In previous modeling works, the waveguide radiation in the free space is modeled using an infinite flange in aperture plan. In this paper, we propose a new formulation to analyze the radiation of twin rectangular wave...In previous modeling works, the waveguide radiation in the free space is modeled using an infinite flange in aperture plan. In this paper, we propose a new formulation to analyze the radiation of twin rectangular waveguides in free space. Our formulation consists firstly in simulating the free space as rectangular waveguide and seeking the appropriate dimensions that do not affect scattering parameters. In the second step, we use the symmetry principle to reduce the coupling problem to single guide radiating in the free space. Moreover, for more simplification, we consider a concentric discontinuity to solve this latter. This approach is based on moments method combined to the generalized equivalent circuit method (MoM-GEC) in order to reduce the number of unknown problems and alleviate their computation. Obtained numerical results are presented and discussed. A good agreement with literature is shown and the boundary conditions are verified.展开更多
This paper proposes a generalization of the MoM-GEC method [1] needed for studying planar structures excited with a source located at perpendicular plan relative to circuit plan. A general formulation is detailed...This paper proposes a generalization of the MoM-GEC method [1] needed for studying planar structures excited with a source located at perpendicular plan relative to circuit plan. A general formulation is detailed to allow modeling excitation of a planar structure with one or more sources located in plans other than the circuit plan. The numerical approach elaborated is based on the definition of new admittance operators and rotational transformations describing the transition from one plan to another. To validate this approach, we consider the case of a single source located in the perpendicular plan to the circuit.展开更多
In this paper Genetic Algorithm has been integrated with Fouquet modal analysis to optimize radiation pattern of coupled periodic antenna. Floquet analysis is used with MoM-GEC (Moment-Generalized Equivalent Circuit) ...In this paper Genetic Algorithm has been integrated with Fouquet modal analysis to optimize radiation pattern of coupled periodic antenna. Floquet analysis is used with MoM-GEC (Moment-Generalized Equivalent Circuit) method to study a finite periodic array with uniform amplitude and linear phase distribution. This method is very advantageous for studying large antenna array since it considerably reduces the computation time and the number of operations. In this way, Genetic algorithm is introduced and combined with Floquet analysis to optimize the radiation pattern distribution of this coupled periodic antenna. The goal of the optimization is to provide a better radiation characteristic for the coupled periodic antenna with maximum side lobe level reduction.展开更多
文摘In previous modeling works, the waveguide radiation in the free space is modeled using an infinite flange in aperture plan. In this paper, we propose a new formulation to analyze the radiation of twin rectangular waveguides in free space. Our formulation consists firstly in simulating the free space as rectangular waveguide and seeking the appropriate dimensions that do not affect scattering parameters. In the second step, we use the symmetry principle to reduce the coupling problem to single guide radiating in the free space. Moreover, for more simplification, we consider a concentric discontinuity to solve this latter. This approach is based on moments method combined to the generalized equivalent circuit method (MoM-GEC) in order to reduce the number of unknown problems and alleviate their computation. Obtained numerical results are presented and discussed. A good agreement with literature is shown and the boundary conditions are verified.
文摘This paper proposes a generalization of the MoM-GEC method [1] needed for studying planar structures excited with a source located at perpendicular plan relative to circuit plan. A general formulation is detailed to allow modeling excitation of a planar structure with one or more sources located in plans other than the circuit plan. The numerical approach elaborated is based on the definition of new admittance operators and rotational transformations describing the transition from one plan to another. To validate this approach, we consider the case of a single source located in the perpendicular plan to the circuit.
文摘In this paper Genetic Algorithm has been integrated with Fouquet modal analysis to optimize radiation pattern of coupled periodic antenna. Floquet analysis is used with MoM-GEC (Moment-Generalized Equivalent Circuit) method to study a finite periodic array with uniform amplitude and linear phase distribution. This method is very advantageous for studying large antenna array since it considerably reduces the computation time and the number of operations. In this way, Genetic algorithm is introduced and combined with Floquet analysis to optimize the radiation pattern distribution of this coupled periodic antenna. The goal of the optimization is to provide a better radiation characteristic for the coupled periodic antenna with maximum side lobe level reduction.