The unmanned aerial vehicle(UAV)-assisted mobile edge computing(MEC)has been deemed a promising solution for energy-constrained devices to run smart applications with computationintensive and latency-sensitive require...The unmanned aerial vehicle(UAV)-assisted mobile edge computing(MEC)has been deemed a promising solution for energy-constrained devices to run smart applications with computationintensive and latency-sensitive requirements,especially in some infrastructure-limited areas or some emergency scenarios.However,the multi-UAVassisted MEC network remains largely unexplored.In this paper,the dynamic trajectory optimization and computation offloading are studied in a multi-UAVassisted MEC system where multiple UAVs fly over a target area with different trajectories to serve ground users.By considering the dynamic channel condition and random task arrival and jointly optimizing UAVs'trajectories,user association,and subchannel assignment,the average long-term sum of the user energy consumption minimization problem is formulated.To address the problem involving both discrete and continuous variables,a hybrid decision deep reinforcement learning(DRL)-based intelligent energyefficient resource allocation and trajectory optimization algorithm is proposed,named HDRT algorithm,where deep Q network(DQN)and deep deterministic policy gradient(DDPG)are invoked to process discrete and continuous variables,respectively.Simulation results show that the proposed HDRT algorithm converges fast and outperforms other benchmarks in the aspect of user energy consumption and latency.展开更多
Aimed at the doubly near-far problems in a large range suffered by the remote user group and in a small range existing in both nearby and remote user groups during energy harvesting and computation offloading,a resour...Aimed at the doubly near-far problems in a large range suffered by the remote user group and in a small range existing in both nearby and remote user groups during energy harvesting and computation offloading,a resource allocation method for unmanned aerial vehicle(UAV)-assisted and user cooperation non-linear energy harvesting mobile edge computing(MEC)system is proposed.The UAV equipped with an MEC server is introduced to provide energy and computing services for the remote user group to alleviate the doubly near-far problem in a large range suffered by the remote user group.The doubly near-far problem in a small range existing in both nearby and remote user groups is mitigated by user cooperation.The specific user cooperation strategy is that the user near the base station or the UAV is used as a relay to transfer the computing task of the user far from the base station or the UAV to the MEC server for computing.By jointly optimizing users’offloading time,users’transmitting power,and the hovering position of the UAV,the resource allocation problem is modeled as a nonlinear programming problem with the objective of maximizing computation efficiency.The suboptimal solution is obtained by adopting the differential evolution algorithm.Simulation results show that,compared with the resource allocation method based on genetic algorithm and the without user cooperation method,the proposed method has higher computation efficiency.展开更多
Reliable communication and intensive computing power cannot be provided effectively by temporary hot spots in disaster areas and complex terrain ground infrastructure.Mitigating this has greatly developed the applicat...Reliable communication and intensive computing power cannot be provided effectively by temporary hot spots in disaster areas and complex terrain ground infrastructure.Mitigating this has greatly developed the application and integration of UAV and Mobile Edge Computing(MEC)to the Internet of Things(loT).However,problems such as multi-user and huge data flow in large areas,which contradict the reality that a single UAV is constrained by limited computing power,still exist.Due to allowing UAV collaboration to accomplish complex tasks,cooperative task offloading between multiple UAVs must meet the interdependence of tasks and realize parallel processing,which reduces the computing power consumption and endurance pressure of terminals.Considering the computing requirements of the user terminal,delay constraint of a computing task,energy constraint,and safe distance of UAV,we constructed a UAV-Assisted cooperative offloading energy efficiency system for mobile edge computing to minimize user terminal energy consumption.However,the resulting optimization problem is originally nonconvex and thus,difficult to solve optimally.To tackle this problem,we developed an energy efficiency optimization algorithm using Block Coordinate Descent(BCD)that decomposes the problem into three convex subproblems.Furthermore,we jointly optimized the number of local computing tasks,number of computing offloaded tasks,trajectories of UAV,and offloading matching relationship between multi-UAVs and multiuser terminals.Simulation results show that the proposed approach is suitable for different channel conditions and significantly saves the user terminal energy consumption compared with other benchmark schemes.展开更多
In this paper,we consider mobile edge computing(MEC)networks against proactive eavesdropping.To maximize the transmission rate,IRS assisted UAV communications are applied.We take the joint design of the trajectory of ...In this paper,we consider mobile edge computing(MEC)networks against proactive eavesdropping.To maximize the transmission rate,IRS assisted UAV communications are applied.We take the joint design of the trajectory of UAV,the transmitting beamforming of users,and the phase shift matrix of IRS.The original problem is strong non-convex and difficult to solve.We first propose two basic modes of the proactive eavesdropper,and obtain the closed-form solution for the boundary conditions of the two modes.Then we transform the original problem into an equivalent one and propose an alternating optimization(AO)based method to obtain a local optimal solution.The convergence of the algorithm is illustrated by numerical results.Further,we propose a zero forcing(ZF)based method as sub-optimal solution,and the simulation section shows that the proposed two schemes could obtain better performance compared with traditional schemes.展开更多
This paper presents an algorithm named the dependency-aware offloading framework(DeAOff),which is designed to optimize the deployment of Gen-AI decoder models in mobile edge computing(MEC)environments.These models,suc...This paper presents an algorithm named the dependency-aware offloading framework(DeAOff),which is designed to optimize the deployment of Gen-AI decoder models in mobile edge computing(MEC)environments.These models,such as decoders,pose significant challenges due to their interlayer dependencies and high computational demands,especially under edge resource constraints.To address these challenges,we propose a two-phase optimization algorithm that first handles dependencyaware task allocation and subsequently optimizes energy consumption.By modeling the inference process using directed acyclic graphs(DAGs)and applying constraint relaxation techniques,our approach effectively reduces execution latency and energy usage.Experimental results demonstrate that our method achieves a reduction of up to 20%in task completion time and approximately 30%savings in energy consumption compared to traditional methods.These outcomes underscore our solution’s robustness in managing complex sequential dependencies and dynamic MEC conditions,enhancing quality of service.Thus,our work presents a practical and efficient resource optimization strategy for deploying models in resourceconstrained MEC scenarios.展开更多
This paper investigates the age of information(AoI)-based multi-user mobile edge computing(MEC)network with partial offloading mode.The weighted sum AoI(WSA)is first analyzed and derived,and then a WSA minimization pr...This paper investigates the age of information(AoI)-based multi-user mobile edge computing(MEC)network with partial offloading mode.The weighted sum AoI(WSA)is first analyzed and derived,and then a WSA minimization problem is formulated by jointly optimizing the user scheduling and data assignment.Due to the non-analytic expression of the WSA w.r.t.the optimization variables and the unknowability of future network information,the problem cannot be solved with known solution methods.Therefore,an online Joint Partial Offloading and User Scheduling Optimization(JPOUSO)algorithm is proposed by transforming the original problem into a single-slot data assignment subproblem and a single-slot user scheduling sub-problem and solving the two sub-problems separately.We analyze the computational complexity of the presented JPO-USO algorithm,which is of O(N),with N being the number of users.Simulation results show that the proposed JPO-USO algorithm is able to achieve better AoI performance compared with various baseline methods.It is shown that both the user’s data assignment and the user’s AoI should be jointly taken into account to decrease the system WSA when scheduling users.展开更多
In this paper,we investigate the energy efficiency maximization for mobile edge computing(MEC)in intelligent reflecting surface(IRS)assisted unmanned aerial vehicle(UAV)communications.In particular,UAVcan collect the ...In this paper,we investigate the energy efficiency maximization for mobile edge computing(MEC)in intelligent reflecting surface(IRS)assisted unmanned aerial vehicle(UAV)communications.In particular,UAVcan collect the computing tasks of the terrestrial users and transmit the results back to them after computing.We jointly optimize the users’transmitted beamforming and uploading ratios,the phase shift matrix of IRS,and the UAV trajectory to improve the energy efficiency.The formulated optimization problem is highly non-convex and difficult to be solved directly.Therefore,we decompose the original problem into three sub-problems.We first propose the successive convex approximation(SCA)based method to design the beamforming of the users and the phase shift matrix of IRS,and apply the Lagrange dual method to obtain a closed-form expression of the uploading ratios.For the trajectory optimization,we propose a block coordinate descent(BCD)based method to obtain a local optimal solution.Finally,we propose the alternating optimization(AO)based overall algorithmand analyzed its complexity to be equivalent or lower than existing algorithms.Simulation results show the superiority of the proposedmethod compared with existing schemes in energy efficiency.展开更多
Puncturing has been recognized as a promising technology to cope with the coexistence problem of enhanced mobile broadband(eMBB) and ultra-reliable low latency communications(URLLC)traffic. However, the steady perform...Puncturing has been recognized as a promising technology to cope with the coexistence problem of enhanced mobile broadband(eMBB) and ultra-reliable low latency communications(URLLC)traffic. However, the steady performance of eMBB traffic while meeting the requirements of URLLC traffic with puncturing is a major challenge in some realistic scenarios. In this paper, we pay attention to the timely and energy-efficient processing for eMBB traffic in the industrial Internet of Things(IIoT), where mobile edge computing(MEC) is employed for data processing. Specifically, the performance of eMBB traffic and URLLC traffic in a MEC-based IIoT system is ensured by setting the threshold of tolerable delay and outage probability, respectively. Furthermore,considering the limited energy supply, an energy minimization problem of eMBB device is formulated under the above constraints, by jointly optimizing the resource blocks(RBs) punctured by URLLC traffic, data offloading and transmit power of eMBB device. With Markov's inequality, the problem is reformulated by transforming the probabilistic outage constraint into a deterministic constraint. Meanwhile, an iterative energy minimization algorithm(IEMA) is proposed.Simulation results demonstrate that our algorithm has a significant reduction in the energy consumption for eMBB device and achieves a better overall effect compared to several benchmarks.展开更多
With the increasing maritime activities and the rapidly developing maritime economy, the fifth-generation(5G) mobile communication system is expected to be deployed at the ocean. New technologies need to be explored t...With the increasing maritime activities and the rapidly developing maritime economy, the fifth-generation(5G) mobile communication system is expected to be deployed at the ocean. New technologies need to be explored to meet the requirements of ultra-reliable and low latency communications(URLLC) in the maritime communication network(MCN). Mobile edge computing(MEC) can achieve high energy efficiency in MCN at the cost of suffering from high control plane latency and low reliability. In terms of this issue, the mobile edge communications, computing, and caching(MEC3) technology is proposed to sink mobile computing, network control, and storage to the edge of the network. New methods that enable resource-efficient configurations and reduce redundant data transmissions can enable the reliable implementation of computing-intension and latency-sensitive applications. The key technologies of MEC3 to enable URLLC are analyzed and optimized in MCN. The best response-based offloading algorithm(BROA) is adopted to optimize task offloading. The simulation results show that the task latency can be decreased by 26.5’ ms, and the energy consumption in terminal users can be reduced to 66.6%.展开更多
In many IIoT architectures,various devices connect to the edge cloud via gateway systems.For data processing,numerous data are delivered to the edge cloud.Delivering data to an appropriate edge cloud is critical to im...In many IIoT architectures,various devices connect to the edge cloud via gateway systems.For data processing,numerous data are delivered to the edge cloud.Delivering data to an appropriate edge cloud is critical to improve IIoT service efficiency.There are two types of costs for this kind of IoT network:a communication cost and a computing cost.For service efficiency,the communication cost of data transmission should be minimized,and the computing cost in the edge cloud should be also minimized.Therefore,in this paper,the communication cost for data transmission is defined as the delay factor,and the computing cost in the edge cloud is defined as the waiting time of the computing intensity.The proposed method selects an edge cloud that minimizes the total cost of the communication and computing costs.That is,a device chooses a routing path to the selected edge cloud based on the costs.The proposed method controls the data flows in a mesh-structured network and appropriately distributes the data processing load.The performance of the proposed method is validated through extensive computer simulation.When the transition probability from good to bad is 0.3 and the transition probability from bad to good is 0.7 in wireless and edge cloud states,the proposed method reduced both the average delay and the service pause counts to about 25%of the existing method.展开更多
在任务计算密集型和延迟敏感型的场景下,无人机辅助的移动边缘计算由于其高机动性和放置成本低的特点而被广泛研究.然而,无人机的能耗限制导致其无法长时间工作并且卸载任务内的不同模块往往存在着依赖关系.针对这种情况,以有向无环图(d...在任务计算密集型和延迟敏感型的场景下,无人机辅助的移动边缘计算由于其高机动性和放置成本低的特点而被广泛研究.然而,无人机的能耗限制导致其无法长时间工作并且卸载任务内的不同模块往往存在着依赖关系.针对这种情况,以有向无环图(direct acyclic graph,DAG)为基础对任务内部模块的依赖关系进行建模,综合考虑系统时延和能耗的影响,以最小化系统成本为优化目标得到最优的卸载策略.为了解决这一优化问题,提出了一种基于亚群、高斯变异和反向学习的二进制灰狼优化算法(binary grey wolf optimization algorithm based on subpopulation,Gaussian mutation,and reverse learning,BGWOSGR).仿真结果表明,所提出算法计算出的系统成本比其他4种对比方法分别降低了约19%、27%、16%、13%,并且收敛速度更快.展开更多
This paper considers a UAV communication system with mobile edge computing(MEC).We minimize the energy consumption of the whole system via jointly optimizing the UAV's trajectory and task assignment as well as CPU...This paper considers a UAV communication system with mobile edge computing(MEC).We minimize the energy consumption of the whole system via jointly optimizing the UAV's trajectory and task assignment as well as CPU's computational speed under the set of resource constrains.To this end,we first derive the energy consumption model of data processing,and then obtain the energy consumption model of fixed-wing UAV's flight.The optimization problem is mathematically formulated.To address the problem,we first obtain the approximate optimization problem by applying the technique of discrete linear state-space approximation,and then transform the non-convex constraints into convex by using linearization.Furthermore,a concave-convex procedure(CCCP) based algorithm is proposed in order to solve the optimization problem approximately.Numerical results show the efficacy of the proposed algorithm.展开更多
Through enabling the IT and cloud computation capacities at Radio Access Network(RAN),Mobile Edge Computing(MEC) makes it possible to deploy and provide services locally.Therefore,MEC becomes the potential technology ...Through enabling the IT and cloud computation capacities at Radio Access Network(RAN),Mobile Edge Computing(MEC) makes it possible to deploy and provide services locally.Therefore,MEC becomes the potential technology to satisfy the requirements of 5G network to a certain extent,due to its functions of services localization,local breakout,caching,computation offloading,network context information exposure,etc.Especially,MEC can decrease the end-to-end latency dramatically through service localization and caching,which is key requirement of 5G low latency scenario.However,the performance of MEC still needs to be evaluated and verified for future deployment.Thus,the concept of MEC is introduced into5 G architecture and analyzed for different 5G scenarios in this paper.Secondly,the evaluation of MEC performance is conducted and analyzed in detail,especially for network end-to-end latency.In addition,some challenges of the MEC are also discussed for future deployment.展开更多
The demand for digital media services is increasing as the number of wireless subscriptions is growing exponentially.In order to meet this growing need,mobile wireless networks have been advanced at a tremendous pace ...The demand for digital media services is increasing as the number of wireless subscriptions is growing exponentially.In order to meet this growing need,mobile wireless networks have been advanced at a tremendous pace over recent days.However,the centralized architecture of existing mobile networks,with limited capacity and range of bandwidth of the radio access network and low bandwidth back-haul network,can not handle the exponentially increasing mobile traffic.Recently,we have seen the growth of new mechanisms of data caching and delivery methods through intermediate caching servers.In this paper,we present a survey on recent advances in mobile edge computing and content caching,including caching insertion and expulsion policies,the behavior of the caching system,and caching optimization based on wireless networks.Some of the important open challenges in mobile edge computing with content caching are identified and discussed.We have also compared edge,fog and cloud computing in terms of delay.Readers of this paper will get a thorough understanding of recent advances in mobile edge computing and content caching in mobile wireless networks.展开更多
The development of intelligent connected vehicles(ICVs)has tremendously inspired the emergence of a new computing paradigm called mobile edge computing(MEC),which meets the demands of delay-sensitive on-vehicle applic...The development of intelligent connected vehicles(ICVs)has tremendously inspired the emergence of a new computing paradigm called mobile edge computing(MEC),which meets the demands of delay-sensitive on-vehicle applications.Most existing studies focusing on the issue of task offloading in ICVs assume that the MEC server can directly complete computation tasks without considering the necessity of service caching.However,this is unrealistic in practice because a large number of tasks require the use of corresponding third-party libraries and databases,that is,service caching.Therefore,we investigate the delay optimization in an MEC-enabled ICVs system with multiple mobile vehicles,resource-limited base stations(BSs),and one cloud server.We aim to determine the optimal service caching and task offloading decisions to minimize the overall system delay using mixed-integer nonlinear programming.To address this problem,we first convert it into a quadratically constrained quadratic program and then propose an efficient semidefinite relaxation-based joint service caching and task offloading(JSCTO)algorithm to obtain the service caching and task offloading decisions.In the simulations,we validate the efficiency of our proposed method by setting different numbers of vehicles and the storage capacity of BSs.The results show that our proposed JSCTO algorithm can significantly decrease the total delay of all offloaded tasks compared with the cloud processing only scheme.展开更多
Mobile Edge Computing(MEC)-based computation offloading is a promising application paradigm for serving large numbers of users with various delay and energy requirements.In this paper,we propose a flexible MECbased re...Mobile Edge Computing(MEC)-based computation offloading is a promising application paradigm for serving large numbers of users with various delay and energy requirements.In this paper,we propose a flexible MECbased requirement-adaptive partial offloading model to accommodate each user's specific preference regarding delay and energy consumption.To address the dimensional differences between time and energy,we introduce two normalized parameters and then derive the computational overhead of processing tasks.Different from existing works,this paper considers practical variations in the user request patterns,and exploits a flexible partial offloading mode to minimize computation overheads subject to tolerable delay,task workload and power constraints.Since the resulting problem is non-convex,we decouple it into two convex subproblems and present an iterative algorithm to obtain a feasible offloading solution.Numerical experiments show that our proposed scheme achieves a significant improvement in computation overheads compared with existing schemes.展开更多
Efficient response speed and information processing speed are among the characteristics of mobile edge computing(MEC).However,MEC easily causes information leakage and loss problems because it requires frequent data e...Efficient response speed and information processing speed are among the characteristics of mobile edge computing(MEC).However,MEC easily causes information leakage and loss problems because it requires frequent data exchange.This work proposes an anonymous privacy data protection and access control scheme based on elliptic curve cryptography(ECC)and bilinear pairing to protect the communication security of the MEC.In the proposed scheme,the information sender encrypts private information through the ECC algorithm,and the information receiver uses its own key information and bilinear pairing to extract and verify the identity of the information sender.During each round of communication,the proposed scheme uses timestamps and random numbers to ensure the freshness of each round of conversation.Experimental results show that the proposed scheme has good security performance and can provide data privacy protection,integrity verification,and traceability for the communication process of MEC.The proposed scheme has a lower cost than other related schemes.The communication and computational cost of the proposed scheme are reduced by 31.08% and 22.31% on average compared with those of the other related schemes.展开更多
In the era of Internet of Things(Io T),mobile edge computing(MEC)and wireless power transfer(WPT)provide a prominent solution for computation-intensive applications to enhance computation capability and achieve sustai...In the era of Internet of Things(Io T),mobile edge computing(MEC)and wireless power transfer(WPT)provide a prominent solution for computation-intensive applications to enhance computation capability and achieve sustainable energy supply.A wireless-powered mobile edge computing(WPMEC)system consisting of a hybrid access point(HAP)combined with MEC servers and many users is considered in this paper.In particular,a novel multiuser cooperation scheme based on orthogonal frequency division multiple access(OFDMA)is provided to improve the computation performance,where users can split the computation tasks into various parts for local computing,offloading to corresponding helper,and HAP for remote execution respectively with the aid of helper.Specifically,we aim at maximizing the weighted sum computation rate(WSCR)by optimizing time assignment,computation-task allocation,and transmission power at the same time while keeping energy neutrality in mind.We transform the original non-convex optimization problem to a convex optimization problem and then obtain a semi-closed form expression of the optimal solution by considering the convex optimization techniques.Simulation results demonstrate that the proposed multi-user cooperationassisted WPMEC scheme greatly improves the WSCR of all users than the existing schemes.In addition,OFDMA protocol increases the fairness and decreases delay among the users when compared to TDMA protocol.展开更多
基金supported by National Natural Science Foundation of China(No.62471254)National Natural Science Foundation of China(No.92367302)。
文摘The unmanned aerial vehicle(UAV)-assisted mobile edge computing(MEC)has been deemed a promising solution for energy-constrained devices to run smart applications with computationintensive and latency-sensitive requirements,especially in some infrastructure-limited areas or some emergency scenarios.However,the multi-UAVassisted MEC network remains largely unexplored.In this paper,the dynamic trajectory optimization and computation offloading are studied in a multi-UAVassisted MEC system where multiple UAVs fly over a target area with different trajectories to serve ground users.By considering the dynamic channel condition and random task arrival and jointly optimizing UAVs'trajectories,user association,and subchannel assignment,the average long-term sum of the user energy consumption minimization problem is formulated.To address the problem involving both discrete and continuous variables,a hybrid decision deep reinforcement learning(DRL)-based intelligent energyefficient resource allocation and trajectory optimization algorithm is proposed,named HDRT algorithm,where deep Q network(DQN)and deep deterministic policy gradient(DDPG)are invoked to process discrete and continuous variables,respectively.Simulation results show that the proposed HDRT algorithm converges fast and outperforms other benchmarks in the aspect of user energy consumption and latency.
基金the National Natural Science Foundation of China(No.61871133)the Natural Science Foundation of Fujian Province(No.2021J01587)。
文摘Aimed at the doubly near-far problems in a large range suffered by the remote user group and in a small range existing in both nearby and remote user groups during energy harvesting and computation offloading,a resource allocation method for unmanned aerial vehicle(UAV)-assisted and user cooperation non-linear energy harvesting mobile edge computing(MEC)system is proposed.The UAV equipped with an MEC server is introduced to provide energy and computing services for the remote user group to alleviate the doubly near-far problem in a large range suffered by the remote user group.The doubly near-far problem in a small range existing in both nearby and remote user groups is mitigated by user cooperation.The specific user cooperation strategy is that the user near the base station or the UAV is used as a relay to transfer the computing task of the user far from the base station or the UAV to the MEC server for computing.By jointly optimizing users’offloading time,users’transmitting power,and the hovering position of the UAV,the resource allocation problem is modeled as a nonlinear programming problem with the objective of maximizing computation efficiency.The suboptimal solution is obtained by adopting the differential evolution algorithm.Simulation results show that,compared with the resource allocation method based on genetic algorithm and the without user cooperation method,the proposed method has higher computation efficiency.
基金supported by the Jiangsu Provincial Key Research and Development Program(No.BE2020084-4)the National Natural Science Foundation of China(No.92067201)+2 种基金the National Natural Science Foundation of China(61871446)the Open Research Fund of Jiangsu Key Laboratory of Wireless Communications(710020017002)the Natural Science Foundation of Nanjing University of Posts and telecommunications(NY220047).
文摘Reliable communication and intensive computing power cannot be provided effectively by temporary hot spots in disaster areas and complex terrain ground infrastructure.Mitigating this has greatly developed the application and integration of UAV and Mobile Edge Computing(MEC)to the Internet of Things(loT).However,problems such as multi-user and huge data flow in large areas,which contradict the reality that a single UAV is constrained by limited computing power,still exist.Due to allowing UAV collaboration to accomplish complex tasks,cooperative task offloading between multiple UAVs must meet the interdependence of tasks and realize parallel processing,which reduces the computing power consumption and endurance pressure of terminals.Considering the computing requirements of the user terminal,delay constraint of a computing task,energy constraint,and safe distance of UAV,we constructed a UAV-Assisted cooperative offloading energy efficiency system for mobile edge computing to minimize user terminal energy consumption.However,the resulting optimization problem is originally nonconvex and thus,difficult to solve optimally.To tackle this problem,we developed an energy efficiency optimization algorithm using Block Coordinate Descent(BCD)that decomposes the problem into three convex subproblems.Furthermore,we jointly optimized the number of local computing tasks,number of computing offloaded tasks,trajectories of UAV,and offloading matching relationship between multi-UAVs and multiuser terminals.Simulation results show that the proposed approach is suitable for different channel conditions and significantly saves the user terminal energy consumption compared with other benchmark schemes.
基金This work was supported by the Key Scientific and Technological Project of Henan Province(Grant Number 222102210212)Doctoral Research Start Project of Henan Institute of Technology(Grant Number KQ2005)Key Research Projects of Colleges and Universities in Henan Province(Grant Number 23B510006).
文摘In this paper,we consider mobile edge computing(MEC)networks against proactive eavesdropping.To maximize the transmission rate,IRS assisted UAV communications are applied.We take the joint design of the trajectory of UAV,the transmitting beamforming of users,and the phase shift matrix of IRS.The original problem is strong non-convex and difficult to solve.We first propose two basic modes of the proactive eavesdropper,and obtain the closed-form solution for the boundary conditions of the two modes.Then we transform the original problem into an equivalent one and propose an alternating optimization(AO)based method to obtain a local optimal solution.The convergence of the algorithm is illustrated by numerical results.Further,we propose a zero forcing(ZF)based method as sub-optimal solution,and the simulation section shows that the proposed two schemes could obtain better performance compared with traditional schemes.
文摘This paper presents an algorithm named the dependency-aware offloading framework(DeAOff),which is designed to optimize the deployment of Gen-AI decoder models in mobile edge computing(MEC)environments.These models,such as decoders,pose significant challenges due to their interlayer dependencies and high computational demands,especially under edge resource constraints.To address these challenges,we propose a two-phase optimization algorithm that first handles dependencyaware task allocation and subsequently optimizes energy consumption.By modeling the inference process using directed acyclic graphs(DAGs)and applying constraint relaxation techniques,our approach effectively reduces execution latency and energy usage.Experimental results demonstrate that our method achieves a reduction of up to 20%in task completion time and approximately 30%savings in energy consumption compared to traditional methods.These outcomes underscore our solution’s robustness in managing complex sequential dependencies and dynamic MEC conditions,enhancing quality of service.Thus,our work presents a practical and efficient resource optimization strategy for deploying models in resourceconstrained MEC scenarios.
基金supported in part by the Fundamental Research Funds for the Central Universities under Grant 2022JBGP003in part by the National Natural Science Foundation of China(NSFC)under Grant 62071033in part by ZTE IndustryUniversity-Institute Cooperation Funds under Grant No.IA20230217003。
文摘This paper investigates the age of information(AoI)-based multi-user mobile edge computing(MEC)network with partial offloading mode.The weighted sum AoI(WSA)is first analyzed and derived,and then a WSA minimization problem is formulated by jointly optimizing the user scheduling and data assignment.Due to the non-analytic expression of the WSA w.r.t.the optimization variables and the unknowability of future network information,the problem cannot be solved with known solution methods.Therefore,an online Joint Partial Offloading and User Scheduling Optimization(JPOUSO)algorithm is proposed by transforming the original problem into a single-slot data assignment subproblem and a single-slot user scheduling sub-problem and solving the two sub-problems separately.We analyze the computational complexity of the presented JPO-USO algorithm,which is of O(N),with N being the number of users.Simulation results show that the proposed JPO-USO algorithm is able to achieve better AoI performance compared with various baseline methods.It is shown that both the user’s data assignment and the user’s AoI should be jointly taken into account to decrease the system WSA when scheduling users.
基金the Key Scientific and Technological Project of Henan Province(Grant Number 222102210212)Doctoral Research Start Project of Henan Institute of Technology(Grant Number KQ2005)+1 种基金Doctoral Research Start Project of Henan Institute of Technology(Grant Number KQ2110)Key Research Projects of Colleges and Universities in Henan Province(Grant Number 23B510006).
文摘In this paper,we investigate the energy efficiency maximization for mobile edge computing(MEC)in intelligent reflecting surface(IRS)assisted unmanned aerial vehicle(UAV)communications.In particular,UAVcan collect the computing tasks of the terrestrial users and transmit the results back to them after computing.We jointly optimize the users’transmitted beamforming and uploading ratios,the phase shift matrix of IRS,and the UAV trajectory to improve the energy efficiency.The formulated optimization problem is highly non-convex and difficult to be solved directly.Therefore,we decompose the original problem into three sub-problems.We first propose the successive convex approximation(SCA)based method to design the beamforming of the users and the phase shift matrix of IRS,and apply the Lagrange dual method to obtain a closed-form expression of the uploading ratios.For the trajectory optimization,we propose a block coordinate descent(BCD)based method to obtain a local optimal solution.Finally,we propose the alternating optimization(AO)based overall algorithmand analyzed its complexity to be equivalent or lower than existing algorithms.Simulation results show the superiority of the proposedmethod compared with existing schemes in energy efficiency.
基金supported by the Natural Science Foundation of China (No.62171051)。
文摘Puncturing has been recognized as a promising technology to cope with the coexistence problem of enhanced mobile broadband(eMBB) and ultra-reliable low latency communications(URLLC)traffic. However, the steady performance of eMBB traffic while meeting the requirements of URLLC traffic with puncturing is a major challenge in some realistic scenarios. In this paper, we pay attention to the timely and energy-efficient processing for eMBB traffic in the industrial Internet of Things(IIoT), where mobile edge computing(MEC) is employed for data processing. Specifically, the performance of eMBB traffic and URLLC traffic in a MEC-based IIoT system is ensured by setting the threshold of tolerable delay and outage probability, respectively. Furthermore,considering the limited energy supply, an energy minimization problem of eMBB device is formulated under the above constraints, by jointly optimizing the resource blocks(RBs) punctured by URLLC traffic, data offloading and transmit power of eMBB device. With Markov's inequality, the problem is reformulated by transforming the probabilistic outage constraint into a deterministic constraint. Meanwhile, an iterative energy minimization algorithm(IEMA) is proposed.Simulation results demonstrate that our algorithm has a significant reduction in the energy consumption for eMBB device and achieves a better overall effect compared to several benchmarks.
基金the National S&T Major Project (No. 2018ZX03001011)the National Key R&D Program(No.2018YFB1801102)+1 种基金the National Natural Science Foundation of China (No. 61671072)the Beijing Natural Science Foundation (No. L192025)
文摘With the increasing maritime activities and the rapidly developing maritime economy, the fifth-generation(5G) mobile communication system is expected to be deployed at the ocean. New technologies need to be explored to meet the requirements of ultra-reliable and low latency communications(URLLC) in the maritime communication network(MCN). Mobile edge computing(MEC) can achieve high energy efficiency in MCN at the cost of suffering from high control plane latency and low reliability. In terms of this issue, the mobile edge communications, computing, and caching(MEC3) technology is proposed to sink mobile computing, network control, and storage to the edge of the network. New methods that enable resource-efficient configurations and reduce redundant data transmissions can enable the reliable implementation of computing-intension and latency-sensitive applications. The key technologies of MEC3 to enable URLLC are analyzed and optimized in MCN. The best response-based offloading algorithm(BROA) is adopted to optimize task offloading. The simulation results show that the task latency can be decreased by 26.5’ ms, and the energy consumption in terminal users can be reduced to 66.6%.
基金supported by the National Research Foundation of Korea (NRF) grant funded by the Korea Government (MSIT) (No.2021R1C1C1013133)supported by the Institute of Information and Communications Technology Planning and Evaluation (IITP)grant funded by the Korea Government (MSIT) (RS-2022-00167197,Development of Intelligent 5G/6G Infrastructure Technology for The Smart City)supported by the Soonchunhyang University Research Fund.
文摘In many IIoT architectures,various devices connect to the edge cloud via gateway systems.For data processing,numerous data are delivered to the edge cloud.Delivering data to an appropriate edge cloud is critical to improve IIoT service efficiency.There are two types of costs for this kind of IoT network:a communication cost and a computing cost.For service efficiency,the communication cost of data transmission should be minimized,and the computing cost in the edge cloud should be also minimized.Therefore,in this paper,the communication cost for data transmission is defined as the delay factor,and the computing cost in the edge cloud is defined as the waiting time of the computing intensity.The proposed method selects an edge cloud that minimizes the total cost of the communication and computing costs.That is,a device chooses a routing path to the selected edge cloud based on the costs.The proposed method controls the data flows in a mesh-structured network and appropriately distributes the data processing load.The performance of the proposed method is validated through extensive computer simulation.When the transition probability from good to bad is 0.3 and the transition probability from bad to good is 0.7 in wireless and edge cloud states,the proposed method reduced both the average delay and the service pause counts to about 25%of the existing method.
文摘在任务计算密集型和延迟敏感型的场景下,无人机辅助的移动边缘计算由于其高机动性和放置成本低的特点而被广泛研究.然而,无人机的能耗限制导致其无法长时间工作并且卸载任务内的不同模块往往存在着依赖关系.针对这种情况,以有向无环图(direct acyclic graph,DAG)为基础对任务内部模块的依赖关系进行建模,综合考虑系统时延和能耗的影响,以最小化系统成本为优化目标得到最优的卸载策略.为了解决这一优化问题,提出了一种基于亚群、高斯变异和反向学习的二进制灰狼优化算法(binary grey wolf optimization algorithm based on subpopulation,Gaussian mutation,and reverse learning,BGWOSGR).仿真结果表明,所提出算法计算出的系统成本比其他4种对比方法分别降低了约19%、27%、16%、13%,并且收敛速度更快.
基金supported in part by National Natural Science Foundation of China(Grant No.61702149,U1709220)
文摘This paper considers a UAV communication system with mobile edge computing(MEC).We minimize the energy consumption of the whole system via jointly optimizing the UAV's trajectory and task assignment as well as CPU's computational speed under the set of resource constrains.To this end,we first derive the energy consumption model of data processing,and then obtain the energy consumption model of fixed-wing UAV's flight.The optimization problem is mathematically formulated.To address the problem,we first obtain the approximate optimization problem by applying the technique of discrete linear state-space approximation,and then transform the non-convex constraints into convex by using linearization.Furthermore,a concave-convex procedure(CCCP) based algorithm is proposed in order to solve the optimization problem approximately.Numerical results show the efficacy of the proposed algorithm.
基金supported by the National High Technology Research and Development Program(863) of China(No.2015AA01A701)
文摘Through enabling the IT and cloud computation capacities at Radio Access Network(RAN),Mobile Edge Computing(MEC) makes it possible to deploy and provide services locally.Therefore,MEC becomes the potential technology to satisfy the requirements of 5G network to a certain extent,due to its functions of services localization,local breakout,caching,computation offloading,network context information exposure,etc.Especially,MEC can decrease the end-to-end latency dramatically through service localization and caching,which is key requirement of 5G low latency scenario.However,the performance of MEC still needs to be evaluated and verified for future deployment.Thus,the concept of MEC is introduced into5 G architecture and analyzed for different 5G scenarios in this paper.Secondly,the evaluation of MEC performance is conducted and analyzed in detail,especially for network end-to-end latency.In addition,some challenges of the MEC are also discussed for future deployment.
基金This work is partly supported by the US NSF under grants CNS 1650831,and HRD 1828811the U.S.Department of Homeland Security under grant DHS 2017-ST-062-000003.
文摘The demand for digital media services is increasing as the number of wireless subscriptions is growing exponentially.In order to meet this growing need,mobile wireless networks have been advanced at a tremendous pace over recent days.However,the centralized architecture of existing mobile networks,with limited capacity and range of bandwidth of the radio access network and low bandwidth back-haul network,can not handle the exponentially increasing mobile traffic.Recently,we have seen the growth of new mechanisms of data caching and delivery methods through intermediate caching servers.In this paper,we present a survey on recent advances in mobile edge computing and content caching,including caching insertion and expulsion policies,the behavior of the caching system,and caching optimization based on wireless networks.Some of the important open challenges in mobile edge computing with content caching are identified and discussed.We have also compared edge,fog and cloud computing in terms of delay.Readers of this paper will get a thorough understanding of recent advances in mobile edge computing and content caching in mobile wireless networks.
基金the National Natural Science Foundation of China(Nos.61772130 and 62072096)the Fundamental Research Funds for the Central Universities(No.2232020A-12)+1 种基金the International S&T Cooperation Program of Shanghai Science and Technology Commission(No.20220713000)the Young Top-Notch Talent Program in Shanghai。
文摘The development of intelligent connected vehicles(ICVs)has tremendously inspired the emergence of a new computing paradigm called mobile edge computing(MEC),which meets the demands of delay-sensitive on-vehicle applications.Most existing studies focusing on the issue of task offloading in ICVs assume that the MEC server can directly complete computation tasks without considering the necessity of service caching.However,this is unrealistic in practice because a large number of tasks require the use of corresponding third-party libraries and databases,that is,service caching.Therefore,we investigate the delay optimization in an MEC-enabled ICVs system with multiple mobile vehicles,resource-limited base stations(BSs),and one cloud server.We aim to determine the optimal service caching and task offloading decisions to minimize the overall system delay using mixed-integer nonlinear programming.To address this problem,we first convert it into a quadratically constrained quadratic program and then propose an efficient semidefinite relaxation-based joint service caching and task offloading(JSCTO)algorithm to obtain the service caching and task offloading decisions.In the simulations,we validate the efficiency of our proposed method by setting different numbers of vehicles and the storage capacity of BSs.The results show that our proposed JSCTO algorithm can significantly decrease the total delay of all offloaded tasks compared with the cloud processing only scheme.
基金This work was supported in part by the National Natural Science Foundation of China under Grant 62171113 and 61941113in part by the Fundamental Research Funds for the Central Universities under Grant N2116003 and N2116011.
文摘Mobile Edge Computing(MEC)-based computation offloading is a promising application paradigm for serving large numbers of users with various delay and energy requirements.In this paper,we propose a flexible MECbased requirement-adaptive partial offloading model to accommodate each user's specific preference regarding delay and energy consumption.To address the dimensional differences between time and energy,we introduce two normalized parameters and then derive the computational overhead of processing tasks.Different from existing works,this paper considers practical variations in the user request patterns,and exploits a flexible partial offloading mode to minimize computation overheads subject to tolerable delay,task workload and power constraints.Since the resulting problem is non-convex,we decouple it into two convex subproblems and present an iterative algorithm to obtain a feasible offloading solution.Numerical experiments show that our proposed scheme achieves a significant improvement in computation overheads compared with existing schemes.
基金partially supported by the National Natural Science Foundation of China under Grant 62072170 and Grant 62177047the Fundamental Research Funds for the Central Universities under Grant 531118010527+1 种基金the Science and Technology Key Projects of Hunan Province under Grant 2022GK2015the Hunan Provincial Natural Science Foundation of China under Grant 2021JJ30141.
文摘Efficient response speed and information processing speed are among the characteristics of mobile edge computing(MEC).However,MEC easily causes information leakage and loss problems because it requires frequent data exchange.This work proposes an anonymous privacy data protection and access control scheme based on elliptic curve cryptography(ECC)and bilinear pairing to protect the communication security of the MEC.In the proposed scheme,the information sender encrypts private information through the ECC algorithm,and the information receiver uses its own key information and bilinear pairing to extract and verify the identity of the information sender.During each round of communication,the proposed scheme uses timestamps and random numbers to ensure the freshness of each round of conversation.Experimental results show that the proposed scheme has good security performance and can provide data privacy protection,integrity verification,and traceability for the communication process of MEC.The proposed scheme has a lower cost than other related schemes.The communication and computational cost of the proposed scheme are reduced by 31.08% and 22.31% on average compared with those of the other related schemes.
基金supported in part by the National Natural Science Foundation of China(NSFC)under Grant No.62071306in part by Shenzhen Science and Technology Program under Grants JCYJ20200109113601723,JSGG20210802154203011 and JSGG20210420091805014。
文摘In the era of Internet of Things(Io T),mobile edge computing(MEC)and wireless power transfer(WPT)provide a prominent solution for computation-intensive applications to enhance computation capability and achieve sustainable energy supply.A wireless-powered mobile edge computing(WPMEC)system consisting of a hybrid access point(HAP)combined with MEC servers and many users is considered in this paper.In particular,a novel multiuser cooperation scheme based on orthogonal frequency division multiple access(OFDMA)is provided to improve the computation performance,where users can split the computation tasks into various parts for local computing,offloading to corresponding helper,and HAP for remote execution respectively with the aid of helper.Specifically,we aim at maximizing the weighted sum computation rate(WSCR)by optimizing time assignment,computation-task allocation,and transmission power at the same time while keeping energy neutrality in mind.We transform the original non-convex optimization problem to a convex optimization problem and then obtain a semi-closed form expression of the optimal solution by considering the convex optimization techniques.Simulation results demonstrate that the proposed multi-user cooperationassisted WPMEC scheme greatly improves the WSCR of all users than the existing schemes.In addition,OFDMA protocol increases the fairness and decreases delay among the users when compared to TDMA protocol.