Two-dimensional(2D)MoO_(2),a binary nonlayered material,has been extensively studied for potential applications in catalysis and electronics.However,the preparation of 2D MoO_(2) remains challenging.Herein,we report t...Two-dimensional(2D)MoO_(2),a binary nonlayered material,has been extensively studied for potential applications in catalysis and electronics.However,the preparation of 2D MoO_(2) remains challenging.Herein,we report the growth of 2D MoO_(2) flakes with rhombic morphology on the sapphire substrate via a chemical vapor deposition(CVD)method.Atomic force microscopy shows the CVDgrown MoO_(2) flakes with thin thickness.The CVD-obtained MoO_(2) with a stoichiometric ratio of 1:2 is verified using energy-dispersive X-ray spectroscopy.Scanning transmission electron microscopy(STEM)characterization reveals the high-quality,single-crystal nature of the CVDderived 2D MoO_(2) flakes.展开更多
The phase diagrams of the Li2MoO4-Na2MoO4 and Na2MoO4-K2MoO4 systems have been reassessed using differential thermal analysis together with high-temperature and room-temperature X-ray diffraction analysis. The results...The phase diagrams of the Li2MoO4-Na2MoO4 and Na2MoO4-K2MoO4 systems have been reassessed using differential thermal analysis together with high-temperature and room-temperature X-ray diffraction analysis. The results showed that the compound Li2MoO4.6Na2MoO4 did not exist; however, it confirmed the existence of the compound Li2MoO4.3Na2MoO4 in the Li2MoO4-Na2MoO4 systen'ls. With regard to the system of Na2MoO4-K2MoO4, we could not confirm the results reported by Bukhanova who claimed that the system was eutectic type with 1:1 and 1:2 intermediate compounds, refuting the statement of Amadori who thought there was an apparent phase boundary at high temperature in α-solid solution region of the Na2MoO4-K2MoO4 binary system. The revised phase diagrams of these systems are illustrated in this article. These experimental results are in agreement with the computerized prediction using the support vector machine-atomic parameter method for the assessment of phase diagrams.展开更多
The phase diagrams of the Li2MoO4-Na2MoO4 and Na2MoO4-K2MoO4 systems have been reassessed using differential thermal analysis together with high-temperature and room-temperature X-ray diffraction analysis. The results...The phase diagrams of the Li2MoO4-Na2MoO4 and Na2MoO4-K2MoO4 systems have been reassessed using differential thermal analysis together with high-temperature and room-temperature X-ray diffraction analysis. The results showed that the compound Li2MoO4·6Na2MoO4 did not exist; however,it confirmed the existence of the compound Li2MoO4·3Na2MoO4 in the Li2MoO4-Na2MoO4 systems. With regard to the system of Na2MoO4-K2MoO4,we could not confirm the results reported by Bukhanova who claimed that the system was eutectic type with 1∶1 and 1∶2 intermediate compounds,refuting the statement of Amadori who thought there was an apparent phase boundary at high temperature in α-solid solution region of the Na2MoO4-K2MoO4 binary system. The revised phase diagrams of these systems are illustrated in this article. These experimental results are in agreement with the computerized prediction using the support vector machine-atomic parameter method for the assessment of phase diagrams.展开更多
基金supported by the Science and Technology Plan Project of Tangshan Science and Technology Bureau(No.22130217H)the Natural Science Foundation-Steel and Iron Foundation of Hebei Province(No.E2022209114)the Open Research Fund from Guangxi Key Laboratory of Information Materials,Guilin University of Electronic Technology(No.221004-K).
文摘Two-dimensional(2D)MoO_(2),a binary nonlayered material,has been extensively studied for potential applications in catalysis and electronics.However,the preparation of 2D MoO_(2) remains challenging.Herein,we report the growth of 2D MoO_(2) flakes with rhombic morphology on the sapphire substrate via a chemical vapor deposition(CVD)method.Atomic force microscopy shows the CVDgrown MoO_(2) flakes with thin thickness.The CVD-obtained MoO_(2) with a stoichiometric ratio of 1:2 is verified using energy-dispersive X-ray spectroscopy.Scanning transmission electron microscopy(STEM)characterization reveals the high-quality,single-crystal nature of the CVDderived 2D MoO_(2) flakes.
基金This work was financially supported by the National Natural Science Foundation of China (No.20373040).
文摘The phase diagrams of the Li2MoO4-Na2MoO4 and Na2MoO4-K2MoO4 systems have been reassessed using differential thermal analysis together with high-temperature and room-temperature X-ray diffraction analysis. The results showed that the compound Li2MoO4.6Na2MoO4 did not exist; however, it confirmed the existence of the compound Li2MoO4.3Na2MoO4 in the Li2MoO4-Na2MoO4 systen'ls. With regard to the system of Na2MoO4-K2MoO4, we could not confirm the results reported by Bukhanova who claimed that the system was eutectic type with 1:1 and 1:2 intermediate compounds, refuting the statement of Amadori who thought there was an apparent phase boundary at high temperature in α-solid solution region of the Na2MoO4-K2MoO4 binary system. The revised phase diagrams of these systems are illustrated in this article. These experimental results are in agreement with the computerized prediction using the support vector machine-atomic parameter method for the assessment of phase diagrams.
文摘The phase diagrams of the Li2MoO4-Na2MoO4 and Na2MoO4-K2MoO4 systems have been reassessed using differential thermal analysis together with high-temperature and room-temperature X-ray diffraction analysis. The results showed that the compound Li2MoO4·6Na2MoO4 did not exist; however,it confirmed the existence of the compound Li2MoO4·3Na2MoO4 in the Li2MoO4-Na2MoO4 systems. With regard to the system of Na2MoO4-K2MoO4,we could not confirm the results reported by Bukhanova who claimed that the system was eutectic type with 1∶1 and 1∶2 intermediate compounds,refuting the statement of Amadori who thought there was an apparent phase boundary at high temperature in α-solid solution region of the Na2MoO4-K2MoO4 binary system. The revised phase diagrams of these systems are illustrated in this article. These experimental results are in agreement with the computerized prediction using the support vector machine-atomic parameter method for the assessment of phase diagrams.