期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Template synthesis of MnO_2/CNT nanocomposite and its application in rechargeable lithium batteries 被引量:4
1
作者 邹敏敏 艾邓均 刘开宇 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第9期2010-2014,共5页
Nanostructured MnO2/CNT composite was synthesized by a soft template approach in the presence of Pluronic P123 surfactant. The product was characterized by X-ray diffraction, thermogravimetric and differential thermal... Nanostructured MnO2/CNT composite was synthesized by a soft template approach in the presence of Pluronic P123 surfactant. The product was characterized by X-ray diffraction, thermogravimetric and differential thermal analyses, Fourier transformed infrared spectroscopy and high-resolution transmission electron microscopy. The results show that the sample consists of poor crystalline α-MnO2 nanorods with a diameter of about 10 nm and a length of 30-50 nm, which absorb on the carbon nanotubes. The electrochemical properties of the product as cathode material for Li-MnO2 cell are evaluated by galvanostatic charge-discharge and electrochemical impedance spectroscopy (EIS). Compared with pure MnO2 electrode, the MnO2/CNT composite delivers a much larger initial capacity of 275.3 mA-h/g and better rate and cycling performance. 展开更多
关键词 mno2/CNT soft template nanocomposite rechargeable lithium batteries
在线阅读 下载PDF
Mn3O4/carbon nanotube nanocomposites recycled from waste alkaline Zn–MnO2 batteries as high-performance energy materials 被引量:7
2
作者 Li-Hua Zhang Si-Si Wu +5 位作者 Yi Wan Yi-Feng Huo Yao-Cong Luo Ming-Yang Yang Min-Chan Li Zhou-Guang Lu 《Rare Metals》 SCIE EI CAS CSCD 2017年第5期442-448,共7页
Alkaline zinc manganese dioxide(Zn–MnO2)batteries are widely used in everyday life. Recycling of waste alkaline Zn–MnO2 batteries has always been a hot environmental concern. In this study, a simple and costeffect... Alkaline zinc manganese dioxide(Zn–MnO2)batteries are widely used in everyday life. Recycling of waste alkaline Zn–MnO2 batteries has always been a hot environmental concern. In this study, a simple and costeffective process for synthesizing Mn3O4/carbon nanotube(CNT) nanocomposites from recycled alkaline Zn–MnO2 batteries is presented. Manganese oxide was recovered from spent Zn–MnO2 battery cathodes. The Mn3O4/CNT nanocomposites were produced by ball milling the recovered manganese oxide in a commercial multi-wall carbon nanotubes(MWCNTs) solution. Scanning electron microscopy(SEM) analysis demonstrates that the nanocomposite has a unique three-dimensional(3D) bird nest structure. Mn3O4 nanoparticles are homogeneously distributed on MWCNT framework. Mn3O4/CNT nanocomposites were evaluated as an anode material for lithium-ion batteries, exhibiting a highly reversible specific capacitance of -580 mA h·g^-1 after 100 cycles. Moreover, Mn3O4/CNT nanocomposite also shows a fairly positive onset potential of -0.15 V and quite high oxygen reducibility when considered as an electrocatalyst for oxygen reduction reaction. 展开更多
关键词 Waste Zn–mno2 batteries Recycling nanocomposites Anode materials Oxygen reduction reaction
原文传递
Preparation of MnO2-impregnated carbon-coated Fe3O4 nanocomposites and their application for bovine serum albumin adsorption 被引量:2
3
作者 Chol-Hwan Kim Ze-Fei Zhang +1 位作者 Lin-Shan Wang Ting Sun 《Rare Metals》 SCIE EI CAS CSCD 2020年第10期1151-1158,共8页
MnO2-impregnated carbon-coated Fe3 O4(Fe3O4/C/MnO2)nanocomposites with a good core-shell structure were prepared by direct oxidation of carbon-coated Fe3 O4(Fe3O4/C)microspheres with KMnO4 in alkaline solution and app... MnO2-impregnated carbon-coated Fe3 O4(Fe3O4/C/MnO2)nanocomposites with a good core-shell structure were prepared by direct oxidation of carbon-coated Fe3 O4(Fe3O4/C)microspheres with KMnO4 in alkaline solution and applied to adsorb bovine serum albumin(BSA).X-ray diffraction(XRD),transmission electron microscope(TEM),Fourier transform infrared spectrometer(FTIR),vibrating sample magnetometer(VSM)and thermogravimetric analyzer(TGA)tests show that Fe3O4/C microspheres were newly functionalized via the oxidation by KMnO4.Fe3O4/C/MnO2 nanocomposites exhibit a higher adsorption capacity for BSA than Fe3O4/C microspheres and the maximum adsorption of BSA on them occurs at pH 4.7,which is the isoelectric point of BSA.Langmuir isotherm model describes the adsorption of BSA better than Freundlich model and Temkin model,and the kinetics data fit well with the pseudo-second-order model. 展开更多
关键词 Fe3O4/C/mno2 nanocomposites Bovine serum albumin Adsorption
原文传递
Hydrogen storage properties of nanocomposite Mg-Ni-MnO_2 made by mechanical milling 被引量:1
4
作者 王尔德 于振兴 刘祖岩 《中国有色金属学会会刊:英文版》 CSCD 2002年第2期227-232,共6页
The hydrogen storage properties of the nanocomposite Mg 95 Ni 3(MnO 2) 2 (mass fraction, %) were studied. The temperature changes in hydriding/dehydriding process were investigated. The nanocomposite was fabricated by... The hydrogen storage properties of the nanocomposite Mg 95 Ni 3(MnO 2) 2 (mass fraction, %) were studied. The temperature changes in hydriding/dehydriding process were investigated. The nanocomposite was fabricated by ball milling process of mixed elemental Mg, Ni and oxide maganese MnO 2 under hydrogen pressure (approximately 0.6?MPa). The hydrogen absorption and desorption properties of the samples milled for various times were investigated. A remarkable enhancement of hydrogen absorption kinetics and low operational desorption temperature have been found after the sample milled for over 57?h. For example, this nanocomposite can absorb hydrogen more than 6.0% (mass fraction) in 60?s at 200?℃ under 2.0?MPa, and desorption capacity also exceeds 6.0% (mass fraction) in 400?s at 310?℃ under 0.1?MPa. The storage properties of samples milled for various times were studied and the kinetics of the samples were analyzed. 展开更多
关键词 储氢合金 材料性能 Mg-Ni-mno2 镁镍二氧化锰 纳米复合 机械磨碎法
在线阅读 下载PDF
In-situ generation of gold nanoparticles on MnO_2 nanosheets for the enhanced oxidative degradation of basic dye(Methylene Blue) 被引量:2
5
作者 Xueqin Bao Zhen Qin +1 位作者 Tianshu Zhou Jingjing Deng 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2018年第3期236-245,共10页
In this work,the gold nanoparticles(Au-NPs)were in-situ generated on the surface of MnO2nanosheets to form MnO2/Au-NPs nanocomposite in a simple and cost-effective way.Multiple experiments were carried out to optimi... In this work,the gold nanoparticles(Au-NPs)were in-situ generated on the surface of MnO2nanosheets to form MnO2/Au-NPs nanocomposite in a simple and cost-effective way.Multiple experiments were carried out to optimize the oxidation of basic dye(Methylene Blue(MB)),including the molar ratio of MnO2to chloroauric acid(HAu Cl4),the p H of the solution and the effect of initial material.Under the optimal condition,the highest degradation efficiency for MB achieved to 98.9%within 60 min,which was obviously better than commercial MnO2powders(4.3%)and MnO2nanosheets(74.2%).The enhanced oxidative degradation might attribute to the in-situ generation of ultra-small and highly-dispersed Au-NPs which enlarged the synergistic effect and/or interfacial effect between MnO2nanosheets and Au-NPs and facilitated the uptake of electrons by MnO2from MB during the oxidation,thus validating the application of MnO2/Au-NPs nanocomposite for direct removal of organic dyes from wastewater in a simple and convenient fashion. 展开更多
关键词 mno2/au-nps nanocomposite In-situ generation Dye degradation Synergistic effect and inteffacial effect Enhanced oxidative degradation
原文传递
Hierarchical Manganese Oxide/Carbon Nanocomposites for Supercapacitor Electrodes 被引量:8
6
作者 Yiting Peng Zheng Chen +5 位作者 Jing Wen Qiangfeng Xiao Ding Weng Shiyu He Hongbin Geng Yunfeng Lu 《Nano Research》 SCIE EI CAS CSCD 2011年第2期216-225,共10页
MnO2/carbon nanocomposites with hierarchical pore structure and controllable MnO2 loading have been synthesized using a self-limiting growth method. This was achieved by the redox reactions of KMnO4 with sacrificed ca... MnO2/carbon nanocomposites with hierarchical pore structure and controllable MnO2 loading have been synthesized using a self-limiting growth method. This was achieved by the redox reactions of KMnO4 with sacrificed carbon substrates that contain hierarchical pores. The unique pore structure allows the synthesis of nanocomposites with tunable MnO2 loading up to 83 wt.%. The specific capacitance of the nanocomposites increased with the MnO2 loading; the conductivity measured by electrochemical impedance spectroscopy, on the other hand, decreased with increasing MnO2 loading. Optimization of the MnO2 loading resulted in nanocomposites with high specific capacitance and excellent rate capability. This work provides important fundamental understanding which will facilitate the design and fabrication of high-performance supercapacitor materials for a large variety of applications. 展开更多
关键词 Hierarchically porous carbon mno2/carbon nanocomposite SUPERCAPACITOR
原文传递
Biosynthesis of copper nanoparticles supported on manganese dioxide nanoparticles using Centella asiatica L. leaf extract for the efficient catalytic reduction of organic dyes and nitroarenes 被引量:1
7
作者 Mahmoud Nasrollahzadeh Mohaddeseh Sajjadi S.Mohammad Sajadi 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2018年第1期109-117,共9页
In this study we designed a novel,cost‐efficient and green method for the synthesis of copper nanoparticles(Cu NPs)supported on manganese dioxide(MnO2)NPs,using Centella asiatica L.leaf extract as a naturally‐source... In this study we designed a novel,cost‐efficient and green method for the synthesis of copper nanoparticles(Cu NPs)supported on manganese dioxide(MnO2)NPs,using Centella asiatica L.leaf extract as a naturally‐sourced reducing agent,without stabilizers or surfactants.This synthetic process is environmentally‐friendly and avoids the use of toxic reducing agents.Phenolic hydroxyl groups in the leaf extract are believed to reduce Cu2+in solution to generate Cu NPs that are subsequently stabilized on the MnO2NP surfaces.The resulting Cu/MnO2nanocomposite was fully characterized using X‐ray diffraction,transmission electron microscopy,field emission scanning electron microscopy,energy‐dispersive X‐ray spectroscopy and Fourier transform infrared spectroscopy.This material was found to function as a highly active,efficient and recyclable heterogeneous catalyst for the reduction of Congo red,rhodamine B and methylene blue as well as nitro compounds such as2,4‐dinitrophenylhydrazine and4‐nitrophenol in the presence of NaBH4in aqueous media at ambient temperature.The high stability of the Cu/MnO2nanocomposite also allows the catalyst to be separated and reused several times without any significant loss of activity.?2018,Dalian Institute of Chemical Physics,Chinese Academy of Sciences.Published by Elsevier B.V.All rights reserved. 展开更多
关键词 BIOSYNTHESIS Centella asiatica L. Cu/mno2 nanocomposite Reduction NITROARENE Organic dyes
在线阅读 下载PDF
Smart Engineering of a Self-Powered and Integrated Nanocomposite for Intracellular MicroRNA Imaging
8
作者 Mei-Rong Cui Xiang-Ling Li +1 位作者 Hong-Yuan Chen Jing-Juan Xu 《CCS Chemistry》 CAS 2021年第8期2063-2073,共11页
Over the past 2 years,many DNA motors have been synthesized and run in living cells,but there are still challenges in designing integrated DNA motors self-powered to enable autonomous intracellular walking without aux... Over the past 2 years,many DNA motors have been synthesized and run in living cells,but there are still challenges in designing integrated DNA motors self-powered to enable autonomous intracellular walking without auxiliary additives.Herein,we report a smart strategy based on a DNA motor–MnO2 nanocomposite,which successfully meets these requirements of intracellular analysis and enables sensitive imaging of specific microRNAs(miRNAs)in living cells. 展开更多
关键词 SELF-POWERED INTEGRATED DNA motor–mno2 nanocomposite MICRORNA IMAGING
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部