期刊文献+
共找到57,799篇文章
< 1 2 250 >
每页显示 20 50 100
Effect of water vapor on low temperature SCR performances over Cu and Mn-based catalysts:A comparison study
1
作者 Xiaoqiang Wang Rujing Chi +3 位作者 Liding Gu Li Sun Yue Liu Zhongbiao Wu 《Journal of Rare Earths》 2025年第8期1661-1667,I0003,共8页
In this study,the commonly used Cu or Mn-based low-temperature SCR catalysts were employed to investigate their different reaction behaviors in the presence of high-content water vapor.Experimental results reveal that... In this study,the commonly used Cu or Mn-based low-temperature SCR catalysts were employed to investigate their different reaction behaviors in the presence of high-content water vapor.Experimental results reveal that CuCeTi sample possesses superior water re sistance at low temperature compared with MnCeTi catalyst.Upon the introduction of water vapor,both catalysts exhibit a quick loss in deNOxefficiency,while that is more pronounced on MnCeTi sample.In addition,unlike CuCeTi sample,MnCeTi catalyst also shows a gradual deactivation tendency after initial quick activity loss.Characterization and simulation results indicate that H_(2)O is more easily adsorbed and dissociated on MnCeTi catalyst,showing stronger suppression on NH3adsorption,causing more serious initial deactivation.Furthermore,more abundant hydroxyl groups derived from dissociative adsorption of water on MnCeTi catalyst will lead to more NH4NO3deposition and the decrease in redox capacity.This is the main reason of gradual deactivation of MnCeTi catalyst at high-content water vapor.Such findings could pave a new way for development of highly efficient SCR catalysts with good water resistance for real application. 展开更多
关键词 NH3-SCR Water resistance Low temperature SCR catalysts DEACTIVATION Rare earths
原文传递
Performance enhancement mechanism of Mn-based catalysts prepared under N_2 for NO_x removal:Evidence of the poor crystallization and oxidation of MnO_x 被引量:10
2
作者 Kai Qi Junlin Xie +2 位作者 De Fang Fengxiang Li Feng He 《Chinese Journal of Catalysis》 EI CSCD 北大核心 2017年第5期845-852,共8页
Among multitudinous metal‐oxide catalysts for the selective catalytic reduction of NOx with NH3(NH3‐SCR),Mn‐based catalysts have become very popular and developed rapidly in recent years because of its superior low... Among multitudinous metal‐oxide catalysts for the selective catalytic reduction of NOx with NH3(NH3‐SCR),Mn‐based catalysts have become very popular and developed rapidly in recent years because of its superior low‐temperature denitrification activity,mainly originating from multi‐valence of Mn.Most studies suggest that the catalytic activity of multi‐component oxides is superior to that of single‐component catalysts owing to the synergistic effect among the metallic elements in such materials,of which more attentions have been given to Ce as an additive owing to its powerful oxygen storage capacity,redox ability and its ready availability.As the core of SCR technology,the research points in catalyst development at the present stage of all researchers in countries mainly centralize on the optimization of active components,carriers,calcination temperature,calcination time and temperature‐raising procedure,giving little thought to the effects of the calcination atmosphere.In the present work,Ce‐modified Mn‐based catalysts were prepared by a simple impregnation method.The effects of the calcination atmosphere(N2,air or O2)on the performance of the resulting materials during NH3‐SCR and its causes of the differences were subsequently investigated and characterized using various analytical methods.Data obtained from X‐ray diffraction,thermogravimetry and temperature‐programmed reduction with hydrogen show that calcination under N2reduces both the degree of oxidation and crystallization of the MnOx.Scanning electron microscopy also demonstrates that the use of N2inhibits the growth of grains and increases the dispersion of the catalysts.In addition,the results of temperature‐programmed desorption with ammonia indicate that catalysts calcined under N2exhibit a greater quantity of acid sites.Finally,X‐ray photoelectron spectrometry and activity results demonstrate that MnOx in the lower valence states is more favorable for NH3‐SCR reactions.In conclusion,catalysts calcined under N2show superior performance during NH3‐SCR for NOx removal,allowing NO conversions up to94%at473K. 展开更多
关键词 Mn‐based catalyst Selective catalytic reduction Calcination atmosphere Mn species Oxidation degree Crystallization degree
在线阅读 下载PDF
Effective advance treatment of secondary effluent from industrial parks by the Mn-based catalyst ozonation process
3
作者 Zhijuan Niu Shihao Han +3 位作者 Weihua Qin Pan Gao Feng Xiao Shaoxia Yang 《Frontiers of Environmental Science & Engineering》 SCIE EI CSCD 2024年第10期89-101,共13页
Catalytic ozonation is a potential technology to eliminate refractory organic contaminants with the low concentration in secondary effluent from industrial park wastewater treatment plants(IPWWTPs).In this study,the c... Catalytic ozonation is a potential technology to eliminate refractory organic contaminants with the low concentration in secondary effluent from industrial park wastewater treatment plants(IPWWTPs).In this study,the catalytic ozonation over the Mn-based catalyst significantly improved the chemical oxygen demand(COD),total organic carbon(TOC),and UV254 removals of secondary effluent from IPWWTPs.The Mn-based catalyst/Og system achieved 84.8%,69.8%,and 86.4% removals of COD,TOC,and UY254,which were 3.3,5.7,and 1.1 times that in ozonation alone,respectively.Moreover,the Mn-based catalytic ozonation process exhibited excellent pH tolerance ranging from pH 4.0 to 9.0.Additionally,the depth analysis based on fluorescence excitation-emission matrix(EEM)confirmed that the catalytic ozonation process preferred to degrade toxic aromatic hydrocarbons.The existence of the Mn-based catalyst/O_(3) system enhanced 21.4%-38.3% more fluorescent organic matters removal,compared to that in ozonation alone.Mechanistic studies proved that the abundant Lewis acid sites(Mn/Mn(n+1)+and adsorbed oxygen)on the surface of the Mn-based catalyst effectively promoted O_(3) decomposition into reactive oxygen species(ROS),and-O_(2)-/HO_(2):and ^(1)O_(2) were the main ROS for degrading refractory organic contaminants.The contributions of ROS oxidation(91.2%)was much higher than that of direct O_(3) oxidation(8.8%).Thus,this work provides an effective advanced treatment process for purifying secondary effluent from IPWWTPs. 展开更多
关键词 Catalytic ozonation mn-based catalyst Secondary effluent Industrial park wastewater
原文传递
Elements gradient doping in Mn-based Li-rich layered oxides for long-life lithium-ion batteries 被引量:2
4
作者 Yinzhong Wang Shiqi Liu +7 位作者 Xianwei Guo Boya Wang Qinghua Zhang Yuqiang Li Yulong Wang Guoqing Wang Lin Gu Haijun Yu 《Journal of Materials Science & Technology》 2025年第4期266-273,共8页
The cobalt-free Mn-based Li-rich layered oxide material has the advantages of low cost,high energy density,and good performance at low temperatures,and is the promising choice for energy storage batteries.However,the ... The cobalt-free Mn-based Li-rich layered oxide material has the advantages of low cost,high energy density,and good performance at low temperatures,and is the promising choice for energy storage batteries.However,the long-cycling stability of batteries needs to be improved.Herein,the Mn-based Li-rich cathode materials with small amounts of Li2 MnO3 crystal domains and gradient doping of Al and Ti elements from the surface to the bulk have been developed to improve the structure and interface stability.Then the batteries with a high energy density of 600 Wh kg^(-1),excellent capacity retention of 99.7%with low voltage decay of 0.03 mV cycle^(-1) after 800 cycles,and good rates performances can be achieved.Therefore,the structure and cycling stability of low voltage Mn-based Li-rich cathode materials can be significantly improved by the bulk structure design and interface regulation,and this work has paved the way for developing low-cost and high-energy Mn-based energy storage batteries with long lifetime. 展开更多
关键词 mn-based Li-rich layered oxide cathode Li_(2)MnO_(3)crystal domain Elemental gradient Lithium-ion batteries Energy storage
原文传递
Construction of high chemical and electrochemical compatible interface of Li-rich Mn-based cathode for all-solid-state lithium batteries
5
作者 Zichen Zhang Jingyi Liu +5 位作者 Nan Chen Tao Jiang Shiyu Yao Gang Chen Deping Wang Fei Du 《Journal of Energy Chemistry》 2025年第7期803-811,共9页
Li-rich Mn-based oxides(LRMO)are of great significance in achieving high energy density all-solid-state lithium batteries(ASSLBs),owing to their high theoretical capacity and high operation voltage.Unfortunately,their... Li-rich Mn-based oxides(LRMO)are of great significance in achieving high energy density all-solid-state lithium batteries(ASSLBs),owing to their high theoretical capacity and high operation voltage.Unfortunately,their practical application is hindered by severe interface degradation due to the chemical oxidation and electrochemical decomposition of solid electrolytes(SEs),driven by high-active oxygen and electron sources from LRMO.Herein,an interfacial modification strategy is proposed to stabilize the surface lattice oxygen of LRMO and reduce electronic conduction between LRMO and SEs,synergistically.Accordingly,the byproducts from chemical oxidation(InO^(-))and electrochemical decomposition(LiCl^(-))are largely suppressed,leading to superior interfacial transport with the lowest resistance.Consequently,the ASSLB achieves a high reversible capacity of 227.9 mA h g^(-1)at 0.1 C,a cycling stability of 90.1%capacity retention after 200 cycles at 0.1 C,and a superior rate capability with a capacity of81.7 m A h g^(-1)at 3.0 C.This study enriches the fundamental understanding of LRMO/SEs interfacial evolution during the electrochemical cycling and the proposed interfacial modification strategy benefits the future design of Li-rich compounds for ASSLBs. 展开更多
关键词 All-solid-state battery Li-rich mn-based cathode Compatible cathode interface
在线阅读 下载PDF
Improved N_(2)selectivity for low-temperature NO_(x)reduction over etched ZSM-5 supported MnCe oxide catalysts
6
作者 Shanyuan Bi Jin Zhang +4 位作者 Dengchao Peng Danhong Cheng Jianping Zhang Lupeng Han Dengsong Zhang 《Chinese Chemical Letters》 2025年第5期639-644,共6页
Developing a high-efficiency catalyst with both superior low-temperature activity and good N_(2)selectivity is still challenging for the NH_(3)selective catalytic reduction(SCR)of NO_(x)from mobile sources.Herein,we d... Developing a high-efficiency catalyst with both superior low-temperature activity and good N_(2)selectivity is still challenging for the NH_(3)selective catalytic reduction(SCR)of NO_(x)from mobile sources.Herein,we demonstrate the improved low-temperature activity and N_(2)selectivity by regulating the redox and acidic properties of MnCe oxides supported on etched ZSM-5 supports.The etched ZSM-5 enables the highly dispersed state of MnCeOx species and strong interaction between Mn and Ce species,which promotes the reduction of CeO2,facilitates electron transfer from Mn to Ce,and generates more Mn^(4+)and Ce^(3+)species.The strong redox capacity contributes to forming the reactive nitrate species and-NH_(2)species from oxidative dehydrogenation of NH_(3).Moreover,the adsorbed NH_(3)and-NH_(2)species are the reactive intermediates that promote the formation of N_(2).This work demonstrates an effective strategy to enhance the low-temperature activity and N_(2)selectivity of SCR catalysts,contributing to the NO_(x)control for the low-temperature exhaust gas during the cold-start of diesel vehicles. 展开更多
关键词 NO_(x) Selective catalytic reduction mn-based catalyst Low-temperature activity N_(2)selectivity
原文传递
Comparing Mn-based oxides filters started by KMnO_(4)versus K_(2)FeO_(4)for ammonium and manganese removal:Formation mechanism of active species
7
作者 Ya Cheng Fengkai Shi +3 位作者 Tinglin Huang Anqi Miao Gang Wen Chunwei Wang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2024年第11期180-192,共13页
A pilot-scale filtration system was adopted to prepare filter media with catalytic activity to remove manganese(Mn^(2+))and ammonium(NH_(4)^(+)-N).Three different combinations of oxidants(KMnO_(4)and K_(2)FeO_(4))and ... A pilot-scale filtration system was adopted to prepare filter media with catalytic activity to remove manganese(Mn^(2+))and ammonium(NH_(4)^(+)-N).Three different combinations of oxidants(KMnO_(4)and K_(2)FeO_(4))and reductants(MnSO_(4)and FeCl_(2))were used during the start-up period.Filter R3 started up by KMnO_(4)and FeCl_(2)(Mn^(7+)→MnO_(x))exhibited excellent catalytic property,and the NH_(4)^(+)-N and Mn^(2+)removal efficiency reached over 80%on the 10th and 35th days,respectively.Filter R1 started up by K_(2)FeO_(4)and MnSO_(4)(MnO_(x)←Mn^(2+))exhibited the worst catalytic property.Filter R2 started up by KMnO_(4)and MnSO_(4)(Mn^(7+)→MnO_(x)←Mn^(2+))were in between.According to Zeta potential results,the Mn-based oxides(MnO_(x))formed by Mn^(7+)→MnO_(x)performed the highest pHIEP and pHPZC.The higher the pHIEP and pHPZC,the more unfavorable the cation adsorption.However,it was inconsistent with its excellent Mn^(2+)and NH_(4)^(+)-N removal abilities,implying that catalytic oxidation played a key role.Combined with XRD and XPS analysis,the results showed that the MnO_(x)produced by the reduction of KMnO_(4)showed early formation of buserite crystals,high degree of amorphous,high content of Mn3+and lattice oxygen with the higher activity to form defects.The above results showed that MnO_(x)produced by the reduction of KMnO_(4)was more conducive to the formation of active species for catalytic oxidation of NH_(4)^(+)-N and Mn^(2+)removal.This study provides new insights on the formation mechanisms of the active MnO_(x)that could catalytic oxidation of NH_(4)^(+)-N and Mn^(2+). 展开更多
关键词 AMMONIUM Manganese mn-based oxide Filter START-UP Active species
原文传递
The Mechanism of Water Oxidation from Mn-Based Heterogeneous Electrocatalysts 被引量:3
8
作者 Shujiao Yang Lingshuang Qin +1 位作者 Wei Zhang Rui Cao 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2022年第4期22-33,共12页
Searching for a renewable energy system is always the goal to fulfill sustainable development for the future.Water oxidation is considered as a crucial reaction to attain sustainable energy systems.Inspired by the bio... Searching for a renewable energy system is always the goal to fulfill sustainable development for the future.Water oxidation is considered as a crucial reaction to attain sustainable energy systems.Inspired by the biological Mn_(4)CaO_(5)cluster,considerable effort has been devoted to developing highly efficient Mn-based heterogeneous catalysts and exploring intrinsic mechanism for water oxidation.This review begins with describing the structural characteristics of the Mn_(4)Ca O_(5)cluster and the proposed catalytic cycle.Then,the structural characteristics of synthetic Mn-based heterogeneous catalyst are summarized,with emphasis on the understanding of reaction mechanisms and the rate-determining steps.Finally,the strategy of understanding the catalytic mechanism of Mn-based water oxidation is prospected. 展开更多
关键词 water oxidation mn-based electrocatalysts oxygen evolution reaction structure MECHANISM
原文传递
Bimetallic Single‑Atom Catalysts for Water Splitting 被引量:1
9
作者 Megha A.Deshmukh Aristides Bakandritsos Radek Zbořil 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期1-45,共45页
Green hydrogen from water splitting has emerged as a critical energy vector with the potential to spearhead the global transition to a fossil fuel-independent society.The field of catalysis has been revolutionized by ... Green hydrogen from water splitting has emerged as a critical energy vector with the potential to spearhead the global transition to a fossil fuel-independent society.The field of catalysis has been revolutionized by single-atom catalysts(SACs),which exhibit unique and intricate interactions between atomically dispersed metal atoms and their supports.Recently,bimetallic SACs(bimSACs)have garnered significant attention for leveraging the synergistic functions of two metal ions coordinated on appropriately designed supports.BimSACs offer an avenue for rich metal–metal and metal–support cooperativity,potentially addressing current limitations of SACs in effectively furnishing transformations which involve synchronous proton–electron exchanges,substrate activation with reversible redox cycles,simultaneous multi-electron transfer,regulation of spin states,tuning of electronic properties,and cyclic transition states with low activation energies.This review aims to encapsulate the growing advancements in bimSACs,with an emphasis on their pivotal role in hydrogen generation via water splitting.We subsequently delve into advanced experimental methodologies for the elaborate characterization of SACs,elucidate their electronic properties,and discuss their local coordination environment.Overall,we present comprehensive discussion on the deployment of bimSACs in both hydrogen evolution reaction and oxygen evolution reaction,the two half-reactions of the water electrolysis process. 展开更多
关键词 Single-atom catalysts Single-atom dimers Hydrogen evolution Oxygen evolution Water splitting
在线阅读 下载PDF
Preparation of Co/S co-doped carbon catalysts for excellent methylene blue degradation 被引量:1
10
作者 Haixu Li Haobo He +7 位作者 Tiannan Jiang Yunfei Du Zhichen Wu Liang Xu Xinjie Wang Xiaoguang Liu Wanhua Yu Wendong Xue 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期169-181,共13页
S and Co co-doped carbon catalysts were prepared via pyrolysis of MOF-71 and thiourea mixtures at 800℃at a mass ratio of MOF-71 to thiourea of 1:0.1 to effectively activate peroxymonosulfate(PMS)for methylene blue(MB... S and Co co-doped carbon catalysts were prepared via pyrolysis of MOF-71 and thiourea mixtures at 800℃at a mass ratio of MOF-71 to thiourea of 1:0.1 to effectively activate peroxymonosulfate(PMS)for methylene blue(MB)degradation.The effects of two different mixing routes were identified on the MB degradation performance.Particularly,the catalyst obtained by the alcohol solvent evaporation(MOF-AEP)mixing route could degrade 95.60%MB(50 mg/L)within 4 min(degradation rate:K=0.78 min^(-1)),which was faster than that derived from the direct grinding method(MOF-DGP,80.97%,K=0.39 min^(-1)).X-ray photoelectron spectroscopy revealed that the Co-S content of MOF-AEP(43.39at%)was less than that of MOF-DGP(54.73at%),and the proportion of C-S-C in MOF-AEP(13.56at%)was higher than that of MOF-DGP(10.67at%).Density functional theory calculations revealed that the adsorption energy of Co for PMS was -2.94 eV when sulfur was doped as C-S-C on the carbon skeleton,which was higher than that when sulfur was doped next to cobalt in the form of Co-S bond(-2.86 eV).Thus,the C-S-C sites might provide more contributions to activate PMS compared with Co-S.Furthermore,the degradation parameters,including pH and MOF-AEP dosage,were investigated.Finally,radical quenching experiments and electron paramagnetic resonance(EPR)measurements revealed that ^(1)O_(2)might be the primary catalytic species,whereas·O~(2-)might be the secondary one in degrading MB. 展开更多
关键词 advanced oxidation process alcohol solvent evaporation hydrogen bond S and Co co-doped carbon catalysts wastewater remediation
在线阅读 下载PDF
Exploring catalyst developments in heterogeneous CO_(2) hydrogenation to methanol and ethanol:A journey through reaction pathways 被引量:1
11
作者 Rasoul Salami Yimin Zeng +2 位作者 Xue Han Sohrab Rohani Ying Zheng 《Journal of Energy Chemistry》 2025年第2期345-384,I0008,共41页
The pursuit of alternative fuel generation technologies has gained momentum due to the diminishing reserves of fossil fuels and global warming from increased CO_(2)emission.Among the proposed methods,the hydrogenation... The pursuit of alternative fuel generation technologies has gained momentum due to the diminishing reserves of fossil fuels and global warming from increased CO_(2)emission.Among the proposed methods,the hydrogenation of CO_(2)to produce marketable carbon-based products like methanol and ethanol is a practical approach that offers great potential to reduce CO_(2)emissions.Although significant volumes of methanol are currently produced from CO_(2),developing highly efficient and stable catalysts is crucial for further enhancing conversion and selectivity,thereby reducing process costs.An in-depth examination of the differences and similarities in the reaction pathways for methanol and ethanol production highlights the key factors that drive C-C coupling.Identifying these factors guides us toward developing more effective catalysts for ethanol synthesis.In this paper,we explore how different catalysts,through the production of various intermediates,can initiate the synthesis of methanol or ethanol.The catalytic mechanisms proposed by spectroscopic techniques and theoretical calculations,including operando X-ray methods,FTIR analysis,and DFT calculations,are summarized and presented.The following discussion explores the structural properties and composition of catalysts that influence C-C coupling and optimize the conversion rate of CO_(2)into ethanol.Lastly,the review examines recent catalysts employed for selective methanol and ethanol production,focusing on single-atom catalysts. 展开更多
关键词 CO_(2)hydrogenation METHANOL ETHANOL Catalytic mechanism Operando techniques Single atom catalyst Tandem catalyst
在线阅读 下载PDF
Boosted hydrodeoxygenation of lignin and its derivatives to cycloalkanes over Ni catalysts with surface decoration of AlPO_(4)species 被引量:1
12
作者 Xinyong Diao Linge Hao +2 位作者 Yawen Shi Shengbo Zhang Na Ji 《Journal of Energy Chemistry》 2025年第5期360-371,共12页
Ni-based catalysts are widely applied in the hydrodeoxygenation of lignin derivatives via C-O cleavage for the production of cycloalkanes.However,they often have difficulty in achieving high activity under mild condit... Ni-based catalysts are widely applied in the hydrodeoxygenation of lignin derivatives via C-O cleavage for the production of cycloalkanes.However,they often have difficulty in achieving high activity under mild conditions and exhibit relatively poor stability,and rare studies focus on the cleavage of the stubborn interunit C-C linkages.To address this issue,we developed a Ni@AlPO_(4)/Al_(2)O_(3)catalyst in which the surface of Ni nanoparticles was decorated by AlPO_(4)species,demonstrating excellent catalytic activity and stability in the C-C and C-O cleavages.In the hydrodeoxygenation of guaiacol,this catalyst afforded99.1%conversion and 92.9%yield of cyclohexane under 1 MPa H_(2)at 230℃ for 2 h.More important,this catalyst maintained unchanged performance even after 6 runs with the conversion controlled at about50%,Mecha nistic investigations revealed that the moderate surface coverage of AlPO_(4)on Ni with the formation of Ni^(δ+)-AlPO_(4)interface significantly facilitated the conversion of methoxycyclohexanol and cyclohexanol to cyclohexane,whereas,excess coverage would also block the access to Ni site.Moreover,Ni@AlPO_(4)/Al_(2)O_(3)demonstrated broad applicability in the C-O cleavage of various typical lignin monomers and dimers into cycloalkanes.To our delight,this catalyst also displayed pretty good activity even in the simultaneous cleavage of C-C linkages and C-O bonds for the lignin-derived C-C dimers,achieving cycloalkanes as final products.As a consequence,a 27.1 wt%yield of monocycloalkanes was obtained in the depolymerization of poplar lignin with both C-C and C-O cleavages. 展开更多
关键词 Nickel catalyst Heterogeneous catalysis LIGNIN HYDRODEOXYGENATION CYCLOALKANES
在线阅读 下载PDF
Biomass-derived single atom catalysts with phosphorus-coordinated Fe-N_(3)P configuration for efficient oxygen reduction reaction 被引量:2
13
作者 Peng-Peng Guo Abrar Qadir +6 位作者 Chao Xu Kun-Zu Yang Yong-Zhi Su Xin Liu Ping-Jie Wei Qinggang He Jin-Gang Liu 《Green Energy & Environment》 2025年第5期1064-1072,共9页
Exploiting non-precious metal catalysts with excellent oxygen reduction reaction(ORR)performance for energy devices is paramount essential for the green and sustainable society development.Herein,low-cost,high-perform... Exploiting non-precious metal catalysts with excellent oxygen reduction reaction(ORR)performance for energy devices is paramount essential for the green and sustainable society development.Herein,low-cost,high-performance biomass-derived ORR catalysts with an asymmetric Fe-N_(3)P configuration was prepared by a simple pyrolysis-etching technique,where carboxymethyl cellulose(CMC)was used as the carbon source,urea and 1,10-phenanthroline iron complex(FePhen)as additives,and Na_(3)PO_(4)as the phosphorus dopant and a pore-forming agent.The CMC-derived FeNPC catalyst displayed a large specific area(BET:1235 m^(2)g^(-1))with atomically dispersed Fe-N_(3)P active sites,which exhibited superior ORR activity and stability in alkaline solution(E_(1/2)=0.90 V vs.RHE)and Zn-air batteries(P_(max)=149 mW cm^(-2))to commercial Pt/C catalyst(E_(1/2)=0.87 V,P_(max)=118 mW cm^(-2))under similar experimental conditions.This work provides a feasible and costeffective route toward highly efficient ORR catalysts and their application to Zn-air batteries for energy conversion. 展开更多
关键词 Oxygen reduction reaction Biomass-derived electrocatalyst Single atom catalyst Phosphorus dopant Zn-air battery
在线阅读 下载PDF
Highly dispersed MoO_(x)-Ru/C bimetallic catalyst for efficient hydrogenolysis of esters to alkanes 被引量:1
14
作者 Xincheng Cao Jiaping Zhao +5 位作者 Feng Long Peng Liu Yuguo Dong Zupeng Chen Junming Xu Jianchun Jiang 《Chinese Journal of Catalysis》 2025年第4期256-266,共11页
The efficient hydrogenolysis of esters to alkanes is the key protocol for producing advanced biofuels from renewable plant oils or fats.Due to the low reactivity of the carbonyl group in esters,a high reaction tempera... The efficient hydrogenolysis of esters to alkanes is the key protocol for producing advanced biofuels from renewable plant oils or fats.Due to the low reactivity of the carbonyl group in esters,a high reaction temperature(>250℃)is the prerequisite to ensure high conversion of esters.Here,we report a highly dispersed MoO_(x)-Ru/C bimetallic catalyst for the efficient hydrogenolysis of esters to alkanes under 150°C.The optimal catalyst exhibits>99%conversion of methyl stearate and 99%selectivity to diesel-range alkanes,reaching a high rate of up to 2.0 mmol gcat^(–1)h^(–1),5 times higher than that of Ru/C catalyst(MoO_(x)/C is inert).Integrated experimental and theoretical investigations attribute the high performance to the abundant MoO_(x)-Ru interfacial sites on the catalyst surface,which offers high activity for the C–O cleavage of esters.Furthermore,the dispersed MoO_(x)species significantly weaken the hydrocracking activity of the metallic Ru for C–C bonds,thus yielding alkane products without carbon loss.This study provides a facile and novel strategy for the design of high-performance heterogeneous catalysts for the hydrodeoxygenation of biomass-derived esters to alkane products. 展开更多
关键词 Bimetallic catalyst Interface engineering HYDRODEOXYGENATION Fatty esters Diesel-range alkanes
在线阅读 下载PDF
Optimization of Mg-based hydrogen storage materials with multicomponent and high-entropy catalysts 被引量:1
15
作者 Yu Sun Jiayi Cheng +2 位作者 Yaru Jiang Yafei Liu Yijing Wang 《International Journal of Minerals,Metallurgy and Materials》 2025年第11期2699-2712,共14页
Novel hydrogen storage materials have propelled progress in hydrogen storage technologies.Magnesium hydride(MgH_(2))is a highly promising candidate.Nevertheless,several drawbacks,including the need for elevated therma... Novel hydrogen storage materials have propelled progress in hydrogen storage technologies.Magnesium hydride(MgH_(2))is a highly promising candidate.Nevertheless,several drawbacks,including the need for elevated thermal conditions,sluggish dehydrogena-tion kinetics,and high thermodynamic stability,limit its practical application.One effective method of addressing these challenges is cata-lyst doping,which effectively boosts the hydrogen storage capability of Mg-based materials.Herein,we review recent advancements in catalyst-doped MgH_(2) composites,with particular focus on multicomponent and high-entropy catalysts.Structure-property relationships and catalytic mechanisms in these doping strategies are also summarized.Finally,based on existing challenges,we discuss future research directions for the development of Mg-based hydrogen storage systems. 展开更多
关键词 magnesium hydride multicomponent materials high-entropy materials hydrogen storage catalyst doping kinetics
在线阅读 下载PDF
Catalytic Performance of Carbon Smoke over Ag-LSCF Composite Catalysts
16
作者 GUO Guanlun HAN Ming +3 位作者 LU Shaomin YU Jing JU Hongling 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2025年第1期30-34,共5页
To improve the catalytic performance of La_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)O_(3)(LSCF)towards carbon soot,we utilized the impregnation method to incorporate Ag into the prepared LSCF catalyst.We conducted a series of cha... To improve the catalytic performance of La_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)O_(3)(LSCF)towards carbon soot,we utilized the impregnation method to incorporate Ag into the prepared LSCF catalyst.We conducted a series of characterization tests and evaluated the soot catalytic activity of the composite catalyst by comparing it with the LaCoO_(3) group,LaFeO_(3) group,and catalyst-free group.The results indicate that the Ag-LSCF composite catalyst exhibits the highest soot catalytic activity,with the characteristic temperature values of 376.3,431.1,and 473.9℃at 10%,50%,and 90%carbon soot conversion,respectively.These values are 24.8,20.2,and 23.1℃lower than those of the LSCF group.This also shows that LSCF can improve the catalytic activity of soot after compounding with Ag,and reflects the necessity of using catalysts in soot combustion reaction.XPS characterization and BET test show that Ag-LSCF has more abundant surface-adsorbed oxygen species,larger specific surface area and pore volume than LSCF,which also proves that Ag-LSCF has higher soot catalytic activity. 展开更多
关键词 metallic composites carbon smoke oxidation perovskite catalyst SOOT
原文传递
Promotion effect of Ce and Ta co-doping on the NH_(3)-SCR performance over V_(2)O_(5)/TiO_(2)catalyst 被引量:1
17
作者 Long Liu Xin Shen +4 位作者 Zhihua Lian Chunxi Lin Ying Zhu Wenpo Shan Hong He 《Journal of Environmental Sciences》 2025年第4期332-339,共8页
NH_(3)-SCR(SCR:Selective catalytic reduction)is an effective technology for the de-NO_(x)process from both mobile and stationary pollution sources,and the most commonly used catalysts are the vanadia-based catalysts.A... NH_(3)-SCR(SCR:Selective catalytic reduction)is an effective technology for the de-NO_(x)process from both mobile and stationary pollution sources,and the most commonly used catalysts are the vanadia-based catalysts.An innovative V_(2)O_(5)-CeO_(2)/TaTiO_(x)catalyst for NO_(x)removal was prepared in this study.The influences of Ce and Ta in the V_(2)O_(5)-CeO_(2)/TaTiO_(x)catalyst on the SCR performance and physicochemical properties were investigated.The V_(2)O_(5)-CeO_(2)/TaTiO_(x)catalyst not only exhibited excellent SCR activity in a wide temperature window,but also presented strong resistance to H_(2)Oand SO_(2)at 275◦C.A series of characterizationmethods was used to study the catalysts,including H2-temperature programmed reduction,X-ray photoelectron spectroscopy,NH_(3)-temperature programmed desorption,etc.It was discovered that a synergistic effect existed between Ce and Ta species.The introduction of Ce and Ta enlarged the specific surface area,increased the amount of acid sites and the ratio of Ce^(3+),(V^(3+)+V^(4+))and Oα,and strengthened the redox capability which were related to synergistic effect between Ce and Ta species,significantly improving the NH_(3)-SCR activity. 展开更多
关键词 NH_(3)-SCR Vanadia-based catalysts Synergistic effect CO-DOPING Low temperature
原文传递
Catalyst–Support Interaction in Polyaniline‑Supported Ni_(3)Fe Oxide to Boost Oxygen Evolution Activities for Rechargeable Zn‑Air Batteries
18
作者 Xiaohong Zou Qian Lu +8 位作者 Mingcong Tang Jie Wu Kouer Zhang Wenzhi Li Yunxia Hu Xiaomin Xu Xiao Zhang Zongping Shao Liang An 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期176-190,共15页
Catalyst–support interaction plays a crucial role in improving the catalytic activity of oxygen evolution reaction(OER).Here we modulate the catalyst–support interaction in polyaniline-supported Ni_(3)Fe oxide(Ni_(3... Catalyst–support interaction plays a crucial role in improving the catalytic activity of oxygen evolution reaction(OER).Here we modulate the catalyst–support interaction in polyaniline-supported Ni_(3)Fe oxide(Ni_(3)Fe oxide/PANI)with a robust hetero-interface,which significantly improves oxygen evolution activities with an overpotential of 270 mV at 10 mA cm^(-2)and specific activity of 2.08 mA cm_(ECSA)^(-2)at overpotential of 300 mV,3.84-fold that of Ni_(3)Fe oxide.It is revealed that the catalyst–support interaction between Ni_(3)Fe oxide and PANI support enhances the Ni–O covalency via the interfacial Ni–N bond,thus promoting the charge and mass transfer on Ni_(3)Fe oxide.Considering the excellent activity and stability,rechargeable Zn-air batteries with optimum Ni_(3)Fe oxide/PANI are assembled,delivering a low charge voltage of 1.95 V to cycle for 400 h at 10 mA cm^(-2).The regulation of the effect of catalyst–support interaction on catalytic activity provides new possibilities for the future design of highly efficient OER catalysts. 展开更多
关键词 catalyst-support interaction Supported catalysts HETEROINTERFACE Oxygen evolution reaction Zn-air batteries
在线阅读 下载PDF
Facile preparation of alkali metal-modified hollow nanotubular manganese-based oxide catalysts and their excellent catalytic soot combustion performance
19
作者 Chunlei Zhang Siyu Gao +6 位作者 Xinyu Chen Di Yu Lanyi Wang Xiaoqiang Fan Ying Cheng Xuehua Yu Zhen Zhao 《Smart Molecules》 2025年第1期35-45,共11页
The soot emitted during the operation of diesel engine exhaust seriously threatens the human health and environment,so treating diesel engine exhaust is critical.At present,the most effective method for eliminating so... The soot emitted during the operation of diesel engine exhaust seriously threatens the human health and environment,so treating diesel engine exhaust is critical.At present,the most effective method for eliminating soot particles is post-treatment technology.Preparation of economically viable and highly active soot combustion catalysts is a pivotal element of post-treatment technology.In this study,different single-metal oxide catalysts with fibrous structures and alkali metal-modified hollow nanotubular Mn-based oxide catalysts were synthesized using centrifugal spinning method.Activity evaluation results showed that the manganese oxide catalyst has the best catalytic activity among the prepared single-metal oxide catalysts.Further research on alkali metal modification showed that doping alkali metals is beneficial for improving the oxidation state of manganese and generating a large number of reactive oxygen species.Combined with the structural effect brought by the hollow nanotube structure,the alkali metal-modified Mn-based oxide catalysts exhibit superior catalytic performance.Among them,the Cs-modified Mn-based oxide catalyst exhibits the best catalytic performance because of its rich active oxygen species,excellent NO oxidation ability,abundant Mn^(4+)ions(M^(n4)+/Mn^(n+)=64.78%),and good redox ability.The T_(10),T_(50),T_(90),and CO_(2)selectivity of the Cs-modified Mn-based oxide catalyst were 267°C,324°C,360°C,and 97.8%,respectively. 展开更多
关键词 alkali metal catalyst centrifugal spinning mn-based oxides soot combustion
在线阅读 下载PDF
Boosting Oxygen Evolution Reaction Performance on NiFe‑Based Catalysts Through d‑Orbital Hybridization
20
作者 Xing Wang Wei Pi +3 位作者 Sheng Hu Haifeng Bao Na Yao Wei Luo 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期281-292,共12页
Anion-exchange membrane water electrolyzers(AEMWEs)for green hydrogen production have received intensive attention due to their feasibility of using earth-abundant NiFe-based catalysts.By introducing a third metal int... Anion-exchange membrane water electrolyzers(AEMWEs)for green hydrogen production have received intensive attention due to their feasibility of using earth-abundant NiFe-based catalysts.By introducing a third metal into NiFe-based catalysts to construct asymmetrical M-NiFe units,the d-orbital and electronic structures can be adjusted,which is an important strategy to achieve sufficient oxygen evolution reaction(OER)performance in AEMWEs.Herein,the ternary NiFeM(M:La,Mo)catalysts featured with distinct M-NiFe units and varying d-orbitals are reported in this work.Experimental and theoretical calculation results reveal that the doping of La leads to optimized hybridization between d orbital in NiFeM and 2p in oxygen,resulting in enhanced adsorption strength of oxygen intermediates,and reduced rate-determining step energy barrier,which is responsible for the enhanced OER performance.More critically,the obtained NiFeLa catalyst only requires 1.58 V to reach 1 A cm^(−2) in an anion exchange membrane electrolyzer and demonstrates excellent long-term stability of up to 600 h. 展开更多
关键词 NiFe-based catalysts d-orbital coupling Oxygen evolution reaction Anion exchange membrane electrolyzer
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部