Based on test data from the hot forge experiments on Gleeble 1500, a Kumar type constitutive equation for 33Mn2V steel is established. Applying this constitutive equation in commercial FEM software of MSC/SuperForm 20...Based on test data from the hot forge experiments on Gleeble 1500, a Kumar type constitutive equation for 33Mn2V steel is established. Applying this constitutive equation in commercial FEM software of MSC/SuperForm 2005, the piercing process of 33Mn2V steel in Mannesmann mill is then simulated. The modeling results visualized the dynamic evolution of equivalent stress, especially inside the workpieee. It is shown that the non-uniform distribu- tion of stress on the internal and external surface of the workpiece is a distinct characteristic of processing tube pierc- ing. The numerical model was verified by comparing the values of calculated force parameters of the piercing process with those measured in laboratory eonditions. And it shows that the Kumar-type constitutive relationship meets the practical needs.展开更多
The hierarchical ZnMn2O4/Mn3O4 composite sub-microrods were synthesized via a water-in-oil microemulsion method followed by calcination.The ZnMn2O4/Mn3O4 electrode displays an intriguing capacity increasing from 440 t...The hierarchical ZnMn2O4/Mn3O4 composite sub-microrods were synthesized via a water-in-oil microemulsion method followed by calcination.The ZnMn2O4/Mn3O4 electrode displays an intriguing capacity increasing from 440 to 910 mA·h/g at 500 mA/g during 550 consecutive discharge/charge cycles,and delivers an ultrahigh capacity of 1276 mA·h/g at 100 mA/g,which is much greater than the theoretical capacity of either ZnMn2O4 or Mn3O4 electrode.To investigate the underlying mechanism of this phenomenon,cyclic voltammetry and differential capacity analysis were applied,both of which reveal the emergence and the growth of new reversible redox reactions upon charge/discharge cycling.The new reversible conversions are probably the results of an activation process of the electrode material during the cycling process,leading to the climbing charge storage.However,the capacity exceeding the theoretical value indicates that there are still other factors contributing to the increasing capacity.展开更多
We study the electronic structures of LiMn2O4 by x-ray and ultraviolet photoelectron spectroscopy (XPS, UPS) and resonant photoelectron spectroscopy (RPES). XPS data suggest that the average oxidation state of Mn ...We study the electronic structures of LiMn2O4 by x-ray and ultraviolet photoelectron spectroscopy (XPS, UPS) and resonant photoelectron spectroscopy (RPES). XPS data suggest that the average oxidation state of Mn ions is 3.55, probably due to the small amount of lithium oxides on the surface. UPS and RPES data imply that Mn ions are in a high spin state, and RPES results show strong Mn3d-O2p hybridization in the LiMn2O4 valence band.展开更多
The optical properties and electronic structure of marokite-type CaMn2O4 are investigated by using UV−vis spectroscopy and the local-spin-density approximation plus the Hubbard-U(LSDA+U)method.Four absorption bands ar...The optical properties and electronic structure of marokite-type CaMn2O4 are investigated by using UV−vis spectroscopy and the local-spin-density approximation plus the Hubbard-U(LSDA+U)method.Four absorption bands are observed at 638 nm(1.94 eV),512 nm(2.42 eV),377 nm(3.29 eV)and 248 nm(5.00 eV),which are ascribed to the charge transfer transitions O2p↑→Mn3d eg↑,O2p↓→Mn3d eg↑,Mn3d eg↑→Mn3d t2g↓and O2p↑→Mn3d t2g↓,respectively.We further use CaMn2O4 as a photocatalyst to decompose an azo-dye acid orange 7(AO7)under irradiation of visible light and find that the decomposition ratio of AO7 reaches 15.9%under the irradiation of visible light for two hours.展开更多
The changes of antioxidant enzyme activities and related genes expression of tomato seedlings were evaluated under hypoxia stress with different levels of Mn2+. Activities of superoxide dismutase (SOD), peroxidase (PO...The changes of antioxidant enzyme activities and related genes expression of tomato seedlings were evaluated under hypoxia stress with different levels of Mn2+. Activities of superoxide dismutase (SOD), peroxidase (POD), ascorbate peroxide (APX), glutathione reductase (GR), catalase (CAT), the contents of H2O2, ascorbic (AsA) and malondialdehyde (MDA) were studied to investigate how active oxygen damaged the membrane lipid under hypoxia stress. With 10-200 μmol?L-1 Mn2+, the activities of SOD, POD, APX, GR and the contents of H2O2, AsA, MDA of leaves and roots increased significantly, which indicated that low Mn2+ could eliminate the active oxygen and protect the membrane lipid from hurt. But the activities of catalase (CAT) decreased evidently in the root. When the concentration of Mn2+ reached 400-600 μmol?L-1 under hypoxia stress, the activities of SOD, POD, APX, GR and ASA content decreased remarkably. However, the contents of H2O2 and MDA increased contrarily. A series of resistance genes level achieved peak value with 10 μmol?L-1 Mn2+. The expression level of SOD, CAT, APX, POD, GR were 6.28, 2.19, 5.66, 5.21 and 6.79 times compared to control respectively. These results illustrated appropriate amount of Mn2+ could reduce the damage of active oxygen under hypoxia stress, but reversely, high level of Mn2+ just aggravated the already serious damage to the tomato seedlings.展开更多
White light-emitting diodes(WLEDs)fabricated by single-phase full color emitting phosphor are an emerging solution for health lighting.The crystallographic site occupation of activators in a proper host lattice is cru...White light-emitting diodes(WLEDs)fabricated by single-phase full color emitting phosphor are an emerging solution for health lighting.The crystallographic site occupation of activators in a proper host lattice is crucial for sophisticated design of such phosphor.Here,we report a high quality white lightemitting phosphor Ba_(2)Ca(BO_(3))_(2):Ce^(3+)(K^(+)),Eu^(2+),Mn^(2+)with spectral distribution covering whole visible region.Blue light emission originates from Ce3+ions occupying preferentially Ba^(2+)site by controlling synthesis conditions.Green and red lights are obtained from Eu^(2+)occupying Ba2+(and Ca)site and Mn2+occupying Casite,respectively.In this triple-doped phosphor,strong red emission with a low concentration of Mn2+is realized by the efficient energy transfer from Ce3+and Euto Mn.Furthermore,high quality white light is accomplished by properly tuning the relative doping amount of Ce^(3+)(K^(+))/Eu^(2+)/Mn^(2+)based on efficient simultaneous energy transfer.The results indicate that Ba_(2)Ca(BO_(3))_(2):Ce^(3+)(K^(+)),Eu^(2+),Mn^(2+)is a promising white light-emitting phosphor in WLEDs application.展开更多
Sulfide all-solid-state lithium batteries(SASSLBs)with a single-crystal nickel-rich layered oxide cathode(LiNix-CoyMn_(1-x-y)O_(2),x≥0.8)are highly desirable for advanced power batteries owing to their excellent ener...Sulfide all-solid-state lithium batteries(SASSLBs)with a single-crystal nickel-rich layered oxide cathode(LiNix-CoyMn_(1-x-y)O_(2),x≥0.8)are highly desirable for advanced power batteries owing to their excellent energy density and safety.Nevertheless,the cathode material's cracking issue and its severe interfacial problem with sulfide solid electrolytes have hindered the further development.This study proposes to employ surface modification engineering to produce B-NCM cathode materials coated with boride nanostructure stabilizer in situ by utilizing NCM encapsulated with residual lithium.This approach enhances the electrochemical performance of SASSLBs by effectively inhibiting electrochemical-mechanical degradation of the NCM cathode material on cycling and reducing deleterious side reactions with the solid sulfide electrolyte.The B-NCM/LPSCl/Gr SASSLBs demonstrate impressive cycling stability,retaining 84.19%of its capacity after 500 cycles at 0.2 C,which represents a 30.13%increase vs.NCM/LPSCl/Gr.It also exhibits a specific capacity of 170.4 mAh/g during its first discharge at 0.1 C.This work demonstrates an effective surface engineering strategy for enhancing capacity and cycle life,providing valuable insights into solving interfacial problems in SASSLBs.展开更多
Effective design of nanoheterostructure anode with high ion/electron migration kinetics can give electrode with superior electrochemical performance.However,the design and preparation of nanoheterostructure composites...Effective design of nanoheterostructure anode with high ion/electron migration kinetics can give electrode with superior electrochemical performance.However,the design and preparation of nanoheterostructure composites with high-capacity and long cycling life in half and pouch full cells remain a big challenge.Here,a novel micro-pore MnS/Mn_(2)SnS_(4)heterostructure nanowire were in situ encapsulated into the N and S elements co-doped amorphous carbon tubes(abbreviated as(MnS/Mn_(2)SnS_(4))@N,S-ACTs)and showed superior energy storage properties in Na-/Li-ion half cells and pouch full cells.The Na-/Li-storage capabilities improvement are attribute to the strong synergistic effect between MnS/Mn_(2)SnS_(4)heterostructure and N,S-ACTs protective layer,the former induces an local built-in electric field between Mn_(2)Sn S_(4)and MnS during charging/discharging,accelerating interfacial ion/electron diffusion dynamics,the latter effective maintains the morphology and volume evolution during Na~+/Li~+charging/discharging,achieving a long-term cycling stability(e.g.,high discharge capacity of 79.2 mAh/g with the capacity retention of 79.3%can be gained after 2200 cycles at 3 C in(Mn S/Mn_(2)Sn S_(4))@N,S-ACTs//LiFePO_(4)pouch full cells;a high capacity of~34 mAh/g at 10 C can be got with a Coulombic efficiency of 100%after 1000 cycles in pouch(Mn S/Mn_(2)Sn S_(4))@N,S-ACTs//Na_(3)V_(2)(PO_(4))_(2)O_(2)F full cells.展开更多
NF_(3)is commonly used as an etching and cleaning gas in semiconductor industry,however it is a strongly greenhouse gas.Therefore,the destruction of disposal NF_(3)is an urgent task to migrate the greenhouse effect.Am...NF_(3)is commonly used as an etching and cleaning gas in semiconductor industry,however it is a strongly greenhouse gas.Therefore,the destruction of disposal NF_(3)is an urgent task to migrate the greenhouse effect.Among the technologies for NF_(3)abatement,the destructive sorption of NF_(3)over metal oxides sorbents is an effective way.Thus,the search for a highly reactive and utilized sorbent for NF_(3)destruction is in great demand.In this work,AlOOH supported on carbon-sphere(AlOOH/CS)as precursors were synthesized hydrothermally and heat-treated to prepare the Al_(2)O_(3)sorbents.The influence of AlOOH/CS hydrothermal temperatures on the reactivity of derived Al_(2)O_(3)sorbents for NF_(3)destruction was investigated,and it is shown that the Al2O3 from AlOOH/CS hydro-thermalized at 120℃is superior to others.Subsequently,the optimized Al_(2)O_(3)was covered by Mn(OH)x to prepare Mn/Al_(2)O_(3)sorbents via changing hydrothermal temperatures and Mn loadings.The results show that the Mn/Al_(2)O_(3)sorbents are more utilized than bare Al_(2)O_(3)in NF_(3)destructive sorption due to the promotional effect of Mn_(2)O_(3)as surface layer on the fluorination of Al_(2)O_(3)as substrate,especially the optimal 5%Mn/Al2O3(160℃)exhibits a utilization percentage as high as 90.4%,and remarkably exceeds all the sorbents reported so far.These findings are beneficial to develop more efficient sorbents for the destruction of NF_(3).展开更多
基金Item Sponsored by Tianjin Natural Science Foundation of China(06YFJ MJC02200,11JCZDJC22600)
文摘Based on test data from the hot forge experiments on Gleeble 1500, a Kumar type constitutive equation for 33Mn2V steel is established. Applying this constitutive equation in commercial FEM software of MSC/SuperForm 2005, the piercing process of 33Mn2V steel in Mannesmann mill is then simulated. The modeling results visualized the dynamic evolution of equivalent stress, especially inside the workpieee. It is shown that the non-uniform distribu- tion of stress on the internal and external surface of the workpiece is a distinct characteristic of processing tube pierc- ing. The numerical model was verified by comparing the values of calculated force parameters of the piercing process with those measured in laboratory eonditions. And it shows that the Kumar-type constitutive relationship meets the practical needs.
基金Ting-ting FENG acknowledges the financial support from Professor Paul V.BRAUN at Department of Materials Science and Engineering,University of Illinois at Urbana-Champaign,the support from Chinese Scholarship Council during her visit to University of Illinois at Urbana-Champaign,partial financial supports from Department of Science and Technology of Sichuan Province,China(2019YFH0002,2019YFG0222 and 2019YFG0526).The research was partly carried out in the Frederick Seitz Materials Research Laboratory Central Research Facilities,University of Illinois at Urbana-Champaign.
文摘The hierarchical ZnMn2O4/Mn3O4 composite sub-microrods were synthesized via a water-in-oil microemulsion method followed by calcination.The ZnMn2O4/Mn3O4 electrode displays an intriguing capacity increasing from 440 to 910 mA·h/g at 500 mA/g during 550 consecutive discharge/charge cycles,and delivers an ultrahigh capacity of 1276 mA·h/g at 100 mA/g,which is much greater than the theoretical capacity of either ZnMn2O4 or Mn3O4 electrode.To investigate the underlying mechanism of this phenomenon,cyclic voltammetry and differential capacity analysis were applied,both of which reveal the emergence and the growth of new reversible redox reactions upon charge/discharge cycling.The new reversible conversions are probably the results of an activation process of the electrode material during the cycling process,leading to the climbing charge storage.However,the capacity exceeding the theoretical value indicates that there are still other factors contributing to the increasing capacity.
文摘We study the electronic structures of LiMn2O4 by x-ray and ultraviolet photoelectron spectroscopy (XPS, UPS) and resonant photoelectron spectroscopy (RPES). XPS data suggest that the average oxidation state of Mn ions is 3.55, probably due to the small amount of lithium oxides on the surface. UPS and RPES data imply that Mn ions are in a high spin state, and RPES results show strong Mn3d-O2p hybridization in the LiMn2O4 valence band.
基金Supported by the National Natural Science Foundation of China under Grant Nos,10874087,11074124 and 11174113Jiangsu Provincial Natural Science Foundation under Grant No.200921555.
文摘The optical properties and electronic structure of marokite-type CaMn2O4 are investigated by using UV−vis spectroscopy and the local-spin-density approximation plus the Hubbard-U(LSDA+U)method.Four absorption bands are observed at 638 nm(1.94 eV),512 nm(2.42 eV),377 nm(3.29 eV)and 248 nm(5.00 eV),which are ascribed to the charge transfer transitions O2p↑→Mn3d eg↑,O2p↓→Mn3d eg↑,Mn3d eg↑→Mn3d t2g↓and O2p↑→Mn3d t2g↓,respectively.We further use CaMn2O4 as a photocatalyst to decompose an azo-dye acid orange 7(AO7)under irradiation of visible light and find that the decomposition ratio of AO7 reaches 15.9%under the irradiation of visible light for two hours.
文摘The changes of antioxidant enzyme activities and related genes expression of tomato seedlings were evaluated under hypoxia stress with different levels of Mn2+. Activities of superoxide dismutase (SOD), peroxidase (POD), ascorbate peroxide (APX), glutathione reductase (GR), catalase (CAT), the contents of H2O2, ascorbic (AsA) and malondialdehyde (MDA) were studied to investigate how active oxygen damaged the membrane lipid under hypoxia stress. With 10-200 μmol?L-1 Mn2+, the activities of SOD, POD, APX, GR and the contents of H2O2, AsA, MDA of leaves and roots increased significantly, which indicated that low Mn2+ could eliminate the active oxygen and protect the membrane lipid from hurt. But the activities of catalase (CAT) decreased evidently in the root. When the concentration of Mn2+ reached 400-600 μmol?L-1 under hypoxia stress, the activities of SOD, POD, APX, GR and ASA content decreased remarkably. However, the contents of H2O2 and MDA increased contrarily. A series of resistance genes level achieved peak value with 10 μmol?L-1 Mn2+. The expression level of SOD, CAT, APX, POD, GR were 6.28, 2.19, 5.66, 5.21 and 6.79 times compared to control respectively. These results illustrated appropriate amount of Mn2+ could reduce the damage of active oxygen under hypoxia stress, but reversely, high level of Mn2+ just aggravated the already serious damage to the tomato seedlings.
基金Project supported by the National Key Research and Development Plan of China(2019YFE0107200)the Natural Science Foundation of Hubei Province(2020CFB700)+4 种基金the Doctoral Researchof Hubei University of Arts and Science(kyqdf2020023)Innovation Research Team Project of Hubei University of Arts and Science(2020kypytd001)the Project of Hubei University of Arts and Science(XK2021027)the National Natural Science Foundation of China(10804099)Natural Science Foundation of Zhejiang Province(LZ18B050002)。
文摘White light-emitting diodes(WLEDs)fabricated by single-phase full color emitting phosphor are an emerging solution for health lighting.The crystallographic site occupation of activators in a proper host lattice is crucial for sophisticated design of such phosphor.Here,we report a high quality white lightemitting phosphor Ba_(2)Ca(BO_(3))_(2):Ce^(3+)(K^(+)),Eu^(2+),Mn^(2+)with spectral distribution covering whole visible region.Blue light emission originates from Ce3+ions occupying preferentially Ba^(2+)site by controlling synthesis conditions.Green and red lights are obtained from Eu^(2+)occupying Ba2+(and Ca)site and Mn2+occupying Casite,respectively.In this triple-doped phosphor,strong red emission with a low concentration of Mn2+is realized by the efficient energy transfer from Ce3+and Euto Mn.Furthermore,high quality white light is accomplished by properly tuning the relative doping amount of Ce^(3+)(K^(+))/Eu^(2+)/Mn^(2+)based on efficient simultaneous energy transfer.The results indicate that Ba_(2)Ca(BO_(3))_(2):Ce^(3+)(K^(+)),Eu^(2+),Mn^(2+)is a promising white light-emitting phosphor in WLEDs application.
基金support from the National Natural Science Foundation of China(Grant No.52374407)is gratefully acknowledged.
文摘Sulfide all-solid-state lithium batteries(SASSLBs)with a single-crystal nickel-rich layered oxide cathode(LiNix-CoyMn_(1-x-y)O_(2),x≥0.8)are highly desirable for advanced power batteries owing to their excellent energy density and safety.Nevertheless,the cathode material's cracking issue and its severe interfacial problem with sulfide solid electrolytes have hindered the further development.This study proposes to employ surface modification engineering to produce B-NCM cathode materials coated with boride nanostructure stabilizer in situ by utilizing NCM encapsulated with residual lithium.This approach enhances the electrochemical performance of SASSLBs by effectively inhibiting electrochemical-mechanical degradation of the NCM cathode material on cycling and reducing deleterious side reactions with the solid sulfide electrolyte.The B-NCM/LPSCl/Gr SASSLBs demonstrate impressive cycling stability,retaining 84.19%of its capacity after 500 cycles at 0.2 C,which represents a 30.13%increase vs.NCM/LPSCl/Gr.It also exhibits a specific capacity of 170.4 mAh/g during its first discharge at 0.1 C.This work demonstrates an effective surface engineering strategy for enhancing capacity and cycle life,providing valuable insights into solving interfacial problems in SASSLBs.
基金financial support from the project funded by National Natural Science Foundation of China(Nos.52372188,51902090)2023 Introduction of studying abroad talent program,Science Technology Program of Jilin Province(No.20220508141RC)+5 种基金the 111 Project(No.B13013)China Postdoctoral Science Foundation(No.2019M652546)Henan Province Postdoctoral Start-Up Foundation(No.1901017)Henan Normal University Doctoral Start-Up Project Foundation,“111”project(No.D17007)Henan Center for Outstanding Overseas Scientists(No.GZS2018003)the Dalian Revitalization Talents Program(No.2022RG01)。
文摘Effective design of nanoheterostructure anode with high ion/electron migration kinetics can give electrode with superior electrochemical performance.However,the design and preparation of nanoheterostructure composites with high-capacity and long cycling life in half and pouch full cells remain a big challenge.Here,a novel micro-pore MnS/Mn_(2)SnS_(4)heterostructure nanowire were in situ encapsulated into the N and S elements co-doped amorphous carbon tubes(abbreviated as(MnS/Mn_(2)SnS_(4))@N,S-ACTs)and showed superior energy storage properties in Na-/Li-ion half cells and pouch full cells.The Na-/Li-storage capabilities improvement are attribute to the strong synergistic effect between MnS/Mn_(2)SnS_(4)heterostructure and N,S-ACTs protective layer,the former induces an local built-in electric field between Mn_(2)Sn S_(4)and MnS during charging/discharging,accelerating interfacial ion/electron diffusion dynamics,the latter effective maintains the morphology and volume evolution during Na~+/Li~+charging/discharging,achieving a long-term cycling stability(e.g.,high discharge capacity of 79.2 mAh/g with the capacity retention of 79.3%can be gained after 2200 cycles at 3 C in(Mn S/Mn_(2)Sn S_(4))@N,S-ACTs//LiFePO_(4)pouch full cells;a high capacity of~34 mAh/g at 10 C can be got with a Coulombic efficiency of 100%after 1000 cycles in pouch(Mn S/Mn_(2)Sn S_(4))@N,S-ACTs//Na_(3)V_(2)(PO_(4))_(2)O_(2)F full cells.
基金The financial support from the Natural Science Foundation of Shandong Province (ZR2020KB003)
文摘NF_(3)is commonly used as an etching and cleaning gas in semiconductor industry,however it is a strongly greenhouse gas.Therefore,the destruction of disposal NF_(3)is an urgent task to migrate the greenhouse effect.Among the technologies for NF_(3)abatement,the destructive sorption of NF_(3)over metal oxides sorbents is an effective way.Thus,the search for a highly reactive and utilized sorbent for NF_(3)destruction is in great demand.In this work,AlOOH supported on carbon-sphere(AlOOH/CS)as precursors were synthesized hydrothermally and heat-treated to prepare the Al_(2)O_(3)sorbents.The influence of AlOOH/CS hydrothermal temperatures on the reactivity of derived Al_(2)O_(3)sorbents for NF_(3)destruction was investigated,and it is shown that the Al2O3 from AlOOH/CS hydro-thermalized at 120℃is superior to others.Subsequently,the optimized Al_(2)O_(3)was covered by Mn(OH)x to prepare Mn/Al_(2)O_(3)sorbents via changing hydrothermal temperatures and Mn loadings.The results show that the Mn/Al_(2)O_(3)sorbents are more utilized than bare Al_(2)O_(3)in NF_(3)destructive sorption due to the promotional effect of Mn_(2)O_(3)as surface layer on the fluorination of Al_(2)O_(3)as substrate,especially the optimal 5%Mn/Al2O3(160℃)exhibits a utilization percentage as high as 90.4%,and remarkably exceeds all the sorbents reported so far.These findings are beneficial to develop more efficient sorbents for the destruction of NF_(3).