,no similar survey study exists on the subject.
文摘The tight sandstone reservoirs in the first sub-member of Chang 7 member(Chang 71)of Triassic Yanchang Formation in the Jiyuan area,Ordos Basin,show significant variations in microscopic pore-throat structure(PTS)and fluid mobility due to the influences of the northeast and northwest dual provenance systems.This study performed multiple experimental analyses on nine samples from the area to determine the petrological and petrophysical properties,as well as the PTS characteristics of reservoirs in different provenance-controlled regions.On this basis,the pore-throat size distribution(PSD)obtained from high-pressure mercury injection(HPMI)was utilized to convert the NMR movable fluid T2spectrum,allowing for quantitative characterization of the full PSD and the occurrence characteristics of movable fluids.A systematic analysis was conducted on the primary controlling factors affecting fluid mobility in the reservoir.The results indicated that the lithology in the eastern and western regions is lithic arkose.The eastern sandstones,being farther from the provenance,exhibit higher contents of feldspar and lithic fragments,along with the development of more dissolution pores.The reservoir possesses good petrophysical properties,low displacement pressure,and high pore-throat connectivity and homogeneity,indicating strong fluid mobility.In contrast,the western sandstones,being nearer to the provenance,exhibit poor grain sorting,high contents of lithic fragments,strong compaction and cementation effects,resulting in poor petrophysical properties,and strong pore-throat heterogeneity,revealing weak fluid mobility.The range of full PSD in the eastern reservoir is wider than that in the western reservoir,with relatively well-developed macropores.The macropores are the primary space for occurrence of movable fluids,and controls the fluid mobility of the reservoir.The effective porosity of movable fluids(EPMF)quantitatively represents the pore space occupied by movable fluids within the reservoir and correlates well with porosity,permeability,and PTS parameters,making it a valuable parameter for evaluating fluid mobility.Under the multi-provenance system,the eastern and western reservoirs underwent different sedimentation and diagenesis processes,resulting in differential distribution of reservoir mineral components and pore types,which in turn affects the PTS heterogeneity and reservoir quality.The composition and content of reservoir minerals are intrinsic factors influencing fluid mobility,while the microscopic PTS is the primary factor controlling it.Low clay mineral content,welldeveloped macropores,and weak pore-throat heterogeneity all contribute to the storage and seepage of reservoir fluids.