期刊文献+
共找到246篇文章
< 1 2 13 >
每页显示 20 50 100
Fault-tolerant control of wheeled mobile robots with prescribed trajectory tracking performance
1
作者 Jin-Xi Zhang Tianyou Chai 《Journal of Automation and Intelligence》 2025年第2期73-81,共9页
The problem of trajectory tracking for a class of differentially driven wheeled mobile robots(WMRs)under partial loss of the effectiveness of the actuated wheels is investigated in this paper.Such actuator faults may ... The problem of trajectory tracking for a class of differentially driven wheeled mobile robots(WMRs)under partial loss of the effectiveness of the actuated wheels is investigated in this paper.Such actuator faults may cause the loss of strong controllability of the WMR,such that the conventional fault-tolerant control strategies unworkable.In this paper,a new mixed-gain adaption scheme is devised,which is adopted to adapt the gain of a decoupling prescribed performance controller to adaptively compensate for the loss of the effectiveness of the actuators.Different from the existing gain adaption technique which depends on both the barrier functions and their partial derivatives,ours involves only the barrier functions.This yields a lower magnitude of the resulting control signals.Our controller accomplishes trajectory tracking of the WMR with the prescribed rate and accuracy even in the faulty case,and the control design relies on neither the information of the WMR dynamics and the actuator faults nor the tools for function approximation,parameter identification,and fault detection or estimation.The comparative simulation results justify the theoretical findings. 展开更多
关键词 Fault-tolerant control Prescribed performance Trajectory tracking Wheeled mobile robots
在线阅读 下载PDF
A finite-time fuzzy adaptive output-feedback fault-tolerant control for underactuated wheeled mobile robots systems 被引量:3
2
作者 Pingfan Liu Shaocheng Tong 《Journal of Automation and Intelligence》 2024年第2期111-118,共8页
This paper investigates the adaptive fuzzy finite-time output-feedback fault-tolerant control (FTC) problemfor a class of nonlinear underactuated wheeled mobile robots (UWMRs) system with intermittent actuatorfaults. ... This paper investigates the adaptive fuzzy finite-time output-feedback fault-tolerant control (FTC) problemfor a class of nonlinear underactuated wheeled mobile robots (UWMRs) system with intermittent actuatorfaults. The UWMR system includes unknown nonlinear dynamics and immeasurable states. Fuzzy logic systems(FLSs) are utilized to work out immeasurable functions. Furthermore, with the support of the backsteppingcontrol technique and adaptive fuzzy state observer, a fuzzy adaptive finite-time output-feedback FTC scheme isdeveloped under the intermittent actuator faults. It is testifying the scheme can ensure the controlled nonlinearUWMRs is stable and the estimation errors are convergent. Finally, the comparison results and simulationvalidate the effectiveness of the proposed fuzzy adaptive finite-time FTC approach. 展开更多
关键词 Underactuated wheeled mobile robots system FINITE-TIME Fuzzy adaptive fault-tolerant control OUTPUT-FEEDBACK Intermittent actuator faults
在线阅读 下载PDF
Adaptive neural network event-triggered secure formation control of nonholonomic mobile robots subject to deception attacks
3
作者 Kai Wang Wei Wu Shaocheng Tong 《Journal of Automation and Intelligence》 2024年第4期260-268,共9页
This paper investigates the adaptive neural network(NN)event-triggered secure formation control problem for nonholonomic mobile robots(NMRs)subject to deception attacks.The NNs are employed to approximate unknown nonl... This paper investigates the adaptive neural network(NN)event-triggered secure formation control problem for nonholonomic mobile robots(NMRs)subject to deception attacks.The NNs are employed to approximate unknown nonlinear functions in robotic dynamics.Since the transmission channel from sensor-to-controller is vulnerable to deception attacks,a NN estimation technique is introduced to estimate the unknown deception attacks.In order to alleviate the amount of communication between controller-and-actuator,an event-triggered mechanism with relative threshold strategy is established.Then,an adaptive NN event-triggered secure formation control method is proposed.It is proved that all closed-loop signals of controlled systems are bounded and the formation tracking errors converge a neighborhood of the origin in the presence of deception attacks.The comparative simulations illustrate the effectiveness of the proposed secure formation control scheme. 展开更多
关键词 Nonholonomic mobile robots Deception attacks Neural network(NN)estimation technique Secure formation control Event-triggered mechanism
在线阅读 下载PDF
Heuristic Expanding Disconnected Graph:A Rapid Path Planning Method for Mobile Robots 被引量:2
4
作者 Yong Tao Lian Duan +3 位作者 He Gao Yufan Zhang Yian Song Tianmiao Wang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第2期68-82,共15页
Existing mobile robots mostly use graph search algorithms for path planning,which suffer from relatively low planning efficiency owing to high redundancy and large computational complexity.Due to the limitations of th... Existing mobile robots mostly use graph search algorithms for path planning,which suffer from relatively low planning efficiency owing to high redundancy and large computational complexity.Due to the limitations of the neighborhood search strategy,the robots could hardly obtain the most optimal global path.A global path planning algorithm,denoted as EDG*,is proposed by expanding nodes using a well-designed expanding disconnected graph operator(EDG)in this paper.Firstly,all obstacles are marked and their corners are located through the map pre-processing.Then,the EDG operator is designed to find points in non-obstruction areas to complete the rapid expansion of disconnected nodes.Finally,the EDG*heuristic iterative algorithm is proposed.It selects the candidate node through a specific valuation function and realizes the node expansion while avoiding collision with a minimum offset.Path planning experiments were conducted in a typical indoor environment and on the public dataset CSM.The result shows that the proposed EDG*reduced the planning time by more than 90%and total length of paths reduced by more than 4.6%.Compared to A*,Dijkstra and JPS,EDG*does not show an exponential explosion effect in map size.The EDG*showed better performance in terms of path smoothness,and collision avoidance.This shows that the EDG*algorithm proposed in this paper can improve the efficiency of path planning and enhance path quality. 展开更多
关键词 Global path planning mobile robot Expanding disconnected graph Edge node OFFSET
在线阅读 下载PDF
Adaptive Trajectory Tracking Control for Nonholonomic Wheeled Mobile Robots:A Barrier Function Sliding Mode Approach 被引量:1
5
作者 Yunjun Zheng Jinchuan Zheng +3 位作者 Ke Shao Han Zhao Hao Xie Hai Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第4期1007-1021,共15页
The trajectory tracking control performance of nonholonomic wheeled mobile robots(NWMRs)is subject to nonholonomic constraints,system uncertainties,and external disturbances.This paper proposes a barrier function-base... The trajectory tracking control performance of nonholonomic wheeled mobile robots(NWMRs)is subject to nonholonomic constraints,system uncertainties,and external disturbances.This paper proposes a barrier function-based adaptive sliding mode control(BFASMC)method to provide high-precision,fast-response performance and robustness for NWMRs.Compared with the conventional adaptive sliding mode control,the proposed control strategy can guarantee that the sliding mode variables converge to a predefined neighborhood of origin with a predefined reaching time independent of the prior knowledge of the uncertainties and disturbances bounds.Another advantage of the proposed algorithm is that the control gains can be adaptively adjusted to follow the disturbances amplitudes thanks to the barrier function.The benefit is that the overestimation of control gain can be eliminated,resulting in chattering reduction.Moreover,a modified barrier function-like control gain is employed to prevent the input saturation problem due to the physical limit of the actuator.The stability analysis and comparative experiments demonstrate that the proposed BFASMC can ensure the prespecified convergence performance of the NWMR system output variables and strong robustness against uncertainties/disturbances. 展开更多
关键词 Adaptive sliding mode barrier function nonholonomic wheeled mobile robot(NWMR) trajectory tracking control
在线阅读 下载PDF
Precise trajectory tracking of mecanum-wheeled omnidirectional mobile robots via a novel fixed-time sliding mode control approach
6
作者 Zhe Sun Zhipeng Li +3 位作者 Hao Xie Yunjun Zheng Jinchuan Zheng Bo Chen 《Control Theory and Technology》 EI CSCD 2024年第4期596-611,共16页
This paper proposes a novel fixed-time sliding mode control approach for trajectory-tracking tasks of a mecanum-wheeled omnidirectional mobile robot.First,the idea of two-phase attractors is introduced into the domain... This paper proposes a novel fixed-time sliding mode control approach for trajectory-tracking tasks of a mecanum-wheeled omnidirectional mobile robot.First,the idea of two-phase attractors is introduced into the domain of sliding mode control,and a new fixed-time sliding surface is proposed.Then,according to this sliding surface,a new type of nonsingular fast terminal sliding mode control algorithm is designed for the omnidirectional mobile robot,which can realize a fast fixed-time convergence property.The stability of the control system is proven scrupulously,and a guideline for control-parameter tuning is expounded.Finally,experiments are implemented to test the trajectory-tracking performance of the robot.Experimental results demonstrate the superiority of the proposed sliding surface and the corresponding control scheme in comparison with benchmark controllers. 展开更多
关键词 Omnidirectional mobile robot Trajectory tracking Sliding mode control Fixed-time convergence
原文传递
CBF-Based Distributed Model Predictive Control for Safe Formation of Autonomous Mobile Robots
7
作者 MU Jianbin YANG Haili HE Defeng 《Journal of Shanghai Jiaotong university(Science)》 EI 2024年第4期678-688,共11页
A distributed model predictive control(DMPC)method based on robust control barrier function(RCBF)is developed to achieve the safe formation target of multi-autonomous mobile robot systems in an uncertain disturbed env... A distributed model predictive control(DMPC)method based on robust control barrier function(RCBF)is developed to achieve the safe formation target of multi-autonomous mobile robot systems in an uncertain disturbed environment.The first step is to analyze the safety requirements of the system during safe formation and categorize them into collision avoidance and distance connectivity maintenance.RCBF constraints are designed based on collision avoidance and connectivity maintenance requirements,and security constraints are achieved through a combination.Then,the specified safety constraints are integrated with the objective of forming a multi-autonomous mobile robot formation.To ensure safe control,the optimization problem is integrated with the DMPC method.Finally,the RCBF-DMPC algorithm is proposed to ensure iterative feasibility and stability while meeting the constraints and expected objectives.Simulation experiments illustrate that the designed algorithm can achieve cooperative formation and ensure system security. 展开更多
关键词 distributed model predictive control(DMPC) robust control barrier function(RCBF) autonomous mobile robot formation control collision avoidance
原文传递
Vision-based Stabilization of Nonholonomic Mobile Robots by Integrating Sliding-mode Control and Adaptive Approach 被引量:4
8
作者 CAO Zhengcai YIN Longjie FU Yili 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第1期21-28,共8页
Vision-based pose stabilization of nonholonomic mobile robots has received extensive attention. At present, most of the solutions of the problem do not take the robot dynamics into account in the controller design, so... Vision-based pose stabilization of nonholonomic mobile robots has received extensive attention. At present, most of the solutions of the problem do not take the robot dynamics into account in the controller design, so that these controllers are difficult to realize satisfactory control in practical application. Besides, many of the approaches suffer from the initial speed and torque jump which are not practical in the real world. Considering the kinematics and dynamics, a two-stage visual controller for solving the stabilization problem of a mobile robot is presented, applying the integration of adaptive control, sliding-mode control, and neural dynamics. In the first stage, an adaptive kinematic stabilization controller utilized to generate the command of velocity is developed based on Lyapunov theory. In the second stage, adopting the sliding-mode control approach, a dynamic controller with a variable speed function used to reduce the chattering is designed, which is utilized to generate the command of torque to make the actual velocity of the mobile robot asymptotically reach the desired velocity. Furthermore, to handle the speed and torque jump problems, the neural dynamics model is integrated into the above mentioned controllers. The stability of the proposed control system is analyzed by using Lyapunov theory. Finally, the simulation of the control law is implemented in perturbed case, and the results show that the control scheme can solve the stabilization problem effectively. The proposed control law can solve the speed and torque jump problems, overcome external disturbances, and provide a new solution for the vision-based stabilization of the mobile robot. 展开更多
关键词 nonholonomic mobile robots vision-based stabilization sliding-mode control adaptive control neural dynamics
在线阅读 下载PDF
Target Tracking Algorithm Using Finite-time Convergence Smooth Second-order Sliding Mode Controller for Mobile Robots 被引量:4
9
作者 GE Lianzheng ZHAO Lijun GAO Tong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第3期414-419,共6页
Target tracking control for wheeled mobile robot (WMR) need resolve the problems of kinematics model and tracking algorithm.High-order sliding mode control is a valid method used in the nonlinear tracking control sy... Target tracking control for wheeled mobile robot (WMR) need resolve the problems of kinematics model and tracking algorithm.High-order sliding mode control is a valid method used in the nonlinear tracking control system,which can eliminate the chattering of sliding mode control.Currently there lacks the research of robustness and uncertain factors for high-order sliding mode control.To address the fast convergence and robustness problems of tracking target,the tracking mathematical model of WMR and the target is derived.Based on the finite-time convergence theory and second order sliding mode method,a nonlinear tracking algorithm is designed which guarantees that WMR can catch the target in finite time.At the same time an observer is applied to substitute the uncertain acceleration of the target,then a smooth nonlinear tracking algorithm is proposed.Based on Lyapunov stability theory and finite-time convergence,a finite time convergent smooth second order sliding mode controller and a target tracking algorithm are designed by using second order sliding mode method.The simulation results verified that WMR can catch up the target quickly and reduce the control discontinuity of the velocity of WMR. 展开更多
关键词 mobile robots second order sliding mode finite-time convergence OBSERVER
在线阅读 下载PDF
Simple Path Planning for Mobile Robots in the Present of Obstacles
10
作者 贾艳华 梅凤翔 《Journal of Beijing Institute of Technology》 EI CAS 2002年第2期208-211,共4页
To obtain the near optimal path for the mobile robots in the present of the obstacles, where the robots are subject to both the nonholonomic constraints and the bound to the curvature of the path, a simple planning i... To obtain the near optimal path for the mobile robots in the present of the obstacles, where the robots are subject to both the nonholonomic constraints and the bound to the curvature of the path, a simple planning is applied by the heuristic searching method in which Reeds and Shepp’s shortest paths are chosen as heuristic functions. It has performed well in simulation of mobile robots moving in a cluttered environment. 展开更多
关键词 configuration space car like mobile robots path planning nonholonomic constraints
在线阅读 下载PDF
Quadrant based incremental planning for mobile robots 被引量:2
11
作者 P.Raja M.Abhilash +1 位作者 K.Ravi Shankar Alameluvari Adarsh 《Journal of Central South University》 SCIE EI CAS 2014年第5期1792-1803,共12页
Path planning of a mobile robot in the presence of multiple moving obstacles is found to be a complicated problem.A planning algorithm capable of negotiating both static and moving obstacles in an unpredictable(on-lin... Path planning of a mobile robot in the presence of multiple moving obstacles is found to be a complicated problem.A planning algorithm capable of negotiating both static and moving obstacles in an unpredictable(on-line)environment is proposed.The proposed incremental algorithm plans the path by considering the quadrants in which the current positions of obstacles as well as target are situated.Also,the governing equations for the shortest path are derived.The proposed mathematical model describes the motion(satisfying constraints of the mobile robot)along a collision-free path.Further,the algorithm is applicable to dynamic environments with fixed or moving targets.Simulation results show the effectiveness of the proposed algorithm.Comparison of results with the improved artificial potential field(iAPF)algorithm shows that the proposed algorithm yields shorter path length with less computation time. 展开更多
关键词 mobile robots incremental planning quadrant based approach dynamic environment
在线阅读 下载PDF
Accurate parameter estimation of systematic odometry errors for two-wheel differential mobile robots 被引量:3
12
作者 Changbae Jung Woojin Chung 《Journal of Measurement Science and Instrumentation》 CAS 2012年第3期268-272,共5页
Odometry using incremental wheel encoder odometry suffers from the accumulation of kinematic sensors provides the relative robot pose estimation. However, the modeling errors of wheels as the robot's travel distance ... Odometry using incremental wheel encoder odometry suffers from the accumulation of kinematic sensors provides the relative robot pose estimation. However, the modeling errors of wheels as the robot's travel distance increases. Therefore, the systematic errors need to be calibrated. The University of Michigan Benchmark(UMBmark) method is a widely used calibration scheme of the systematic errors in two wheel differential mobile robots. In this paper, the accurate parameter estimation of systematic errors is proposed by extending the conventional method. The contributions of this paper can be summarized as two issues. The first contribution is to present new calibration equations that reduce the systematic odometry errors. The new equations were derived to overcome the limitation of conventional schemes. The second contribu tion is to propose the design guideline of the test track for calibration experiments. The calibration performance can be im proved by appropriate design of the test track. The simulations and experimental results show that the accurate parameter es timation can be implemented by the proposed method. 展开更多
关键词 calibration kinematic modeling errors mobile robots ODOMETRY test tracks
在线阅读 下载PDF
Dynamic Consensus of High-order Multi-agent Systems and Its Application in the Motion Control of Multiple Mobile Robots 被引量:3
13
作者 Zhong-Qiang Wu Yang Wang 《International Journal of Automation and computing》 EI 2012年第1期54-62,共9页
In this paper, the leader-following consensus problem for multi-agent linear dynamic systems is considered. All agents and leader have identical multi-input multi-output (MIMO) linear dynamics that can be of any ord... In this paper, the leader-following consensus problem for multi-agent linear dynamic systems is considered. All agents and leader have identical multi-input multi-output (MIMO) linear dynamics that can be of any order, and only the output information of each agent is delivered throughout the communication network. When the interaction topology is fixed, the leader-following consensus is attained by Ho~ dynamic output feedback control, and the sufficient condition of robust controllers is equal to the solvability of linear matrix inequality (LMI). The whole analysis is based on spectral decomposition and an equivalent decoupled structure achieved, and the stability of the system is proved. Finally, we extended the theoretical results to the case that the interaction topology is switching. The simulation results for multiple mobile robots show the effectiveness of the devised methods. 展开更多
关键词 Multi-agent systems consensus problem dynamic output feedback linear matrix inequality (LMI) multiple mobile robots.
在线阅读 下载PDF
A practical self-localization scheme for mobile robots using sonar sensors 被引量:2
14
作者 贺锋 《High Technology Letters》 EI CAS 2009年第1期13-19,共7页
A practical serf-localization scheme for mobile robots is proposed and implemented by utilizing sonar sensors. Specifically, the localization problem is solved by employing Monte Carlo method with a new mechanism prop... A practical serf-localization scheme for mobile robots is proposed and implemented by utilizing sonar sensors. Specifically, the localization problem is solved by employing Monte Carlo method with a new mechanism proposed to calculate the samples' weights; the convergence and veracity of the sample set are guaranteed by the designed resampling and scattering process. The proposed serf-localization algorithm is fully implemented on a specific mobile robot system, and experimental results illustrate that it provides an efficient solution for the kidnapped problem. 展开更多
关键词 mobile robots Monte Carlo localization kidnapped problem SONAR
在线阅读 下载PDF
Tour Planning Design for Mobile Robots Using Pruned Adaptive Resonance Theory Networks 被引量:1
15
作者 S.Palani Murugan M.Chinnadurai S.Manikandan 《Computers, Materials & Continua》 SCIE EI 2022年第1期181-194,共14页
The development of intelligent algorithms for controlling autonomous mobile robots in real-time activities has increased dramatically in recent years.However,conventional intelligent algorithms currently fail to accur... The development of intelligent algorithms for controlling autonomous mobile robots in real-time activities has increased dramatically in recent years.However,conventional intelligent algorithms currently fail to accurately predict unexpected obstacles involved in tour paths and thereby suffer from inefficient tour trajectories.The present study addresses these issues by proposing a potential field integrated pruned adaptive resonance theory(PPART)neural network for effectively managing the touring process of autonomous mobile robots in real-time.The proposed system is implemented using the AlphaBot platform,and the performance of the system is evaluated according to the obstacle prediction accuracy,path detection accuracy,time-lapse,tour length,and the overall accuracy of the system.The proposed system provide a very high obstacle prediction accuracy of 99.61%.Accordingly,the proposed tour planning design effectively predicts unexpected obstacles in the environment and thereby increases the overall efficiency of tour navigation. 展开更多
关键词 Autonomous mobile robots path exploration NAVIGATION tour planning tour process potential filed integrated pruned ART networks AlphaBot platform
在线阅读 下载PDF
Modeling and simulation for small-tracked mobile robots 被引量:1
16
作者 高健 施家栋 王建中 《Journal of Beijing Institute of Technology》 EI CAS 2016年第2期211-217,共7页
The small-tracked mobile robots( STMRs) are small,portable and concealed,and they are widely used in scouting,investigation,rescue and assistance. In this paper,a mechanical model is established based on the multi-b... The small-tracked mobile robots( STMRs) are small,portable and concealed,and they are widely used in scouting,investigation,rescue and assistance. In this paper,a mechanical model is established based on the multi-body dynamic software RecurD yn,and a control system is simulated through Simulink,including its kinematics model,speed controller,motors' model. Associating the mechanical and control model,the cosimulation model is established for STMRs. The co-simulation approach is applied to optimize the motor parameters. A series of experiments are conducted to examine the accuracy of the virtual prototype,and the results demonstrate that the STMR virtual prototype can exactly illustrate the dynamic performance of the physical one.The co-simulation of mechanical model and control model is applied in forecasting and debugging critical parameters,also it provides guidance in defining motor's peak current. 展开更多
关键词 tracked mobile robots RECURDYN virtual prototype CO-SIMULATION
在线阅读 下载PDF
Stabilization of Dynamic Systems for Multiple Omni-Directional Mobile Robots
17
作者 王朝立 谈大龙 王越超 《Journal of Southeast University(English Edition)》 EI CAS 2001年第1期35-40,共6页
This paper deals with the stabilization of dynamic systems for two omni directional mobile robots by using the inner product of two vectors, one is from a robot's position to another's, the other is from a ro... This paper deals with the stabilization of dynamic systems for two omni directional mobile robots by using the inner product of two vectors, one is from a robot's position to another's, the other is from a robot's target point to another's. The multi step control laws given can exponentially stabilize the dynamic system and make the distance between two robots be greater than or equal to the collision free safe distance. The application of it to two omni directional mobile robots is described. Simulation result shows that the proposed controller is effective. 展开更多
关键词 omni directional mobile robot DYNAMICS COORDINATION collision avoidance STABILIZATION
在线阅读 下载PDF
MOTION PLANNING OF MULTIPLE MOBILE ROBOTS COOPERATIVELY TRANSPORTING A COMMON OBJECT
18
作者 战强 丁希仑 +1 位作者 张启先 王树国 《Chinese Journal of Aeronautics》 SCIE EI CSCD 2000年第2期118-122,共5页
Many applications above the capability of a single robot need the cooperation of multiple mobile robots, but effective cooperation is hard to achieve. In this paper, a master slave method is proposed to control the m... Many applications above the capability of a single robot need the cooperation of multiple mobile robots, but effective cooperation is hard to achieve. In this paper, a master slave method is proposed to control the motions of multiple mobile robots that cooperatively transport a common object from a start point to a goal point. A noholonomic kinematic model to constrain the motions of multiple mobile robots is built in order to achieve cooperative motions of them, and a “Dynamic Coordinator” strategy is used to deal with the collision avoidance of the master robot and slave robot individually. Simulation results show the robustness and effectiveness of the method. 展开更多
关键词 multiple mobile robots motion planning COOPERATION coordinated control SIMULATION
在线阅读 下载PDF
Extended Dyna-Q Algorithm for Path Planning of Mobile Robots
19
作者 Hoang-huu VIET Sang-hyeok AN Tae-choong CHUNG 《Journal of Measurement Science and Instrumentation》 CAS 2011年第3期283-287,共5页
This paper presents an extended Dyna-Q algorithm to improve efficiency of the standard Dyna-Q algorithm.In the first episodes of the standard Dyna-Q algorithm,the agent travels blindly to find a goal position.To overc... This paper presents an extended Dyna-Q algorithm to improve efficiency of the standard Dyna-Q algorithm.In the first episodes of the standard Dyna-Q algorithm,the agent travels blindly to find a goal position.To overcome this weakness,our approach is to use a maximum likelihood model of all state-action pairs to choose actions and update Q-values in the first few episodes.Our algorithm is compared with one-step Q-learning algorithm and the standard Dyna-Q algorithm for the path planning problem in maze environments.Experimental results show that the proposed algorithm is more efficient than the one-step Q-learning algorithm as well as the standard Dyna-Q algorithm,especially in the large environment of states. 展开更多
关键词 reinforcement learning Dyna-Q path planning mobile robots
在线阅读 下载PDF
Team-oriented programming for multiple mobile robots
20
作者 孙波 Chen Weidong Xi Yugeng 《High Technology Letters》 EI CAS 2005年第4期410-414,共5页
This paper presnts a team-oriented programming method specially designed for multiple mobile robots. The team, which is a typical constitution structure in multi-robot system, forms after the user selects suitable rob... This paper presnts a team-oriented programming method specially designed for multiple mobile robots. The team, which is a typical constitution structure in multi-robot system, forms after the user selects suitable robots, assigns their roles and sets related parameters. Team behavior module are introduced for the team-level behavior description and the temporal chain of these modules, realized by finite state automata, partitions the team tasks into discrete operating states and triggers. A graphical programming tool is designed for the team task description with visual diagrams. The real robots experiment of adaptive formation shows the system's usability and effectivity. 展开更多
关键词 MULTI-ROBOT mobile robots team-oriented programming
在线阅读 下载PDF
上一页 1 2 13 下一页 到第
使用帮助 返回顶部