Mn-W co-doped ZnO(ZMWO) thin films with low resistivity and high transparency were successfully prepared on glass substrate by direct current(DC) magnetron sputtering at low temperature.The sputtering power was va...Mn-W co-doped ZnO(ZMWO) thin films with low resistivity and high transparency were successfully prepared on glass substrate by direct current(DC) magnetron sputtering at low temperature.The sputtering power was varied from 65 to 150 W.The crystallinity and resistivity of ZMWO films greatly depend on sputtering power while the optical transmittance and optical band gap are not sensitive to sputtering power.All the deposited films are polycrystalline with a hexagonal structure and have a preferred orientation along the c-axis perpendicular to the substrate.Considering the crystallinity and the electrical and optical properties,we suggest that the optimal sputtering power in this experiment is 90 W and,at this power,the ZMWO film has the lowest resistivity of 9.8×10^(-4)Ω.cm with a high transmittance of approximately 89%in the visible range.展开更多
By calcinating commercial silica gel at 1500℃or adding Na2C2O4 and then calcinating at 850℃,α cristobalite was formed.On the basis of the vibration spectroscopy of silica support,Na W Mn/SiO2 catalyst was character...By calcinating commercial silica gel at 1500℃or adding Na2C2O4 and then calcinating at 850℃,α cristobalite was formed.On the basis of the vibration spectroscopy of silica support,Na W Mn/SiO2 catalyst was characterized by Raman spectroscopy.The results show that the structure of support and the interaction among metal components have significant effect on the dispersion and the structure of metal sites,and the tetrahedrally coordinated formed on α cristobalite surface is the most possible site of methane activation with high C2 selectivity.展开更多
基金Project supported by the Natural Science Foundation of Shandong Province,China(No.ZR2009GQ011).
文摘Mn-W co-doped ZnO(ZMWO) thin films with low resistivity and high transparency were successfully prepared on glass substrate by direct current(DC) magnetron sputtering at low temperature.The sputtering power was varied from 65 to 150 W.The crystallinity and resistivity of ZMWO films greatly depend on sputtering power while the optical transmittance and optical band gap are not sensitive to sputtering power.All the deposited films are polycrystalline with a hexagonal structure and have a preferred orientation along the c-axis perpendicular to the substrate.Considering the crystallinity and the electrical and optical properties,we suggest that the optimal sputtering power in this experiment is 90 W and,at this power,the ZMWO film has the lowest resistivity of 9.8×10^(-4)Ω.cm with a high transmittance of approximately 89%in the visible range.
文摘By calcinating commercial silica gel at 1500℃or adding Na2C2O4 and then calcinating at 850℃,α cristobalite was formed.On the basis of the vibration spectroscopy of silica support,Na W Mn/SiO2 catalyst was characterized by Raman spectroscopy.The results show that the structure of support and the interaction among metal components have significant effect on the dispersion and the structure of metal sites,and the tetrahedrally coordinated formed on α cristobalite surface is the most possible site of methane activation with high C2 selectivity.