A novel approach named aligned mixture probabilistic principal component analysis(AMPPCA) is proposed in this study for fault detection of multimode chemical processes. In order to exploit within-mode correlations,the...A novel approach named aligned mixture probabilistic principal component analysis(AMPPCA) is proposed in this study for fault detection of multimode chemical processes. In order to exploit within-mode correlations,the AMPPCA algorithm first estimates a statistical description for each operating mode by applying mixture probabilistic principal component analysis(MPPCA). As a comparison, the combined MPPCA is employed where monitoring results are softly integrated according to posterior probabilities of the test sample in each local model. For exploiting the cross-mode correlations, which may be useful but are inadvertently neglected due to separately held monitoring approaches, a global monitoring model is constructed by aligning all local models together. In this way, both within-mode and cross-mode correlations are preserved in this integrated space. Finally, the utility and feasibility of AMPPCA are demonstrated through a non-isothermal continuous stirred tank reactor and the TE benchmark process.展开更多
To improve the separation performance of a supersonic gas separation device for the treatment of gas mixture with a single heavy component, a novel structure with shorter settlement distance was constructed and a meth...To improve the separation performance of a supersonic gas separation device for the treatment of gas mixture with a single heavy component, a novel structure with shorter settlement distance was constructed and a method of droplet enlargement was applied. A series of experiments were carried out in the improved separation device under various conditions, using air-ethanol vapor as the medium and micro water droplets as nucleation cen- ters. The effects of the inlet pressure, temperature and relative humidity, the swirling intensity, and mass flow rate of water on the separation performance were investigated. The separation was improved by increasing the inlet pressure and relative humidity. With the decrease of swirling intensity and mass flow rate of water, the separation efficiency increased first and then decreased. The inlet temperature had a slight effect on the separation. The results showed that the separation performance was effectively improved using the proposed structure and method, and the best separation in this study was obtained with the ethanol removal rate about 55% and dew point depression 27 K. The addition of water had little pollution to the air-ethanol vapor system since the water carry-over rate was within the range of -2 %-0 in most cases.展开更多
The gradient descent(GD)method is used to fit the measured data(i.e.,the laser grain-size distribution of the sediments)with a sum of four weighted lognormal functions.The method is calibrated by a series of ideal num...The gradient descent(GD)method is used to fit the measured data(i.e.,the laser grain-size distribution of the sediments)with a sum of four weighted lognormal functions.The method is calibrated by a series of ideal numerical experiments.The numerical results indicate that the GD method not only is easy to operate but also could effectively optimize the parameters of the fitting function with the error decreasing steadily.The method is applied to numerical partitioning of laser grain-size components of a series of Garzêloess samples and three bottom sedimentary samples of submarine turbidity currents modeled in an open channel laboratory flume.The overall fitting results are satisfactory.As a new approach of data fitting,the GD method could also be adapted to solve other optimization problems.展开更多
基金Supported by the National Natural Science Foundation of China(61374140)Shanghai Pujiang Program(12PJ1402200)
文摘A novel approach named aligned mixture probabilistic principal component analysis(AMPPCA) is proposed in this study for fault detection of multimode chemical processes. In order to exploit within-mode correlations,the AMPPCA algorithm first estimates a statistical description for each operating mode by applying mixture probabilistic principal component analysis(MPPCA). As a comparison, the combined MPPCA is employed where monitoring results are softly integrated according to posterior probabilities of the test sample in each local model. For exploiting the cross-mode correlations, which may be useful but are inadvertently neglected due to separately held monitoring approaches, a global monitoring model is constructed by aligning all local models together. In this way, both within-mode and cross-mode correlations are preserved in this integrated space. Finally, the utility and feasibility of AMPPCA are demonstrated through a non-isothermal continuous stirred tank reactor and the TE benchmark process.
基金Supported by the Natural Science Foundation of Liaoning Province, China (20052193) and Ph.D. Programs Foundation of Ministry of Education o f China (20070141045).
文摘To improve the separation performance of a supersonic gas separation device for the treatment of gas mixture with a single heavy component, a novel structure with shorter settlement distance was constructed and a method of droplet enlargement was applied. A series of experiments were carried out in the improved separation device under various conditions, using air-ethanol vapor as the medium and micro water droplets as nucleation cen- ters. The effects of the inlet pressure, temperature and relative humidity, the swirling intensity, and mass flow rate of water on the separation performance were investigated. The separation was improved by increasing the inlet pressure and relative humidity. With the decrease of swirling intensity and mass flow rate of water, the separation efficiency increased first and then decreased. The inlet temperature had a slight effect on the separation. The results showed that the separation performance was effectively improved using the proposed structure and method, and the best separation in this study was obtained with the ethanol removal rate about 55% and dew point depression 27 K. The addition of water had little pollution to the air-ethanol vapor system since the water carry-over rate was within the range of -2 %-0 in most cases.
基金supported by the National Natural Science Foundation of China(Grant Nos.41072176,41371496)the National Science and Technology Supporting Program of China(Grant No.2013BAK05B04)the Fundamental Research Funds for the Central Universities(Grant No.201261006)
文摘The gradient descent(GD)method is used to fit the measured data(i.e.,the laser grain-size distribution of the sediments)with a sum of four weighted lognormal functions.The method is calibrated by a series of ideal numerical experiments.The numerical results indicate that the GD method not only is easy to operate but also could effectively optimize the parameters of the fitting function with the error decreasing steadily.The method is applied to numerical partitioning of laser grain-size components of a series of Garzêloess samples and three bottom sedimentary samples of submarine turbidity currents modeled in an open channel laboratory flume.The overall fitting results are satisfactory.As a new approach of data fitting,the GD method could also be adapted to solve other optimization problems.