Self-powered devices are widely used in the detection and sensing fields.Asymmetric metal contacts provide an effective way to obtain self-powered devices.Finding two stable metallic electrode materials with large wor...Self-powered devices are widely used in the detection and sensing fields.Asymmetric metal contacts provide an effective way to obtain self-powered devices.Finding two stable metallic electrode materials with large work function differences is the key to obtain highly efficient asymmetric metal contacts structures.However,common metal electrode materials have similar and high work functions,making it difficult to form an asymmetric contacts structure with a large work function difference.Herein,Mo2C crystals with low work function(3.8 eV) was obtained by chemical vapor deposition(CVD) method.The large work function difference between Mo2C and Au allowed us to synthesize an efficient Mo2C/MoS2/Au photodetector with asymmetric metal contact structure,which enables light detection without external electric power.We believe that this novel device provides a new direcfor the design of miniature self-powered photodetectors.These results also highlight the great potential of ultrathin Mo2C prepared by CVD in heterojunction device applications.展开更多
The(Cu−10Sn)−Ni−MoS2 composites,prepared by powder metallurgy,were studied for the effects of Ni-coated MoS2 on the microstructure,mechanical properties and lubricating properties.The mechanism of effects of Ni and Mo...The(Cu−10Sn)−Ni−MoS2 composites,prepared by powder metallurgy,were studied for the effects of Ni-coated MoS2 on the microstructure,mechanical properties and lubricating properties.The mechanism of effects of Ni and MoS2 on the properties of composites was analyzed through a comparative experiment by adding Ni and MoS2 separately.The results show that the nickel wrapping around the MoS2 particles decreases the reaction rate of MoS2 with the copper matrix,and greatly improves the bonding of the matrix.The composites with 12 wt.%Ni-coated MoS2(C12)show the optimum performance including the mechanical properties and tribological behaviors.Under oil lubrication conditions,the friction coefficient is 0.0075 with a pressure of 8 MPa and a linear velocity of 0.25 m/s.The average dry friction coefficient,sliding against 40Cr steel disc,is measured to be 0.1769 when the linear velocity and pressure are 0.25 m/s and 4 MPa,respectively.展开更多
Catalytic activity and hydrothermal stability are both crucial for the application of the selective catalytic reduction of NO_(x)with NH_(3)(NH_(3)-SCR)catalyst in diesel vehicles.In this study,a tin(Sn)-modified Ce-N...Catalytic activity and hydrothermal stability are both crucial for the application of the selective catalytic reduction of NO_(x)with NH_(3)(NH_(3)-SCR)catalyst in diesel vehicles.In this study,a tin(Sn)-modified Ce-Nb mixed-oxide catalyst was synthesized as an NH_(3)-SCR catalyst for NO_(x)emission control.After the intro-duction of Sn,both the NH_(3)-SCR activity and the hydrothermal stability of the catalyst were remarkably promoted.Even after hydrothermal aging at 1000℃,the developed Ce_(1)Sn_(2)Nb_(1)O_(x)catalyst achieved more than 90%NO_(x)conversion at 325-500℃.Various methods,including N2-physisorption,X-ray diffraction,in-situ high-temperature X-ray diffraction,high-resolution transmission electron microscopy,X-ray pho-toelectron spectroscopy,X-ray absorption fine-structure spectroscopy,temperature-programmed reduc-tion of hydrogen,temperature-programmed desorption of ammonia,and density functional theory calculations were used to investigate the promotional effects induced by the Sn species.The characteri-zation results showed that the addition of Sn not only promoted the formation of the Ce-Nb active phase but also improved its thermal stability,contributing to the excellent NH_(3)-SCR performance and hydrothermal stability.This study provides an excellent sintering-resistance catalyst for the application of diesel engine NO_(x)emission control.展开更多
A unique discontinuous lamellar microstructure of titanium alloys consisting of lamellar colonies at prior β-Ti grain boundaries and internal interwoven α-laths is prepared by a TiH_(2)-based powder metallurgy metho...A unique discontinuous lamellar microstructure of titanium alloys consisting of lamellar colonies at prior β-Ti grain boundaries and internal interwoven α-laths is prepared by a TiH_(2)-based powder metallurgy method.The α-variants get various crystallographic orientations and become discontinuous during vacuum annealing at 700℃.Remarkably,nanoscale phase δ-TiH compound layers are generated between α-laths and β-strips,so that dislocations are piled up at the α/δ/βinterfaces during tensile deformation.This leads to dislocation slips being confined to individual α-laths,with differentslips and particularly pyramidal<c+a>slips being activated.The efficiency of wavy slip is promoted and the work hardening rate is enhanced.Finally,the combined effect of dispersed micro-shear bands and lath distortions is considered contributive for alleviating the stress concentration at grain boundaries,resulting in a high-promising synergy of enhanced ultimate tensile strength of 1080 MPa and good elongation to fracture of 13.6%.展开更多
Al_(2)O_(3)-based eutectic ceramics are considered as promising candidates for ultra-high-temperature structural materials due to their exceptional thermal stability and mechanical properties.Nonetheless,several chall...Al_(2)O_(3)-based eutectic ceramics are considered as promising candidates for ultra-high-temperature structural materials due to their exceptional thermal stability and mechanical properties.Nonetheless,several challenges must be overcome before they can be widely used.This paper reviews in detail the tailoring of microstructure from the aspect of process parameters,the updated knowledge gained in microstructure(crystallographic orientation,high-resolution interfacial structures)and the latest means of optimizing eutectic microstructure(seed-induced method,introducing low-energy grain boundaries and high-entropy phase).Additionally,the paper explores future techniques for the fabrication of bulk ceramic materials and effective toughening approaches.This review highlights the achievements made especially in the last 15 years,current limitations in Al_(2)O_(3)-based eutectic ceramics,and offers comprehensive insights and strategic guidance for further mechanical breakthroughs.展开更多
The reaction behavior between CaO–Al_(2)O_(3)–La_(2)O_(3)-based slags and La-bearing FeCrAl melt was quantitatively characterized,which was further compared with the reaction behavior of CaO–SiO_(2)-based slags.Bas...The reaction behavior between CaO–Al_(2)O_(3)–La_(2)O_(3)-based slags and La-bearing FeCrAl melt was quantitatively characterized,which was further compared with the reaction behavior of CaO–SiO_(2)-based slags.Based on this,the new type of mold flux for La-bearing FeCrAl alloy continuous casting was designed and its basic properties were evaluated.The results showed that the order of reaction degree of fluxing agents in CaO–Al_(2)O_(3)–La_(2)O_(3)-based slags is(Na_(2)O)>(B_(2)O_(3))>(Li_(2)O),and the percentages of mass change of fluxing agents were 85.8,54.29 and 42.35 wt.%,respectively.Moreover,the addition of(Li_(2)O)and(Na_(2)O)promoted the reaction between(CaO)and[Al],and the reaction degree of the former was weaker than that of the latter,which was due to the greater effect of(Na_(2)O)on the activity of(CaO)and(Al_(2)O_(3))than(Li_(2)O).Compared with the reactivity of CaO–SiO_(2)-based slags,the percentages of mass change of Al and La caused by slag–steel reaction decreased by 10.63–14.36 and 39.78–50.49 wt.%,respectively.The percentages of mass change of(Al_(2)O_(3)),(La_(2)O_(3))and(CaO)in slags highest increased by 17.71,17.98,and 7.81 wt.%,respectively.The reactivity of CaO–Al_(2)O_(3)–La_(2)O_(3)-based slags was significantly weakened.Ultimately,the new type of mold flux was designed and the composition range was determined.The fundamental properties of new mold flux basically meet the theoretical requirements for La-bearing FeCrAl alloy continuous casting.展开更多
To explore high value-added utilization pathways of fly ash,the mesoporous structure of silicon dioxide extracted from fly ash(FA-SiO_(2))was utilized to restrict the dicyandiamide(DCDA)thermal degradation process.Thi...To explore high value-added utilization pathways of fly ash,the mesoporous structure of silicon dioxide extracted from fly ash(FA-SiO_(2))was utilized to restrict the dicyandiamide(DCDA)thermal degradation process.This produced chemically bonded interacting composite photocatalysts of FA-SiO,and graphitic-phase carbon nitride(g-C_(3)N_(4)).Compared with the spherical silicon dioxide prepared using tetraethyl orthosilicate(TEOS-SiO_(2)),the mesoporous structure of FA-SiO_(2),allowed DCDA to react in a smaller space,which facilitated the transformation of DCDA to melamine by the thermal degradation kinetics of FA-C_(3)N_(4)/DCDA.This ultimately boosted the formation of an N-atom-removed triazine ring structure and a multistage structure combining lumps and rods in the composite photocatalysts of g-C_(3)N_(4),and FA-SiO_(2),which led to a higher visible-light utilization efficiency,a suitable valence-band position,and the photocatalytic activity for methylene blue reaching 3.56 times that of g-C_(3)N_(4).The findings indicate that mesoporous FA-SiO,has the potential to improve the structural and photocatalytic properties of g-C_(3)N_(4),-based materials.展开更多
Inorganic perovskite CsPbBr3 quantum dots (QDs) are potential nanoscale photosensitizers;moreover,two-dimensional (2-D) molybdenum disulfide (MoS2) has been intensively studied for application in the active layers of ...Inorganic perovskite CsPbBr3 quantum dots (QDs) are potential nanoscale photosensitizers;moreover,two-dimensional (2-D) molybdenum disulfide (MoS2) has been intensively studied for application in the active layers of optoelectronic devices.In this study,heterostructures of 2D-monolayered MoS2 with zero-dimensional functionalized CsPbBr3 QDs were prepared,and their nanoscale optical characteristics were investigated.The effect of n-type doping on the MoS2 monolayer after hybridization with perovskite CsPbBr3 QDs was observed using laser confocal microscope photoluminescenca (PL) and Raman spectra.Field-effect transistors (FETs) using MoS2 and the MoS2-CsPbBr3 QDs hybrid were also fabricated,and their electrical and photoresponsive characteristics were investigated in terms of the charge transfer effect.For the MoS2-CsPbBr3 QDs-based FETs,the field effect mobility and photoresponsivity upon light irradiation were enhanced by ~ 4 times and a dramatic ~ 17 times,respectively,compared to the FET prepared without the parovskite QDs and without light irradiation.It is noteworthy that the photoresponsivity of the MoS-2-CsPbBr3 QDs-based FETs significantly increased with increasing light power,which is completely contrary to the behavior observed in previous studies of MoS2-based FETs.The increased mobility and significant enhancement of the photoresponsivity can be attributed to the n-type doping effect and efficient energy transfer from CsPbBr3 QDs to MoS2.The results indicate that the optoelectronic characteristics of MoS2-based FETs can be significantly improved through hybridization with photosensitive parovskite CsPbBr3 QDs.展开更多
MoS 2-based composite coatings were deposited with the nano-compound unbalanced plasma plating technique. The effects of processing parameters and working environments on the tribological properties of the coatings w...MoS 2-based composite coatings were deposited with the nano-compound unbalanced plasma plating technique. The effects of processing parameters and working environments on the tribological properties of the coatings were examined by the drilling experiments and XPS. The distances between substrate and Ti target, Ti content and deposition pressure were varied in order to determine the optimum conditions for producing lubricious, long-lasting MoS 2-based coatings. It is found that the tribological performance of TiN-MoS 2 coating decreases rapidly in humid air but the humid-resistant property of TiN-MoS 2/Ti coating improves evidently.It is indicated that the humid-resistantance property and the abrasion durability of MoS 2-based coatings can be enhanced markedly by adding Ti with a certain contents.展开更多
The MoS_(2)-based materials are a vital class of heterogeneous catalysts for the hydrodeoxygenation of lignin and its model compounds to produce value-added chemicals especially because of their unique selectivity to ...The MoS_(2)-based materials are a vital class of heterogeneous catalysts for the hydrodeoxygenation of lignin and its model compounds to produce value-added chemicals especially because of their unique selectivity to aromatics.The rational design of MoS_(2)-based catalyst greatly depends on the comprehensive understanding of its structure-activity relationship.However,an intensive summary and critical analysis are still scarce to date.In this review,we attempt to provide an in-depth understanding of the interplay of structure,catalysis,and stability of MoS_(2)-based catalysts for lignin hydrodeoxygenation.The recognition of intrinsic active sites on MoS_(2) structure was firstly discussed,followed by the illustration of MoS_(2)-catalyzed hydrodeoxygenation structural models.Afterward,based on the studies on the MoS_(2)-catalyzed lignin model compounds hydrodeoxygenation,the current active site modification strategies including structural modification of monometallic MoS_(2) catalysts and collaborative modification were summarized and emphatically discussed,which aims to elucidate the structure-activity relationship at the atomic-level.The deactivation mechanism and stabilization strategies were also illustrated to provide instructive suggestion for the rational design of efficient and stable MoS_(2)-based catalysts.Finally,the real lignin depolymerization over MoS_(2)-based catalysts was summarized to point out the advantages and difficulties.This review attempts to highlight the remaining challenges and provide some perspectives for the future development of MoS_(2)-based catalysts for lignin hydrodeoxygenation.展开更多
In recent years,significant progress has been achieved in the creation of innovative functional materials for energy storage and conversion.Due to their distinct physicochemical characteristics,ultrathin nanosheets co...In recent years,significant progress has been achieved in the creation of innovative functional materials for energy storage and conversion.Due to their distinct physicochemical characteristics,ultrathin nanosheets composed of common layered transition metal sulfide materials(MoS2)have demonstrated promise as high-capacity anode materials for lithium-ion batteries(LIBs).Nevertheless,their practical application is severely limited by the tendency of monolayer nanosheets to restack due to strong van der Waals forces,dramatic volume changes during successive cycles,and low intrinsic conductivity.Recent research advances have shown that composite structures and nanowire morphologies with specific morphologies effectively overcome these issues.This paper reviews the recent research progress on molybdenum disulfide-based composites as anode materials for LIBs and discusses in detail the struc-tural characteristics of pure molybdenum disulfide and other composite forms of molybdenum disulfide.In addition,the phase engineering,defect engineering,and lithium storage mechanisms of molybdenum disulfide and the synthesis of molybdenum disulfide-based nanocomposites by different preparation methods are focused on.Finally,we review the design(structure),recent developments,and challenges of novel anode materials and consider their electrochemical performance in Li-ion batteries.展开更多
Room temperature Na-ion batteries(SIBs) show great potential for use as renewable energy storage systems.However, the large-scale application of SIBs has been hindered by the lack of an ideal SIBs anode material. We s...Room temperature Na-ion batteries(SIBs) show great potential for use as renewable energy storage systems.However, the large-scale application of SIBs has been hindered by the lack of an ideal SIBs anode material. We synthesized MoS2 on carbonized graphene-chitosan(G-C) using the hydrothermal method. The strong interaction between the MoS2 and the G-C greatly improved the electron transport rate and maintained the structural stability of the electrode, which lead to both an excellent rate capability and long cycle stability. The G-C monolith was proven to enhance the electrical conductivity of the composites and served as a matrix for uniformly dispersing active MoS2 nanosheets(NSs), as well as being a buffer material to adapt to changes in volume during the cycle.Serving as an anode material for SIBs, the MoS2-G-C electrode showed good cycling stability(527.3mAh g-1 at100 m A g-1 after 200 cycles), excellent rate capability, and a long cycle life(439.1 m Ah g-1 at 1 A g-1 after 200 cycles).展开更多
Effects of VC/Cr3C2 on the microstructure and mechanical properties of Ti(C,N)-based cermets were studied. The microstructure was investigated by means of optical microscopy, X-ray diffractometry as well as scanning...Effects of VC/Cr3C2 on the microstructure and mechanical properties of Ti(C,N)-based cermets were studied. The microstructure was investigated by means of optical microscopy, X-ray diffractometry as well as scanning electron microscopy in combination with energy dispersive spectrometry. Mechanical properties, such as transverse rupture strength, hardness and fracture toughness, were measured. The results show that there are black core-grey rim structure and white core-grey rim structure in the microstructure. The grains become fine due to the VC/Cr3C2, and the grains of cermet added with 0.75VC/0.25Cr3C2 are refined most remarkably. The black core becomes finer with the increase of VC addition and rim phase becomes thicker with the decrease of Cr3C2 addition. The porosity increases with the increase of VC addition in VC/Cr3C2. Compared with the cermet free of VC/Cr3C2, the transverse rupture strength and hardness of cermets with VC/Cr3C2 are both improved, and the maximum values are both found for the cermet with 0.25VC/0.75Cr3C2. The fracture toughness can be effectively promoted by adding VC/Cr3C2 with an appropriate ratio of VC to Cr3C2, and the maximum value is found for the cermet with 0.5VC/0.5Cr3C2.展开更多
A novel SnO2-based gas anode was developed for aluminum electrolysis in molten cryolite at 850 &#176;C to reduce energy consumption and decrease CO2 emissions. Hydrogen was introduced into the anode, participating in...A novel SnO2-based gas anode was developed for aluminum electrolysis in molten cryolite at 850 &#176;C to reduce energy consumption and decrease CO2 emissions. Hydrogen was introduced into the anode, participating in the anode reaction. Carbon and aluminum were used as the cathode and reference electrodes, respectively. Cyclic voltammetry was applied in the cell to investigate the electrochemical behavior of oxygen ion on platinum and SnO2-based materials. The potential for oxygen evolution on these electrode materials was determined. Then, galvanostatic electrolysis was performed on the gas anode, showing a significant depolarization effect (a decrease of ~0.8 V of the anode potential) after the introduction of hydrogen, compared with no gas introduction or the introduction of argon. The results indicate the involvement of hydrogen in the anode reaction (three-phase-boundary reaction including gas, electrolyte and electrode) and give the possibility for the utilization of reducing gas anodes for aluminum electrolysis.展开更多
A series of SnO2‐based catalysts modified by Mn, Zr, Ti and Pb oxides with a Sn/M (M=Mn, Zr, Ti and Pb) molar ratio of 9/1 were prepared by a co‐precipitation method and used for CH4 and CO oxidation. The Mn3+, ...A series of SnO2‐based catalysts modified by Mn, Zr, Ti and Pb oxides with a Sn/M (M=Mn, Zr, Ti and Pb) molar ratio of 9/1 were prepared by a co‐precipitation method and used for CH4 and CO oxidation. The Mn3+, Zr4+, Ti4+and Pb4+cations are incorporated into the lattice of tetragonal rutile SnO2 to form a solid solution structure. As a consequence, the surface area and thermal stability of the catalysts are improved. Moreover, the oxygen species of the modified catalysts become easier to be reduced. Therefore, the oxidation activity over the catalysts was improved, except for the one modified by Pb oxide. Manganese oxide demonstrates the best promotional effects for SnO2. Using an X‐ray diffraction extrapolation method, the lattice capacity of SnO2 for Mn2O3 was 0.135 g Mn2O3/g SnO2, which indicates that to form stable solid solution, only 21%Sn4+cations in the lattice can be maximally replaced by Mn3+. If the amount of Mn3+cations is over the capacity, Mn2O3 will be formed, which is not favorable for the activity of the catalysts. The Sn rich samples with only Sn‐Mn solid solution phase show higher activity than the ones with excess Mn2O3 species.展开更多
Thermoelectric materials,enabling the directing conversion between heat and electricity,are one of the promising candidates for overcoming environmental pollution and the upcoming energy shortage caused by the over-co...Thermoelectric materials,enabling the directing conversion between heat and electricity,are one of the promising candidates for overcoming environmental pollution and the upcoming energy shortage caused by the over-consumption of fossil fuels.Bi2Te3-based alloys are the classical thermoelectric materials working near room temperature.Due to the intensive theoretical investigations and experimental demonstrations,significant progress has been achieved to enhance the thermoelectric performance of Bi2Te3-based thermoelectric materials.In this review,we first explored the fundamentals of thermoelectric effect and derived the equations for thermoelectric properties.On this basis,we studied the effect of material parameters on thermoelectric properties.Then,we analyzed the features of Bi2Te3-based thermoelectric materials,including the lattice defects,anisotropic behavior and the strong bipolar conduction at relatively high temperature.Then we accordingly summarized the strategies for enhancing the thermoelectric performance,including point defect engineering,texture alignment,and band gap enlargement.Moreover,we highlighted the progress in decreasing thermal conductivity using nanostructures fabricated by solution grown method,ball milling,and melt spinning.Lastly,we employed modeling analysis to uncover the principles of anisotropy behavior and the achieved enhancement in Bi2Te3,which will enlighten the enhancement of thermoelectric performance in broader materials展开更多
Advanced high-strength steels (AHSSs) have been gradually applied to modern auto industry, as they have the advantages of improving the steel strength and lightening the car weight, which not only ensures the safety b...Advanced high-strength steels (AHSSs) have been gradually applied to modern auto industry, as they have the advantages of improving the steel strength and lightening the car weight, which not only ensures the safety but also saves the energy. However, the high-aluminum (Al) content in AHSSs may react with SiO2 in conventional CaO-SiO2-based mold flux during the process of continuous casting, which leads to the deterioration of the mold flux properties and a poor slab quality. Then, the non-reactive CaO-Al2O3-based mold flux was proposed and has been developing for the casting process of high-Al steels, but there are some problems of low consumption and insufficient lubrication that need to be solved. Thus, previous researches on the effect of each component on the properties of CaO-Al2O3-based mold flux were systematically summarized, and the situation of plant trials on CaO-Al2O3-based mold flux was evaluated. The results indicated that the proposed CaO-Al2O3-based mold fluxes could avoid the slag-metal reaction problems;however, the problems of lubri-cation, crystallization and heat transfer issues still exist. Therefore, tremendous works still need to be conducted for the development of new generation of CaO-Al2O3-based mold flux system. The review was performed aiming to provide a technical guidance for designing and optimizing CaO-Al2O3-based mold flux system that meets the demand of the continuous casting process of high-Al steels.展开更多
We investigated the influence of soaking time on the semi-conductivity and nonlinear electrical properties of TiO2- based varistor ceramic samples. We used a single sintering process and fabricated six disk samples of...We investigated the influence of soaking time on the semi-conductivity and nonlinear electrical properties of TiO2- based varistor ceramic samples. We used a single sintering process and fabricated six disk samples of (Sr, Bi, Si, Ta)-doped TiO2- based varistor ceramics sintered at 1 250℃ for 0.5 h, 1.0 h, 2.0 h, 3.0 h, 4.0 h, and 5.0 h, respectively. The samples were characterized by X-ray diffraction, breakdown voltage, and complex impedance. The results show that as the soaking time increases from 0.5 h to 5.0 h, the breakdown voltage drops before rising while the nonlinear coefficient increases and then decreases. We suggest that, considering both grain semi-conductivity and nonlinear electrical properties of the TiO2-based varistor ceramics, the optimal soaking time is between 2.0 h and 3.0 h.展开更多
The electrochemical corrosion behavior of Ti(C,N)-based cermets with different Mo2C additions was investigated in freely aerated 10% H2SO4 and potentiodynamic polarization of all the materials was conducted from -0....The electrochemical corrosion behavior of Ti(C,N)-based cermets with different Mo2C additions was investigated in freely aerated 10% H2SO4 and potentiodynamic polarization of all the materials was conducted from -0.5 to 1.5 V. There are two passive regions for all polarization curves. The first should be attributed to passive film formation due to Ti(C,N), while the second may be due to the presence of Ni. Corrosion current density increases with M02C content increasing, from 2.06×10^-3 to 6.70×10^-3 mA/cm2. It is indicated that the corrosion resistance of Ti(C,N)-based cermets decreases with the increase of Mo2C addition. A skeleton of Ti(C,N) gains is observed after dissolution of Ni. The inner rim of cermets, rich in Mo2C, is corroded along with Ni binder and is more serious with the increase of Mo2C content. The secondary carbide Mo2C can be oxidized and dissolved in sulphuric acid.展开更多
基金supported by the National Natural Science Foundation of China(11674113,U1765105)the support of experimental facilities in WNLO of HUSTAnalysis and Testing Center of HUST for support
文摘Self-powered devices are widely used in the detection and sensing fields.Asymmetric metal contacts provide an effective way to obtain self-powered devices.Finding two stable metallic electrode materials with large work function differences is the key to obtain highly efficient asymmetric metal contacts structures.However,common metal electrode materials have similar and high work functions,making it difficult to form an asymmetric contacts structure with a large work function difference.Herein,Mo2C crystals with low work function(3.8 eV) was obtained by chemical vapor deposition(CVD) method.The large work function difference between Mo2C and Au allowed us to synthesize an efficient Mo2C/MoS2/Au photodetector with asymmetric metal contact structure,which enables light detection without external electric power.We believe that this novel device provides a new direcfor the design of miniature self-powered photodetectors.These results also highlight the great potential of ultrathin Mo2C prepared by CVD in heterojunction device applications.
基金Projects(51371099,51501091)supported by the National Natural Science Foundation of China。
文摘The(Cu−10Sn)−Ni−MoS2 composites,prepared by powder metallurgy,were studied for the effects of Ni-coated MoS2 on the microstructure,mechanical properties and lubricating properties.The mechanism of effects of Ni and MoS2 on the properties of composites was analyzed through a comparative experiment by adding Ni and MoS2 separately.The results show that the nickel wrapping around the MoS2 particles decreases the reaction rate of MoS2 with the copper matrix,and greatly improves the bonding of the matrix.The composites with 12 wt.%Ni-coated MoS2(C12)show the optimum performance including the mechanical properties and tribological behaviors.Under oil lubrication conditions,the friction coefficient is 0.0075 with a pressure of 8 MPa and a linear velocity of 0.25 m/s.The average dry friction coefficient,sliding against 40Cr steel disc,is measured to be 0.1769 when the linear velocity and pressure are 0.25 m/s and 4 MPa,respectively.
基金supported by the National Natural Science Foundation of China(52225004 and 22276202)the National Key Research and Development Program of China(2022YFC3701804)the Youth Innovation Promotion Association of Chinese Academy of Sciences(2019045).
文摘Catalytic activity and hydrothermal stability are both crucial for the application of the selective catalytic reduction of NO_(x)with NH_(3)(NH_(3)-SCR)catalyst in diesel vehicles.In this study,a tin(Sn)-modified Ce-Nb mixed-oxide catalyst was synthesized as an NH_(3)-SCR catalyst for NO_(x)emission control.After the intro-duction of Sn,both the NH_(3)-SCR activity and the hydrothermal stability of the catalyst were remarkably promoted.Even after hydrothermal aging at 1000℃,the developed Ce_(1)Sn_(2)Nb_(1)O_(x)catalyst achieved more than 90%NO_(x)conversion at 325-500℃.Various methods,including N2-physisorption,X-ray diffraction,in-situ high-temperature X-ray diffraction,high-resolution transmission electron microscopy,X-ray pho-toelectron spectroscopy,X-ray absorption fine-structure spectroscopy,temperature-programmed reduc-tion of hydrogen,temperature-programmed desorption of ammonia,and density functional theory calculations were used to investigate the promotional effects induced by the Sn species.The characteri-zation results showed that the addition of Sn not only promoted the formation of the Ce-Nb active phase but also improved its thermal stability,contributing to the excellent NH_(3)-SCR performance and hydrothermal stability.This study provides an excellent sintering-resistance catalyst for the application of diesel engine NO_(x)emission control.
基金financially supported by the National Natural Science Foundation of China(Nos.52301145,52275329)the Applied Basic Research Program of Liaoning Province,China(No.2023JH2/101300158)+1 种基金the Fundamental Research Fund for the Central Universities,China(No.N2202010)the Key Research Programs of High Education Institutions in Henan Province,China(No.24A430017).
文摘A unique discontinuous lamellar microstructure of titanium alloys consisting of lamellar colonies at prior β-Ti grain boundaries and internal interwoven α-laths is prepared by a TiH_(2)-based powder metallurgy method.The α-variants get various crystallographic orientations and become discontinuous during vacuum annealing at 700℃.Remarkably,nanoscale phase δ-TiH compound layers are generated between α-laths and β-strips,so that dislocations are piled up at the α/δ/βinterfaces during tensile deformation.This leads to dislocation slips being confined to individual α-laths,with differentslips and particularly pyramidal<c+a>slips being activated.The efficiency of wavy slip is promoted and the work hardening rate is enhanced.Finally,the combined effect of dispersed micro-shear bands and lath distortions is considered contributive for alleviating the stress concentration at grain boundaries,resulting in a high-promising synergy of enhanced ultimate tensile strength of 1080 MPa and good elongation to fracture of 13.6%.
基金financially supported by the National Natural Science Foundation of China(No.52171046)National Natural Science Foundation of China-key programme(No.52234010)the Fundamental Research Funds for the Central Universities and Shaanxi Provincial Key Science and Technology Innovation Team(No.2023-CX-TD-14).
文摘Al_(2)O_(3)-based eutectic ceramics are considered as promising candidates for ultra-high-temperature structural materials due to their exceptional thermal stability and mechanical properties.Nonetheless,several challenges must be overcome before they can be widely used.This paper reviews in detail the tailoring of microstructure from the aspect of process parameters,the updated knowledge gained in microstructure(crystallographic orientation,high-resolution interfacial structures)and the latest means of optimizing eutectic microstructure(seed-induced method,introducing low-energy grain boundaries and high-entropy phase).Additionally,the paper explores future techniques for the fabrication of bulk ceramic materials and effective toughening approaches.This review highlights the achievements made especially in the last 15 years,current limitations in Al_(2)O_(3)-based eutectic ceramics,and offers comprehensive insights and strategic guidance for further mechanical breakthroughs.
基金supported by the National Natural Science Foundation of China(Grant Nos.52174321,52274339 and 52074186).
文摘The reaction behavior between CaO–Al_(2)O_(3)–La_(2)O_(3)-based slags and La-bearing FeCrAl melt was quantitatively characterized,which was further compared with the reaction behavior of CaO–SiO_(2)-based slags.Based on this,the new type of mold flux for La-bearing FeCrAl alloy continuous casting was designed and its basic properties were evaluated.The results showed that the order of reaction degree of fluxing agents in CaO–Al_(2)O_(3)–La_(2)O_(3)-based slags is(Na_(2)O)>(B_(2)O_(3))>(Li_(2)O),and the percentages of mass change of fluxing agents were 85.8,54.29 and 42.35 wt.%,respectively.Moreover,the addition of(Li_(2)O)and(Na_(2)O)promoted the reaction between(CaO)and[Al],and the reaction degree of the former was weaker than that of the latter,which was due to the greater effect of(Na_(2)O)on the activity of(CaO)and(Al_(2)O_(3))than(Li_(2)O).Compared with the reactivity of CaO–SiO_(2)-based slags,the percentages of mass change of Al and La caused by slag–steel reaction decreased by 10.63–14.36 and 39.78–50.49 wt.%,respectively.The percentages of mass change of(Al_(2)O_(3)),(La_(2)O_(3))and(CaO)in slags highest increased by 17.71,17.98,and 7.81 wt.%,respectively.The reactivity of CaO–Al_(2)O_(3)–La_(2)O_(3)-based slags was significantly weakened.Ultimately,the new type of mold flux was designed and the composition range was determined.The fundamental properties of new mold flux basically meet the theoretical requirements for La-bearing FeCrAl alloy continuous casting.
基金supported by the Medical Special Cultivation Project of Anhui University of Science and Technology(Nos.YZ2023H2B013 and YZ2023H2B012),China.
文摘To explore high value-added utilization pathways of fly ash,the mesoporous structure of silicon dioxide extracted from fly ash(FA-SiO_(2))was utilized to restrict the dicyandiamide(DCDA)thermal degradation process.This produced chemically bonded interacting composite photocatalysts of FA-SiO,and graphitic-phase carbon nitride(g-C_(3)N_(4)).Compared with the spherical silicon dioxide prepared using tetraethyl orthosilicate(TEOS-SiO_(2)),the mesoporous structure of FA-SiO_(2),allowed DCDA to react in a smaller space,which facilitated the transformation of DCDA to melamine by the thermal degradation kinetics of FA-C_(3)N_(4)/DCDA.This ultimately boosted the formation of an N-atom-removed triazine ring structure and a multistage structure combining lumps and rods in the composite photocatalysts of g-C_(3)N_(4),and FA-SiO_(2),which led to a higher visible-light utilization efficiency,a suitable valence-band position,and the photocatalytic activity for methylene blue reaching 3.56 times that of g-C_(3)N_(4).The findings indicate that mesoporous FA-SiO,has the potential to improve the structural and photocatalytic properties of g-C_(3)N_(4),-based materials.
文摘Inorganic perovskite CsPbBr3 quantum dots (QDs) are potential nanoscale photosensitizers;moreover,two-dimensional (2-D) molybdenum disulfide (MoS2) has been intensively studied for application in the active layers of optoelectronic devices.In this study,heterostructures of 2D-monolayered MoS2 with zero-dimensional functionalized CsPbBr3 QDs were prepared,and their nanoscale optical characteristics were investigated.The effect of n-type doping on the MoS2 monolayer after hybridization with perovskite CsPbBr3 QDs was observed using laser confocal microscope photoluminescenca (PL) and Raman spectra.Field-effect transistors (FETs) using MoS2 and the MoS2-CsPbBr3 QDs hybrid were also fabricated,and their electrical and photoresponsive characteristics were investigated in terms of the charge transfer effect.For the MoS2-CsPbBr3 QDs-based FETs,the field effect mobility and photoresponsivity upon light irradiation were enhanced by ~ 4 times and a dramatic ~ 17 times,respectively,compared to the FET prepared without the parovskite QDs and without light irradiation.It is noteworthy that the photoresponsivity of the MoS-2-CsPbBr3 QDs-based FETs significantly increased with increasing light power,which is completely contrary to the behavior observed in previous studies of MoS2-based FETs.The increased mobility and significant enhancement of the photoresponsivity can be attributed to the n-type doping effect and efficient energy transfer from CsPbBr3 QDs to MoS2.The results indicate that the optoelectronic characteristics of MoS2-based FETs can be significantly improved through hybridization with photosensitive parovskite CsPbBr3 QDs.
基金FundedbytheNationalNaturalScienceFoundationofChi na (No .90 2 0 6 0 2 2 )
文摘MoS 2-based composite coatings were deposited with the nano-compound unbalanced plasma plating technique. The effects of processing parameters and working environments on the tribological properties of the coatings were examined by the drilling experiments and XPS. The distances between substrate and Ti target, Ti content and deposition pressure were varied in order to determine the optimum conditions for producing lubricious, long-lasting MoS 2-based coatings. It is found that the tribological performance of TiN-MoS 2 coating decreases rapidly in humid air but the humid-resistant property of TiN-MoS 2/Ti coating improves evidently.It is indicated that the humid-resistantance property and the abrasion durability of MoS 2-based coatings can be enhanced markedly by adding Ti with a certain contents.
基金supported by the National Natural Science Foundation of China(22178258,21975181)。
文摘The MoS_(2)-based materials are a vital class of heterogeneous catalysts for the hydrodeoxygenation of lignin and its model compounds to produce value-added chemicals especially because of their unique selectivity to aromatics.The rational design of MoS_(2)-based catalyst greatly depends on the comprehensive understanding of its structure-activity relationship.However,an intensive summary and critical analysis are still scarce to date.In this review,we attempt to provide an in-depth understanding of the interplay of structure,catalysis,and stability of MoS_(2)-based catalysts for lignin hydrodeoxygenation.The recognition of intrinsic active sites on MoS_(2) structure was firstly discussed,followed by the illustration of MoS_(2)-catalyzed hydrodeoxygenation structural models.Afterward,based on the studies on the MoS_(2)-catalyzed lignin model compounds hydrodeoxygenation,the current active site modification strategies including structural modification of monometallic MoS_(2) catalysts and collaborative modification were summarized and emphatically discussed,which aims to elucidate the structure-activity relationship at the atomic-level.The deactivation mechanism and stabilization strategies were also illustrated to provide instructive suggestion for the rational design of efficient and stable MoS_(2)-based catalysts.Finally,the real lignin depolymerization over MoS_(2)-based catalysts was summarized to point out the advantages and difficulties.This review attempts to highlight the remaining challenges and provide some perspectives for the future development of MoS_(2)-based catalysts for lignin hydrodeoxygenation.
基金supported by the China Postdoctoral Science Foundation (grant Nos.2019M662405,2019M650612)Natural Science Foundation of Shandong Province (grant Nos.ZR2019BF047,ZR2020KE059)+1 种基金School City Integration in Zibo (grant No.2019ZBXC299)Heilongjiang Touyan Team Program,and the Fundamental Research Funds for the Central Universities (grant No.HIT.0CEF.2021003).
文摘In recent years,significant progress has been achieved in the creation of innovative functional materials for energy storage and conversion.Due to their distinct physicochemical characteristics,ultrathin nanosheets composed of common layered transition metal sulfide materials(MoS2)have demonstrated promise as high-capacity anode materials for lithium-ion batteries(LIBs).Nevertheless,their practical application is severely limited by the tendency of monolayer nanosheets to restack due to strong van der Waals forces,dramatic volume changes during successive cycles,and low intrinsic conductivity.Recent research advances have shown that composite structures and nanowire morphologies with specific morphologies effectively overcome these issues.This paper reviews the recent research progress on molybdenum disulfide-based composites as anode materials for LIBs and discusses in detail the struc-tural characteristics of pure molybdenum disulfide and other composite forms of molybdenum disulfide.In addition,the phase engineering,defect engineering,and lithium storage mechanisms of molybdenum disulfide and the synthesis of molybdenum disulfide-based nanocomposites by different preparation methods are focused on.Finally,we review the design(structure),recent developments,and challenges of novel anode materials and consider their electrochemical performance in Li-ion batteries.
基金financially supported by the Singapore National Research Foundation under NRF RF Award No. MOE2016-T2-1-131, Tier 1 2017-T1-001-075, MOE2018-T3-1-002
文摘Room temperature Na-ion batteries(SIBs) show great potential for use as renewable energy storage systems.However, the large-scale application of SIBs has been hindered by the lack of an ideal SIBs anode material. We synthesized MoS2 on carbonized graphene-chitosan(G-C) using the hydrothermal method. The strong interaction between the MoS2 and the G-C greatly improved the electron transport rate and maintained the structural stability of the electrode, which lead to both an excellent rate capability and long cycle stability. The G-C monolith was proven to enhance the electrical conductivity of the composites and served as a matrix for uniformly dispersing active MoS2 nanosheets(NSs), as well as being a buffer material to adapt to changes in volume during the cycle.Serving as an anode material for SIBs, the MoS2-G-C electrode showed good cycling stability(527.3mAh g-1 at100 m A g-1 after 200 cycles), excellent rate capability, and a long cycle life(439.1 m Ah g-1 at 1 A g-1 after 200 cycles).
基金Project (090414185) supported by the Natural Science Foundation of Anhui Province, China
文摘Effects of VC/Cr3C2 on the microstructure and mechanical properties of Ti(C,N)-based cermets were studied. The microstructure was investigated by means of optical microscopy, X-ray diffractometry as well as scanning electron microscopy in combination with energy dispersive spectrometry. Mechanical properties, such as transverse rupture strength, hardness and fracture toughness, were measured. The results show that there are black core-grey rim structure and white core-grey rim structure in the microstructure. The grains become fine due to the VC/Cr3C2, and the grains of cermet added with 0.75VC/0.25Cr3C2 are refined most remarkably. The black core becomes finer with the increase of VC addition and rim phase becomes thicker with the decrease of Cr3C2 addition. The porosity increases with the increase of VC addition in VC/Cr3C2. Compared with the cermet free of VC/Cr3C2, the transverse rupture strength and hardness of cermets with VC/Cr3C2 are both improved, and the maximum values are both found for the cermet with 0.25VC/0.75Cr3C2. The fracture toughness can be effectively promoted by adding VC/Cr3C2 with an appropriate ratio of VC to Cr3C2, and the maximum value is found for the cermet with 0.5VC/0.5Cr3C2.
基金Project(51404001)supported by the National Natural Science Foundation of ChinaProject([2014]1685)supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars,Ministry of Education,China
文摘A novel SnO2-based gas anode was developed for aluminum electrolysis in molten cryolite at 850 &#176;C to reduce energy consumption and decrease CO2 emissions. Hydrogen was introduced into the anode, participating in the anode reaction. Carbon and aluminum were used as the cathode and reference electrodes, respectively. Cyclic voltammetry was applied in the cell to investigate the electrochemical behavior of oxygen ion on platinum and SnO2-based materials. The potential for oxygen evolution on these electrode materials was determined. Then, galvanostatic electrolysis was performed on the gas anode, showing a significant depolarization effect (a decrease of ~0.8 V of the anode potential) after the introduction of hydrogen, compared with no gas introduction or the introduction of argon. The results indicate the involvement of hydrogen in the anode reaction (three-phase-boundary reaction including gas, electrolyte and electrode) and give the possibility for the utilization of reducing gas anodes for aluminum electrolysis.
基金supported by the National Natural Science Foundation of China (21263015,21567016 and 21503106)the Education Department Foundation of Jiangxi Province (KJLD14005 and GJJ150016)the Natural Science Foundation of Jiangxi Province (20142BAB213013 and 20151BBE50006),which are greatly acknowledged by the authors~~
文摘A series of SnO2‐based catalysts modified by Mn, Zr, Ti and Pb oxides with a Sn/M (M=Mn, Zr, Ti and Pb) molar ratio of 9/1 were prepared by a co‐precipitation method and used for CH4 and CO oxidation. The Mn3+, Zr4+, Ti4+and Pb4+cations are incorporated into the lattice of tetragonal rutile SnO2 to form a solid solution structure. As a consequence, the surface area and thermal stability of the catalysts are improved. Moreover, the oxygen species of the modified catalysts become easier to be reduced. Therefore, the oxidation activity over the catalysts was improved, except for the one modified by Pb oxide. Manganese oxide demonstrates the best promotional effects for SnO2. Using an X‐ray diffraction extrapolation method, the lattice capacity of SnO2 for Mn2O3 was 0.135 g Mn2O3/g SnO2, which indicates that to form stable solid solution, only 21%Sn4+cations in the lattice can be maximally replaced by Mn3+. If the amount of Mn3+cations is over the capacity, Mn2O3 will be formed, which is not favorable for the activity of the catalysts. The Sn rich samples with only Sn‐Mn solid solution phase show higher activity than the ones with excess Mn2O3 species.
基金Project supported by the Australian Research CouncilZhi-Gang Chen thanks the USQ start-up grantstrategic research grant
文摘Thermoelectric materials,enabling the directing conversion between heat and electricity,are one of the promising candidates for overcoming environmental pollution and the upcoming energy shortage caused by the over-consumption of fossil fuels.Bi2Te3-based alloys are the classical thermoelectric materials working near room temperature.Due to the intensive theoretical investigations and experimental demonstrations,significant progress has been achieved to enhance the thermoelectric performance of Bi2Te3-based thermoelectric materials.In this review,we first explored the fundamentals of thermoelectric effect and derived the equations for thermoelectric properties.On this basis,we studied the effect of material parameters on thermoelectric properties.Then,we analyzed the features of Bi2Te3-based thermoelectric materials,including the lattice defects,anisotropic behavior and the strong bipolar conduction at relatively high temperature.Then we accordingly summarized the strategies for enhancing the thermoelectric performance,including point defect engineering,texture alignment,and band gap enlargement.Moreover,we highlighted the progress in decreasing thermal conductivity using nanostructures fabricated by solution grown method,ball milling,and melt spinning.Lastly,we employed modeling analysis to uncover the principles of anisotropy behavior and the achieved enhancement in Bi2Te3,which will enlighten the enhancement of thermoelectric performance in broader materials
基金National Natural Science Foundation of China(U1760202,51661130154)the Newton Advanced fellowship(NA 150320)is greatly acknowledged.
文摘Advanced high-strength steels (AHSSs) have been gradually applied to modern auto industry, as they have the advantages of improving the steel strength and lightening the car weight, which not only ensures the safety but also saves the energy. However, the high-aluminum (Al) content in AHSSs may react with SiO2 in conventional CaO-SiO2-based mold flux during the process of continuous casting, which leads to the deterioration of the mold flux properties and a poor slab quality. Then, the non-reactive CaO-Al2O3-based mold flux was proposed and has been developing for the casting process of high-Al steels, but there are some problems of low consumption and insufficient lubrication that need to be solved. Thus, previous researches on the effect of each component on the properties of CaO-Al2O3-based mold flux were systematically summarized, and the situation of plant trials on CaO-Al2O3-based mold flux was evaluated. The results indicated that the proposed CaO-Al2O3-based mold fluxes could avoid the slag-metal reaction problems;however, the problems of lubri-cation, crystallization and heat transfer issues still exist. Therefore, tremendous works still need to be conducted for the development of new generation of CaO-Al2O3-based mold flux system. The review was performed aiming to provide a technical guidance for designing and optimizing CaO-Al2O3-based mold flux system that meets the demand of the continuous casting process of high-Al steels.
基金Funded by the Natural Science Foundation of China (No. 50872001 and No. 50642038)the Scientific Research Foundation of Education Ministry of Anhui Province (No. 2005KJ224 and No. KJ2007B132)the Graduate Student Innovation Programs of Anhui University (No. 20072006)
文摘We investigated the influence of soaking time on the semi-conductivity and nonlinear electrical properties of TiO2- based varistor ceramic samples. We used a single sintering process and fabricated six disk samples of (Sr, Bi, Si, Ta)-doped TiO2- based varistor ceramics sintered at 1 250℃ for 0.5 h, 1.0 h, 2.0 h, 3.0 h, 4.0 h, and 5.0 h, respectively. The samples were characterized by X-ray diffraction, breakdown voltage, and complex impedance. The results show that as the soaking time increases from 0.5 h to 5.0 h, the breakdown voltage drops before rising while the nonlinear coefficient increases and then decreases. We suggest that, considering both grain semi-conductivity and nonlinear electrical properties of the TiO2-based varistor ceramics, the optimal soaking time is between 2.0 h and 3.0 h.
基金Project(51074110) supported by the National Natural Science Foundation of ChinaProject(10GGZD080GX-268) supported by Chengdu Science and Technology Program, China
文摘The electrochemical corrosion behavior of Ti(C,N)-based cermets with different Mo2C additions was investigated in freely aerated 10% H2SO4 and potentiodynamic polarization of all the materials was conducted from -0.5 to 1.5 V. There are two passive regions for all polarization curves. The first should be attributed to passive film formation due to Ti(C,N), while the second may be due to the presence of Ni. Corrosion current density increases with M02C content increasing, from 2.06×10^-3 to 6.70×10^-3 mA/cm2. It is indicated that the corrosion resistance of Ti(C,N)-based cermets decreases with the increase of Mo2C addition. A skeleton of Ti(C,N) gains is observed after dissolution of Ni. The inner rim of cermets, rich in Mo2C, is corroded along with Ni binder and is more serious with the increase of Mo2C content. The secondary carbide Mo2C can be oxidized and dissolved in sulphuric acid.