The mitogen-activated protein kinase(MAPK) interacting protein kinases 1 and 2(Mnk1 and Mnk2) play important roles in controlling signals involved in mRNA translation. In addition to the MAPKs(p38 or Erk), multiple st...The mitogen-activated protein kinase(MAPK) interacting protein kinases 1 and 2(Mnk1 and Mnk2) play important roles in controlling signals involved in mRNA translation. In addition to the MAPKs(p38 or Erk), multiple studies suggest that the Mnk kinases can be regulated by other known kinases such as Pak2 and/or other unidentified kinases by phosphorylation of residues distinct from the sites phosphorylated by the MAPKs. Several studies have established multiple Mnk protein targets, including PSF, heterogenous nuclear ribonucleoprotein A1, Sprouty 2 and have lead to the identification of distinct biological functions and substrate specificity for the Mnk kinases. In this review we discuss the pathways regulating the Mnk kinases, their known substrates as well as the functional consequences of engagement of pathways controlled by Mnk kinases. These kinases play an important role in mRNA translation via their regulation of eukaryotic initiation factor 4E(eIF4E) and their functions have important implications in tumor biology as well as the regulation of drug resistance to anti-oncogenic therapies. Other studies have identified a role for the Mnk kinases in cap-independent mRNA translation, suggesting that the Mnk kinases can exert important functional effects independently of the phosphorylation of eIF4 E. The role of Mnk kinases in inflammation and inflammationinduced malignancies is also discussed.展开更多
Objective:To investigate the effect of mitogen-activated protein kinase interaction serine kinase 1(Mnk1)gene deletion on lipopolysaccharide(LPS)-induced inflammatory response in mouse macrophages(Mφ)and the possible...Objective:To investigate the effect of mitogen-activated protein kinase interaction serine kinase 1(Mnk1)gene deletion on lipopolysaccharide(LPS)-induced inflammatory response in mouse macrophages(Mφ)and the possible mechanism.Methods:Healthy male wildtype C57BL/6J(WT)and Mnk1 knockout(KO)mice were selected at 8-10 weeks of age and divided into WT+PBS,KO+PBS,WT+LPS and KO+LPS groups,and the serum levels of IL-1βwere measured by ELISA after 24 h intraperitoneal injection of PBS or LPS.The mRNA expression levels of IL-1βand Sprouty2(Spry2)in the spleen Mφwere measured by qRTPCR.Mφwas also extracted from the peritoneal cavity of two strains of mice for in vitro experiments to detect macrophage adhesion function and stimulated with equal volumes of LPS or PBS solution for 24 h,divided into WT+PBS group,KO+PBS group,WT+LPS group and KO+LPS group,and transfected with adenovirus expressing Spry2.qRT-PCR was used to detect the mRNA expression levels of LFA-1α,IL-1β,iNOS,CD206,Arg1 and Spry2 in Mφ.Mnk1,ERK1/2,P-ERK1/2,P-p38,P-JNK and Spry2 protein levels in Mφwere detected by western blot.Results:In the in vivo experiments,the concentration of IL-1βin the serum of the KO+LPS group was more significantly elevated than that of the WT+LPS group in mice injected intraperitoneally with LPS.The expression level of splenic MφIL-1βwas higher and the mRNA expression level of Spry2 was decreased in the KO+LPS group compared to the WT+LPS group.In the in vitro experiments,the mRNA expression levels of IL-1βand iNOS were elevated and those of CD206,Arg1 and Spry2 were decreased in the KO+LPS group compared with the WT+LPS group;the expression of LFA-1αwas not significantly different in the WT+PBS and WT+LPS groups,while the expression level of LFA-1αwas significantly increased in the KO+LPS group compared with the WT+LPS group.The results of the macrophage adhesion function assay showed that the adhesion rate of Mφin the KO group was increased at several time points compared to the WT group.After LPS stimulation,the expression of MφSpry2 decreased in Mnk1 KO group compared to WT group,while the expression of P-ERK1/2 increased compared to WT group.After Mφwas transfected with adenovirus overexpressing Spry2 and stimulated with LPS,MφSpry2 expression increased in the KO+AdSpry2 group and P-ERK1/2 expression decreased significantly compared to KO+AdGFP.Conclusion:Mnk1 knockdown enhances LPS-induced inflammatory responses in macrophages,and the mechanism may be related to the involvement of Spry2,a substrate of Mnk1,in regulating macrophage function.展开更多
Increasing evidence suggests that deregulated RNA splicing factors play critical roles in tumorigenesis;however,their specific involvement in colon cancer remains largely unknown.Here we report that the splicing facto...Increasing evidence suggests that deregulated RNA splicing factors play critical roles in tumorigenesis;however,their specific involvement in colon cancer remains largely unknown.Here we report that the splicing factor RBM25 is overexpressed in colon cancer,and this increased expression correlates with a poor prognosis of patients with colon cancer.Functionally,RBM25 ablation suppresses the growth of colon cancer cells both in vitro and in vivo.Mechanistically,our transcriptome-wide analysis of splicing events revealed that RBM25 regulates a large number of cancer-related alternative splicing events across the human genome in colon cancer.Particularly,RBM25 regulates the splicing of MNK2 by interacting with the poly G rich region in exon 14a,thereby inhibiting the selection of the proximal 3'splice site(ss),resulting in the production of the oncogenic short isoform,MNK2b.Knockdown of RBM25 leads to an increase in the MNK2a isoform and a decrease in the MNK2b isoform.Importantly,re-expression of MNK2b or blocking the 3′ss of the alternative exon 14a with ASO partially reverses the RBM25 knockdown mediated tumor suppression.Moreover,MNK2b levels were significantly increased in colon cancer tissues,which is positively correlated with the expression level of RBM25.Collectively,our findings uncover the critical role of RBM25 as a key splicing factor in colon cancer,suggesting its potential as a prognostic marker and therapeutic target.展开更多
文摘The mitogen-activated protein kinase(MAPK) interacting protein kinases 1 and 2(Mnk1 and Mnk2) play important roles in controlling signals involved in mRNA translation. In addition to the MAPKs(p38 or Erk), multiple studies suggest that the Mnk kinases can be regulated by other known kinases such as Pak2 and/or other unidentified kinases by phosphorylation of residues distinct from the sites phosphorylated by the MAPKs. Several studies have established multiple Mnk protein targets, including PSF, heterogenous nuclear ribonucleoprotein A1, Sprouty 2 and have lead to the identification of distinct biological functions and substrate specificity for the Mnk kinases. In this review we discuss the pathways regulating the Mnk kinases, their known substrates as well as the functional consequences of engagement of pathways controlled by Mnk kinases. These kinases play an important role in mRNA translation via their regulation of eukaryotic initiation factor 4E(eIF4E) and their functions have important implications in tumor biology as well as the regulation of drug resistance to anti-oncogenic therapies. Other studies have identified a role for the Mnk kinases in cap-independent mRNA translation, suggesting that the Mnk kinases can exert important functional effects independently of the phosphorylation of eIF4 E. The role of Mnk kinases in inflammation and inflammationinduced malignancies is also discussed.
基金The National Key R&D Program(2018YFC1311300)Scientific Research Project of Hubei Health Commission(WJ2021Q035)。
文摘Objective:To investigate the effect of mitogen-activated protein kinase interaction serine kinase 1(Mnk1)gene deletion on lipopolysaccharide(LPS)-induced inflammatory response in mouse macrophages(Mφ)and the possible mechanism.Methods:Healthy male wildtype C57BL/6J(WT)and Mnk1 knockout(KO)mice were selected at 8-10 weeks of age and divided into WT+PBS,KO+PBS,WT+LPS and KO+LPS groups,and the serum levels of IL-1βwere measured by ELISA after 24 h intraperitoneal injection of PBS or LPS.The mRNA expression levels of IL-1βand Sprouty2(Spry2)in the spleen Mφwere measured by qRTPCR.Mφwas also extracted from the peritoneal cavity of two strains of mice for in vitro experiments to detect macrophage adhesion function and stimulated with equal volumes of LPS or PBS solution for 24 h,divided into WT+PBS group,KO+PBS group,WT+LPS group and KO+LPS group,and transfected with adenovirus expressing Spry2.qRT-PCR was used to detect the mRNA expression levels of LFA-1α,IL-1β,iNOS,CD206,Arg1 and Spry2 in Mφ.Mnk1,ERK1/2,P-ERK1/2,P-p38,P-JNK and Spry2 protein levels in Mφwere detected by western blot.Results:In the in vivo experiments,the concentration of IL-1βin the serum of the KO+LPS group was more significantly elevated than that of the WT+LPS group in mice injected intraperitoneally with LPS.The expression level of splenic MφIL-1βwas higher and the mRNA expression level of Spry2 was decreased in the KO+LPS group compared to the WT+LPS group.In the in vitro experiments,the mRNA expression levels of IL-1βand iNOS were elevated and those of CD206,Arg1 and Spry2 were decreased in the KO+LPS group compared with the WT+LPS group;the expression of LFA-1αwas not significantly different in the WT+PBS and WT+LPS groups,while the expression level of LFA-1αwas significantly increased in the KO+LPS group compared with the WT+LPS group.The results of the macrophage adhesion function assay showed that the adhesion rate of Mφin the KO group was increased at several time points compared to the WT group.After LPS stimulation,the expression of MφSpry2 decreased in Mnk1 KO group compared to WT group,while the expression of P-ERK1/2 increased compared to WT group.After Mφwas transfected with adenovirus overexpressing Spry2 and stimulated with LPS,MφSpry2 expression increased in the KO+AdSpry2 group and P-ERK1/2 expression decreased significantly compared to KO+AdGFP.Conclusion:Mnk1 knockdown enhances LPS-induced inflammatory responses in macrophages,and the mechanism may be related to the involvement of Spry2,a substrate of Mnk1,in regulating macrophage function.
基金supported by the National Key Research and Development Program of China(2022YFA1104002,2023YFE0117500)the National Natural Science Foundation of China(82225034,82273427)+1 种基金the Science and Technology Innovation Talent Support Program of Dalian(2022RJ15,2022JJ11CG009)the Liaoning Revitalization Talents Program(XLYC2202027)。
文摘Increasing evidence suggests that deregulated RNA splicing factors play critical roles in tumorigenesis;however,their specific involvement in colon cancer remains largely unknown.Here we report that the splicing factor RBM25 is overexpressed in colon cancer,and this increased expression correlates with a poor prognosis of patients with colon cancer.Functionally,RBM25 ablation suppresses the growth of colon cancer cells both in vitro and in vivo.Mechanistically,our transcriptome-wide analysis of splicing events revealed that RBM25 regulates a large number of cancer-related alternative splicing events across the human genome in colon cancer.Particularly,RBM25 regulates the splicing of MNK2 by interacting with the poly G rich region in exon 14a,thereby inhibiting the selection of the proximal 3'splice site(ss),resulting in the production of the oncogenic short isoform,MNK2b.Knockdown of RBM25 leads to an increase in the MNK2a isoform and a decrease in the MNK2b isoform.Importantly,re-expression of MNK2b or blocking the 3′ss of the alternative exon 14a with ASO partially reverses the RBM25 knockdown mediated tumor suppression.Moreover,MNK2b levels were significantly increased in colon cancer tissues,which is positively correlated with the expression level of RBM25.Collectively,our findings uncover the critical role of RBM25 as a key splicing factor in colon cancer,suggesting its potential as a prognostic marker and therapeutic target.