MnO,a potential cathode for aqueous zinc ion batteries(AZIBs),has received extensive attention.Nevertheless,the hazy energy storage mechanism and sluggish Zn^(2+)kinetics pose a significant impediment to its future co...MnO,a potential cathode for aqueous zinc ion batteries(AZIBs),has received extensive attention.Nevertheless,the hazy energy storage mechanism and sluggish Zn^(2+)kinetics pose a significant impediment to its future commercialization.In light of this,the electrochemical activation processes and reaction mechanism of pure MnO were investigated.Combining the Pourbaix diagram and phase diagram of Zn-Mn-O with experiment results,the essential energy storage behavior of MnO cathode can be explained as follows:(1)Zn^(2+)insertion/extraction into ZnMn_(2)O_(4)derived from MnO-based active material,and(2)Zn^(2+)insertion/extraction into ZnMn_(2)O_(4)(originated from the transition of Mn^(2+)→Zn2Mn3O8→ZnMn_(2)O_(4)in the electrolyte).To further ulteriorly enhance the electrochemistry performance of MnO,N-doped carbon fiber surrounding MnO nanoparticles was constructed,which can provide a conductive matrix with a high specific surface area preventing the undue stack of as-formed ZnMn_(2)O_(4).Additionally,it creates a conductive highway for Zn^(2+)penetration through the electrode/electrolyte interphase,thanks to the electron-rich N that facilitate the reduction of the desolvation penalty.Thus,the results from this study provide a new angle for designing high-performance MnO-based cathodes for AZIBs.展开更多
基金supported by the National Natural Science Foundation of China(No.52374029).
文摘MnO,a potential cathode for aqueous zinc ion batteries(AZIBs),has received extensive attention.Nevertheless,the hazy energy storage mechanism and sluggish Zn^(2+)kinetics pose a significant impediment to its future commercialization.In light of this,the electrochemical activation processes and reaction mechanism of pure MnO were investigated.Combining the Pourbaix diagram and phase diagram of Zn-Mn-O with experiment results,the essential energy storage behavior of MnO cathode can be explained as follows:(1)Zn^(2+)insertion/extraction into ZnMn_(2)O_(4)derived from MnO-based active material,and(2)Zn^(2+)insertion/extraction into ZnMn_(2)O_(4)(originated from the transition of Mn^(2+)→Zn2Mn3O8→ZnMn_(2)O_(4)in the electrolyte).To further ulteriorly enhance the electrochemistry performance of MnO,N-doped carbon fiber surrounding MnO nanoparticles was constructed,which can provide a conductive matrix with a high specific surface area preventing the undue stack of as-formed ZnMn_(2)O_(4).Additionally,it creates a conductive highway for Zn^(2+)penetration through the electrode/electrolyte interphase,thanks to the electron-rich N that facilitate the reduction of the desolvation penalty.Thus,the results from this study provide a new angle for designing high-performance MnO-based cathodes for AZIBs.