The effect of Mn content on the microstructure and cryogenic mechanical properties of a 7% Ni steel was investigated within the Mn content range from 0.13% to 0.36%. The microstructure of the steel as determined by op...The effect of Mn content on the microstructure and cryogenic mechanical properties of a 7% Ni steel was investigated within the Mn content range from 0.13% to 0.36%. The microstructure of the steel as determined by optical microscopy, scanning electron microscopy, transmission electron microscopy, electron backscattering diffraction and X-ray diffraction was presented, and the low-temperature mechanical properties were given. The size of prior austenite grain did not change a lot as Mn content increased. Film-like reversed austenite, having high stability, was found mainly in the specimens with lower Mn content; however, in the specimen with the highest Mn content, the role of Mn was not obvious in stabilizing reversed austenite. Besides, with increasing Mn content, the amount of reversed austenite at grain boundaries gradually decreased. The variable Mn content had a significant effect on cryogenic toughness~ but not apparent on cryogenic tensile strength or yield strength. An excellent combination of cryogenic tensile and impact properties was obtained when Mn content of steel was 0.13%.展开更多
To improve the processability and mechanical properties of the selective laser melting(SLM)low Sc content Al−Mg−Sc−Zr alloy,Mn was used to partially replace Mg.The processability,microstructure,and mechanical properti...To improve the processability and mechanical properties of the selective laser melting(SLM)low Sc content Al−Mg−Sc−Zr alloy,Mn was used to partially replace Mg.The processability,microstructure,and mechanical properties of the SLM-fabricated Al−Mg−Mn−Sc−Zr alloy were systematically investigated by density measurement,microstructure characterization,and tensile testing.The results revealed that dense samples could be obtained by adjusting the SLM process parameters.The alloy exhibited a fine equiaxed-columnar bimodal grain microstructure.The presence of primary Al3Sc andα-Al(Mn,Fe)Si particles contributed to the grain refinement of the alloy with an average grain size of 4.63μm.Upon aging treatment at 350°C for 2 h,the strength and elongation of the alloy were simultaneously improved due to the precipitation of Al3Sc nanoparticles and the formation of the 9R phase.This study demonstrates that the strength−plasticity trade-off of the aluminum alloy can be overcome by utilizing SLM technology and subsequent post-heat treatment to induce the formation of the long-period stacked ordered phase.展开更多
The ferrites of PC30 (Mn-Zn ferrites) were prepared by using a dry processing route. The effect of Mn-Zn ferrites doped with H3BO3 was investigated on the basis of microstructure analysis. The results of the samples...The ferrites of PC30 (Mn-Zn ferrites) were prepared by using a dry processing route. The effect of Mn-Zn ferrites doped with H3BO3 was investigated on the basis of microstructure analysis. The results of the samples doped with H3BO3 less than 5 × 10^-5 showed that the doping had no significant effect on power loss, initial permeability, fine grain microstructure, and density of Mn-Zn ferrites. With the further increase in H3BO3 doping (up to 1 × 10 ^-4 ), the microstructure of Mn-Zn ferrites is in the critical state between fine grain and "sandwich", and the initial permeability and density of Mn-Zn ferrites begin falling quickly; the increased H3BO3 doping also results in deteriorated power loss properties. Thus, the control of the boron content in iron oxide is of utmost importance for the quality of Mn-Zn ferrites in producing process.展开更多
基金financially supported by Wuhan Iron and Steel(Group)Corp
文摘The effect of Mn content on the microstructure and cryogenic mechanical properties of a 7% Ni steel was investigated within the Mn content range from 0.13% to 0.36%. The microstructure of the steel as determined by optical microscopy, scanning electron microscopy, transmission electron microscopy, electron backscattering diffraction and X-ray diffraction was presented, and the low-temperature mechanical properties were given. The size of prior austenite grain did not change a lot as Mn content increased. Film-like reversed austenite, having high stability, was found mainly in the specimens with lower Mn content; however, in the specimen with the highest Mn content, the role of Mn was not obvious in stabilizing reversed austenite. Besides, with increasing Mn content, the amount of reversed austenite at grain boundaries gradually decreased. The variable Mn content had a significant effect on cryogenic toughness~ but not apparent on cryogenic tensile strength or yield strength. An excellent combination of cryogenic tensile and impact properties was obtained when Mn content of steel was 0.13%.
基金supported by the National Natural Science Foundation of China(Nos.51801079,52001140)the National Funds Through FCT of Portugal–Fundacao para a Ciência e a Tecnologia,under a scientific contract of 2021.04115.CEECIND,and the Projects of UIDB/00285/2020,and LA/0112/2020。
文摘To improve the processability and mechanical properties of the selective laser melting(SLM)low Sc content Al−Mg−Sc−Zr alloy,Mn was used to partially replace Mg.The processability,microstructure,and mechanical properties of the SLM-fabricated Al−Mg−Mn−Sc−Zr alloy were systematically investigated by density measurement,microstructure characterization,and tensile testing.The results revealed that dense samples could be obtained by adjusting the SLM process parameters.The alloy exhibited a fine equiaxed-columnar bimodal grain microstructure.The presence of primary Al3Sc andα-Al(Mn,Fe)Si particles contributed to the grain refinement of the alloy with an average grain size of 4.63μm.Upon aging treatment at 350°C for 2 h,the strength and elongation of the alloy were simultaneously improved due to the precipitation of Al3Sc nanoparticles and the formation of the 9R phase.This study demonstrates that the strength−plasticity trade-off of the aluminum alloy can be overcome by utilizing SLM technology and subsequent post-heat treatment to induce the formation of the long-period stacked ordered phase.
文摘The ferrites of PC30 (Mn-Zn ferrites) were prepared by using a dry processing route. The effect of Mn-Zn ferrites doped with H3BO3 was investigated on the basis of microstructure analysis. The results of the samples doped with H3BO3 less than 5 × 10^-5 showed that the doping had no significant effect on power loss, initial permeability, fine grain microstructure, and density of Mn-Zn ferrites. With the further increase in H3BO3 doping (up to 1 × 10 ^-4 ), the microstructure of Mn-Zn ferrites is in the critical state between fine grain and "sandwich", and the initial permeability and density of Mn-Zn ferrites begin falling quickly; the increased H3BO3 doping also results in deteriorated power loss properties. Thus, the control of the boron content in iron oxide is of utmost importance for the quality of Mn-Zn ferrites in producing process.