Research on human motion prediction has made significant progress due to its importance in the development of various artificial intelligence applications.However,effectively capturing spatio-temporal features for smo...Research on human motion prediction has made significant progress due to its importance in the development of various artificial intelligence applications.However,effectively capturing spatio-temporal features for smoother and more precise human motion prediction remains a challenge.To address these issues,a robust human motion prediction method via integration of spatial and temporal cues(RISTC)has been proposed.This method captures sufficient spatio-temporal correlation of the observable sequence of human poses by utilizing the spatio-temporal mixed feature extractor(MFE).In multi-layer MFEs,the channel-graph united attention blocks extract the augmented spatial features of the human poses in the channel and spatial dimension.Additionally,multi-scale temporal blocks have been designed to effectively capture complicated and highly dynamic temporal information.Our experiments on the Human3.6M and Carnegie Mellon University motion capture(CMU Mocap)datasets show that the proposed network yields higher prediction accuracy than the state-of-the-art methods.展开更多
Although conventional object detection methods achieve high accuracy through extensively annotated datasets,acquiring such large-scale labeled data remains challenging and cost-prohibitive in numerous real-world appli...Although conventional object detection methods achieve high accuracy through extensively annotated datasets,acquiring such large-scale labeled data remains challenging and cost-prohibitive in numerous real-world applications.Few-shot object detection presents a new research idea that aims to localize and classify objects in images using only limited annotated examples.However,the inherent challenge in few-shot object detection lies in the insufficient sample diversity to fully characterize the sample feature distribution,which consequently impacts model performance.Inspired by contrastive learning principles,we propose an Implicit Feature Contrastive Learning(IFCL)module to address this limitation and augment feature diversity for more robust representational learning.This module generates augmented support sample features in a mixed feature space and implicitly contrasts them with query Region of Interest(RoI)features.This approach facilitates more comprehensive learning of both intra-class feature similarity and inter-class feature diversity,thereby enhancing the model’s object classification and localization capabilities.Extensive experiments on PASCAL VOC show that our method achieves a respective improvement of 3.2%,1.8%,and 2.3%on 10-shot of three Novel Sets compared to the baseline model FPD.展开更多
With the increasing intelligence and integration,a great number of two-valued variables(generally stored in the form of 0 or 1)often exist in large-scale industrial processes.However,these variables cannot be effectiv...With the increasing intelligence and integration,a great number of two-valued variables(generally stored in the form of 0 or 1)often exist in large-scale industrial processes.However,these variables cannot be effectively handled by traditional monitoring methods such as linear discriminant analysis(LDA),principal component analysis(PCA)and partial least square(PLS)analysis.Recently,a mixed hidden naive Bayesian model(MHNBM)is developed for the first time to utilize both two-valued and continuous variables for abnormality monitoring.Although the MHNBM is effective,it still has some shortcomings that need to be improved.For the MHNBM,the variables with greater correlation to other variables have greater weights,which can not guarantee greater weights are assigned to the more discriminating variables.In addition,the conditional P(x j|x j′,y=k)probability must be computed based on historical data.When the training data is scarce,the conditional probability between continuous variables tends to be uniformly distributed,which affects the performance of MHNBM.Here a novel feature weighted mixed naive Bayes model(FWMNBM)is developed to overcome the above shortcomings.For the FWMNBM,the variables that are more correlated to the class have greater weights,which makes the more discriminating variables contribute more to the model.At the same time,FWMNBM does not have to calculate the conditional probability between variables,thus it is less restricted by the number of training data samples.Compared with the MHNBM,the FWMNBM has better performance,and its effectiveness is validated through numerical cases of a simulation example and a practical case of the Zhoushan thermal power plant(ZTPP),China.展开更多
The Yacheng gas field lies in the foot wall of the No. 1 fault, the boundary fault between the Yinggehai and Qiongdongnan basins. An overpressured system developed in the Meishan Formation near the No. 1 fault in the ...The Yacheng gas field lies in the foot wall of the No. 1 fault, the boundary fault between the Yinggehai and Qiongdongnan basins. An overpressured system developed in the Meishan Formation near the No. 1 fault in the gas field and in the adjacent Yinggehai basin. Away from this fault into the Qiongdongnan basin, the overpressure diminishes. Below 3 600 m in the gas field, an obvious thermal anomaly occurs. The gases show obvious compositional heterogeneities which reflect reservoir filling process and origin of the gas field. The gas field was charged from both the Qiongdongnan and the Yinggehai basins but mainly from the former. Hydrocarbons sourced from the Qiongdongnan basin have relatively low maturities while hydrocarbons from the Yinggehai basin have relatively high maturities.展开更多
基金supported by the National Key R&D Program of China(No.2018YFB1305200)the Natural Science Foundation of Zhejiang Province(No.LGG21F030011)。
文摘Research on human motion prediction has made significant progress due to its importance in the development of various artificial intelligence applications.However,effectively capturing spatio-temporal features for smoother and more precise human motion prediction remains a challenge.To address these issues,a robust human motion prediction method via integration of spatial and temporal cues(RISTC)has been proposed.This method captures sufficient spatio-temporal correlation of the observable sequence of human poses by utilizing the spatio-temporal mixed feature extractor(MFE).In multi-layer MFEs,the channel-graph united attention blocks extract the augmented spatial features of the human poses in the channel and spatial dimension.Additionally,multi-scale temporal blocks have been designed to effectively capture complicated and highly dynamic temporal information.Our experiments on the Human3.6M and Carnegie Mellon University motion capture(CMU Mocap)datasets show that the proposed network yields higher prediction accuracy than the state-of-the-art methods.
基金funded by the China Chongqing Municipal Science and Technology Bureau,grant numbers CSTB2024TIAD-CYKJCXX0009,CSTB2024NSCQ-LZX0043,CSTB2022NSCQ-MSX0288Chongqing Municipal Commission of Housing and Urban-Rural Development,grant number CKZ2024-87+3 种基金the Chongqing University of Technology Graduate Education High-Quality Development Project,grant number gzlsz202401the Chongqing University of Technology—Chongqing LINGLUE Technology Co.,Ltd.Electronic Information(Artificial Intelligence)Graduate Joint Training Basethe Postgraduate Education and Teaching Reform Research Project in Chongqing,grant number yjg213116the Chongqing University of Technology-CISDI Chongqing Information Technology Co.,Ltd.Computer Technology Graduate Joint Training Base.
文摘Although conventional object detection methods achieve high accuracy through extensively annotated datasets,acquiring such large-scale labeled data remains challenging and cost-prohibitive in numerous real-world applications.Few-shot object detection presents a new research idea that aims to localize and classify objects in images using only limited annotated examples.However,the inherent challenge in few-shot object detection lies in the insufficient sample diversity to fully characterize the sample feature distribution,which consequently impacts model performance.Inspired by contrastive learning principles,we propose an Implicit Feature Contrastive Learning(IFCL)module to address this limitation and augment feature diversity for more robust representational learning.This module generates augmented support sample features in a mixed feature space and implicitly contrasts them with query Region of Interest(RoI)features.This approach facilitates more comprehensive learning of both intra-class feature similarity and inter-class feature diversity,thereby enhancing the model’s object classification and localization capabilities.Extensive experiments on PASCAL VOC show that our method achieves a respective improvement of 3.2%,1.8%,and 2.3%on 10-shot of three Novel Sets compared to the baseline model FPD.
基金supported by the National Natural Science Foundation of China(62033008,61873143)。
文摘With the increasing intelligence and integration,a great number of two-valued variables(generally stored in the form of 0 or 1)often exist in large-scale industrial processes.However,these variables cannot be effectively handled by traditional monitoring methods such as linear discriminant analysis(LDA),principal component analysis(PCA)and partial least square(PLS)analysis.Recently,a mixed hidden naive Bayesian model(MHNBM)is developed for the first time to utilize both two-valued and continuous variables for abnormality monitoring.Although the MHNBM is effective,it still has some shortcomings that need to be improved.For the MHNBM,the variables with greater correlation to other variables have greater weights,which can not guarantee greater weights are assigned to the more discriminating variables.In addition,the conditional P(x j|x j′,y=k)probability must be computed based on historical data.When the training data is scarce,the conditional probability between continuous variables tends to be uniformly distributed,which affects the performance of MHNBM.Here a novel feature weighted mixed naive Bayes model(FWMNBM)is developed to overcome the above shortcomings.For the FWMNBM,the variables that are more correlated to the class have greater weights,which makes the more discriminating variables contribute more to the model.At the same time,FWMNBM does not have to calculate the conditional probability between variables,thus it is less restricted by the number of training data samples.Compared with the MHNBM,the FWMNBM has better performance,and its effectiveness is validated through numerical cases of a simulation example and a practical case of the Zhoushan thermal power plant(ZTPP),China.
文摘The Yacheng gas field lies in the foot wall of the No. 1 fault, the boundary fault between the Yinggehai and Qiongdongnan basins. An overpressured system developed in the Meishan Formation near the No. 1 fault in the gas field and in the adjacent Yinggehai basin. Away from this fault into the Qiongdongnan basin, the overpressure diminishes. Below 3 600 m in the gas field, an obvious thermal anomaly occurs. The gases show obvious compositional heterogeneities which reflect reservoir filling process and origin of the gas field. The gas field was charged from both the Qiongdongnan and the Yinggehai basins but mainly from the former. Hydrocarbons sourced from the Qiongdongnan basin have relatively low maturities while hydrocarbons from the Yinggehai basin have relatively high maturities.