期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于MobileNet V3的半导体芯片缺陷检测方法研究 被引量:1
1
作者 张志敏 陈心怡 《重庆科技大学学报(自然科学版)》 2025年第2期80-87,108,共9页
针对半导体芯片缺陷检测的挑战,提出了一种基于MobileNet V3的半导体芯片缺陷检测方法。首先,引入协调注意力机制,增强模型对缺陷特征的定位能力;其次,优化深度可分离卷积层结构,提升特征提取效率;最后,改进数据预处理流程,使模型更好... 针对半导体芯片缺陷检测的挑战,提出了一种基于MobileNet V3的半导体芯片缺陷检测方法。首先,引入协调注意力机制,增强模型对缺陷特征的定位能力;其次,优化深度可分离卷积层结构,提升特征提取效率;最后,改进数据预处理流程,使模型更好地适应半导体芯片图像特性。实验结果表明,改进后模型的准确率、召回率、F1分数和AUC均高于原模型及其他对比模型。改进后模型在半导体芯片缺陷检测任务中表现出了优异性能,可为工业级高精度缺陷检测提供可靠的技术支持。 展开更多
关键词 mobilenet v3模型 协调注意力机制 半导体芯片缺陷检测 深度学习
在线阅读 下载PDF
基于改进轻量级MobileNet V2-DeepLab V3^(+)模型的恐龙谷环状地区土地利用分类
2
作者 任聪 甘淑 +2 位作者 袁希平 罗为东 朱智富 《兰州大学学报(自然科学版)》 北大核心 2025年第4期436-441,共6页
针对传统卷积神经网络模型对全局特征捕捉不足的缺陷,提出一种基于改进的DeepLab V3^(+)全局通道空间注意力模型.通过处理无人机影像数据,以轻量级网络MobileNet V2为主干网络,结合通道注意力、通道洗牌和空间注意力机制,增强了特征的... 针对传统卷积神经网络模型对全局特征捕捉不足的缺陷,提出一种基于改进的DeepLab V3^(+)全局通道空间注意力模型.通过处理无人机影像数据,以轻量级网络MobileNet V2为主干网络,结合通道注意力、通道洗牌和空间注意力机制,增强了特征的全局特征捕捉能力,有效提升了研究区的土地利用分类精度.在以专家经验构建的道路、耕地、草地等样本中进行对比实验,结果表明,该方法的平均准确率、平均召回率、平均F_(1)分数、平均交并比及К系数比原始DeepLab V3^(+)模型分别提高了1.90%、2.22%、2.22%、3.37%、2.74%,其分割效果相比其他模型,更加关注图像的全局特征,提升了对复杂纹理类别的识别精度. 展开更多
关键词 全局通道空间注意力 mobilenet V2网络 DeepLab v3^(+)模型 土地利用 语义分割
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部