We performed a systematic trace and rare earth element analysis for the bedded Fe-Mn carbonate rocks related to the stratiform Ag-Pb-Zn mineralization in the Lengshuikeng ore district, Jiangxi Province, South China. T...We performed a systematic trace and rare earth element analysis for the bedded Fe-Mn carbonate rocks related to the stratiform Ag-Pb-Zn mineralization in the Lengshuikeng ore district, Jiangxi Province, South China. Three types of Fe-Mn carbonates are distinguished, namely, the massive, breccia, and vein types. Both carbonate and silicate fractions in the samples are analyzed for their trace and rare earth element concentrations using a step acid-leaching technique. Our results show that the carbonate fractions in the massive type samples have the lowest REE concentrations but pronounced positive Eu and Y anomalies with Eu/Eu* value from 1.3 to 6.2 and Y/Ho value from 40.1 to 59.5, and similar characteristics are also shown for the silicate fractions in the massive type samples(Eu/Eu*=1.0-6.7, Y/Ho=20.7-55.1). These REE characteristics are similar to those of Sedex type massive sulfide deposits worldwide, and we suggest that the massive type Fe-Mn carbonate rocks were likely formed from an exhalative volcanic-hydrothermal fluid feeding the depression basin of a volcanic lake. The high concentrations of redox-sensitive elements and ratios such as U/Th, V/Cr and V/(V+Ni) indicate a dysoxic environment for the Fe-Mn carbonate deposition. In contrast, the breccia type and vein type Fe-Mn carbonate samples show different trace and rare earth element features from those of massive type samples, and they are more similar to the volcanic rocks and magmatic-hydrothermal fluids in the Lengshuikeng ore district and may reflect strong overprinting from volcanic and sub-volcanic magmatism related to the porphyry type mineralization in the district.展开更多
The microstructure evolution and mechanical properties of Mg–6Zn–0.5Ce–xMn(x=0 and 1 wt.%)wrought magnesium alloys were researched,and the morphologies and role of Mn element in the experimental alloys were analyze...The microstructure evolution and mechanical properties of Mg–6Zn–0.5Ce–xMn(x=0 and 1 wt.%)wrought magnesium alloys were researched,and the morphologies and role of Mn element in the experimental alloys were analyzed.The research shows that all of Mn elements form theα-Mn pure phases,which do not participate in the formation of other phases,such as theτ-phases.The mechanical properties of Mn-containing alloys in as-extruded and aged states are superior to Mn-free alloys.During the hot extrusion process,the dispersed fineα-Mn particle phase hinders the migration of grain boundaries and inhibits dynamic recrystallization,which mainly takes effect of grain refining and dispersion hardening.During the aging treatments,the dispersed fineα-Mn particle phase not only hinders the growth of the solution-treated grains,but also becomes the nucleation cores ofβ1 rod-like precipitate phase,which is conducive to increasing the nucleation rate of the precipitate phase.For the aged alloy,the Mn addition mainly takes effect of grain refining and promoting aging strengthening.展开更多
基金supported by the National 973 Program of China (No. 2012CB416706)
文摘We performed a systematic trace and rare earth element analysis for the bedded Fe-Mn carbonate rocks related to the stratiform Ag-Pb-Zn mineralization in the Lengshuikeng ore district, Jiangxi Province, South China. Three types of Fe-Mn carbonates are distinguished, namely, the massive, breccia, and vein types. Both carbonate and silicate fractions in the samples are analyzed for their trace and rare earth element concentrations using a step acid-leaching technique. Our results show that the carbonate fractions in the massive type samples have the lowest REE concentrations but pronounced positive Eu and Y anomalies with Eu/Eu* value from 1.3 to 6.2 and Y/Ho value from 40.1 to 59.5, and similar characteristics are also shown for the silicate fractions in the massive type samples(Eu/Eu*=1.0-6.7, Y/Ho=20.7-55.1). These REE characteristics are similar to those of Sedex type massive sulfide deposits worldwide, and we suggest that the massive type Fe-Mn carbonate rocks were likely formed from an exhalative volcanic-hydrothermal fluid feeding the depression basin of a volcanic lake. The high concentrations of redox-sensitive elements and ratios such as U/Th, V/Cr and V/(V+Ni) indicate a dysoxic environment for the Fe-Mn carbonate deposition. In contrast, the breccia type and vein type Fe-Mn carbonate samples show different trace and rare earth element features from those of massive type samples, and they are more similar to the volcanic rocks and magmatic-hydrothermal fluids in the Lengshuikeng ore district and may reflect strong overprinting from volcanic and sub-volcanic magmatism related to the porphyry type mineralization in the district.
基金funded by National Natural Science Foundation of China(Project No.51701172)Foundation of China Railway Eryuan Engineering Group Co.Ltd.(Project No.KYY2020035(21-21))+1 种基金Natural Science Foundation of Hunan Province(Project No.2018JJ3504)China Postdoctoral Science Foundation(Project No.2018M632977).
文摘The microstructure evolution and mechanical properties of Mg–6Zn–0.5Ce–xMn(x=0 and 1 wt.%)wrought magnesium alloys were researched,and the morphologies and role of Mn element in the experimental alloys were analyzed.The research shows that all of Mn elements form theα-Mn pure phases,which do not participate in the formation of other phases,such as theτ-phases.The mechanical properties of Mn-containing alloys in as-extruded and aged states are superior to Mn-free alloys.During the hot extrusion process,the dispersed fineα-Mn particle phase hinders the migration of grain boundaries and inhibits dynamic recrystallization,which mainly takes effect of grain refining and dispersion hardening.During the aging treatments,the dispersed fineα-Mn particle phase not only hinders the growth of the solution-treated grains,but also becomes the nucleation cores ofβ1 rod-like precipitate phase,which is conducive to increasing the nucleation rate of the precipitate phase.For the aged alloy,the Mn addition mainly takes effect of grain refining and promoting aging strengthening.