Using time-dependent terahertz spectroscopy, we investigate the role of mixed-cation and mixed-halide on the ultrafast photoconductivity dynamics of two different methylammonium(MA) lead-iodide perovskite thin films. ...Using time-dependent terahertz spectroscopy, we investigate the role of mixed-cation and mixed-halide on the ultrafast photoconductivity dynamics of two different methylammonium(MA) lead-iodide perovskite thin films. It is found that the dynamics of conductivity after photoexcitation reveals significant correlation on the microscopy crystalline features of the samples. Our results show that mixed-cation and lead mixed-halide affect the charge carrier dynamics of the lead-iodide perovskites. In the(5-AVA)_(0.05)(MA)_(0.95) PbI_(2.95) Cl_(0.05)/spiro thin film, we observe a much weaker saturation trend of the initial photoconductivity with high excitation fluence, which is attributed to the combined effect of sequential charge carrier generation, transfer, cooling and polaron formation.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos 11604202,11674213,61735010 and 51603119the Young Eastern Scholar under Grant Nos QD2015020 and QD2016027+3 种基金the Shanghai Rising-Star Program under Grant No18QA1401700the ‘Chen Guang’ Project under Grant Nos 16CG45 and 16CG46the Shanghai Municipal Education Commissionthe Shanghai Education Development Foundation
文摘Using time-dependent terahertz spectroscopy, we investigate the role of mixed-cation and mixed-halide on the ultrafast photoconductivity dynamics of two different methylammonium(MA) lead-iodide perovskite thin films. It is found that the dynamics of conductivity after photoexcitation reveals significant correlation on the microscopy crystalline features of the samples. Our results show that mixed-cation and lead mixed-halide affect the charge carrier dynamics of the lead-iodide perovskites. In the(5-AVA)_(0.05)(MA)_(0.95) PbI_(2.95) Cl_(0.05)/spiro thin film, we observe a much weaker saturation trend of the initial photoconductivity with high excitation fluence, which is attributed to the combined effect of sequential charge carrier generation, transfer, cooling and polaron formation.