BACKGROUND Mixed connective tissue disease(MCTD)is a rare autoimmune disorder charac-terized by overlapping features of systemic lupus erythematosus,systemic sc-lerosis,and polymyositis,and presence of anti-U1 ribonuc...BACKGROUND Mixed connective tissue disease(MCTD)is a rare autoimmune disorder charac-terized by overlapping features of systemic lupus erythematosus,systemic sc-lerosis,and polymyositis,and presence of anti-U1 ribonucleoprotein antibodies.Coexistence with tuberculosis(TB),a common infectious disease in endemic areas,poses a significant diagnostic challenge due to overlapping clinical and radio-logical features.CASE SUMMARY We report a 35-year-old Pakistani female presenting with oral ulcers,body rash,worsening dyspnea,and a history of joint pains initially treated as rheumatoid arthritis.She was on antituberculous therapy(ATT)for presumed pulmonary TB.Laboratory findings revealed anemia,leukopenia,raised erythrocyte sedimen-tation rate,positive anti-Sm/RNP,anti-dsDNA,and anti-SSA/Ro antibodies,confirming MCTD with clinical features of systemic lupus erythematosus,Sjogren syndrome,and systemic sclerosis.The patient was also positive for hepatitis C and active TB.Treatment involved corticosteroids alongside continuation of ATT,resulting in significant clinical improvement over 12 days,with resolution of symptoms and improved laboratory parameters.The patient remained stable on follow-up with hydroxychloroquine and prednisolone.CONCLUSION This case highlights the diagnostic complexity when autoimmune diseases coexist with TB,particularly in TB-endemic regions.Early recognition and integrated management of both conditions are crucial to improving outcomes.Clinicians should maintain a broad differential diagnosis and perform compre-hensive immunological workup in patients with overlapping symptoms.展开更多
Topological band theory has been studied for free fermions for decades,and one of the most profound physical results is the bulk-boundary correspondence.Recently a focus in topological physics is extending topological...Topological band theory has been studied for free fermions for decades,and one of the most profound physical results is the bulk-boundary correspondence.Recently a focus in topological physics is extending topological classification to mixed states.Here,we focus on Gaussian mixed states for which the modular Hamiltonians of the density matrix are quadratic free fermion models with U(1)symmetry and can be classified by topological invariants.The bulk-boundary correspondence is then manifested as stable gapless modes of the modular Hamiltonian and degenerate spectrum of the density matrix.In this article,we show that these gapless modes can be detected by the full counting statistics,mathematically described by a function introduced as F(θ).A divergent derivative atθ=πcan be used to probe the gapless modes in the modular Hamiltonian.Based on this,a topological indicator,whose quantization to unity senses topologically nontrivial mixed states,is introduced.We present the physical intuition of these results and also demonstrate these results with concrete models in both one-and two-dimensions.Our results pave the way for revealing the physical significance of topology in mixed states.展开更多
BACKGROUND Mixed lineage kinase domain-like protein(MLKL)serves as a critical mediator in necroptosis,a form of regulated cell death linked to various liver diseases.This study aims to specifically investigate the rol...BACKGROUND Mixed lineage kinase domain-like protein(MLKL)serves as a critical mediator in necroptosis,a form of regulated cell death linked to various liver diseases.This study aims to specifically investigate the role of MLKL’s adenosine triphosphate(ATP)-binding pocket in facilitating necroptosis-independent pathways that may contribute to liver disease progression.By focusing on this mechanism,we seek to identify potential therapeutic targets that can modulate MLKL activity,offering new strategies for the prevention and treatment of liver-related pathologies.AIM To investigate the possibility of using the ATP-binding pocket-associated,necro-ptosis-independent MLKL pathway as a target for liver diseases.METHODS Cell death following necroptosis stimuli was evaluated using cell proliferation assays,flow cytometry,and electron microscopy in various cells.The human liver organoid system was used to evaluate whether the MLKL ATP pocket-binding inhibitor could attenuate inflammation.Additionally,alcoholic and non-alcoholic fatty liver diseases animal models were used to determine whether MLKL ATP pocket inhibitors could attenuate liver injury.RESULTS While an MLKL ATP pocket-binding inhibitor did not prevent necroptosis-induced cell death in RAW 264.7 cells,it did reduce the necroptosis-led expression of CXCL2,ICAM,and VCAM.Notably,MLKL ATP pocket inhibitor diminishes the expression of CXCL2,ICAM,and VCAM by inhibiting the IκB kinase and nuclear factor kappa-B pathways without inducing necroptosis-induced cell death in two-dimensional cell culture as well as the human-derived liver organoid system.Although MLKL ATP-binding inhibitor was ineffective in non-alcoholic fatty liver disease animal models,MLKL ATP-binding inhibitor attenuated hepatic inflammation in the alcoholic liver disease model.CONCLUSION MLKL ATP pocket-binding inhibitor exerted anti-inflammatory effects through the necroptosis-independent MLKL pathway in an animal model of alcoholic liver disease.展开更多
Brazil’s deforestation monitoring integrates accuracy and current monitoring for land use and land cover applications.Regular monitoring of deforestation and non-deforestation requires Sentinel-2 multispectral satell...Brazil’s deforestation monitoring integrates accuracy and current monitoring for land use and land cover applications.Regular monitoring of deforestation and non-deforestation requires Sentinel-2 multispectral satellite images of several bands at various frequencies,the mix of high-and low-resolution images that make object classification difficult because of the mixed pixel problem.Accuracy is impacted by the mixed pixel problem,which occurs when pixels belong to different classes and makes detection challenging.To identify mixed pixels,Band Math is used to merge numerous bands to generate a new band NDVI.Thresholding is used to analyze the edges of deforested and non-deforested areas.Segmentation is then used to analyze the pixels which helps to identify the number of mixed pixels to compute the deforested and non-deforested areas.Segmented image pixels are used to categorize the deforestation of the Brazilian Amazon Forest between 2019 and 2023.Verify how many pixels are mixed to improve accuracy and identify mixed pixel issues;compare the mixed and pure pixels of fuzzy clustering with the subtracted morphological image pixels.With the help of segmentation and clustering researchers effectively validate mixed pixels in a specific area.The proposed methodology is easy to analyze and helpful for an appropriate calculation of deforested and non-deforested areas.展开更多
The present study introduces a screw-pressing charging method to tackle deficiencies in automation and charge uniformity during the melt-casting of polymer-based energetic materials.To ensure the safety of the experim...The present study introduces a screw-pressing charging method to tackle deficiencies in automation and charge uniformity during the melt-casting of polymer-based energetic materials.To ensure the safety of the experiments,this study used inert materials with similar physical properties to partially substitute for the actual energetic components in the preparation of simulant materials.By thoroughly analyzing slurry physical properties,a simulation framework and an extensive performance evaluation method were developed.Such tools guide the design of the structure and configuration of process parameters.Results demonstrate that employing the Pin element significantly enhances radial mixing within the screw,minimizes temperature variations in the slurry,and improves both efficiency and safety in the mixing process.Further,adjustments such as widening the cone angle of the barrel,modifying the solid content of the slurry,and varying the speed of the screw can optimize the mechanical and thermal coupling in the flow field.These adjustments promote higher-quality slurry and create a safer production environment for the extrusion process.展开更多
BACKGROUND A total of 100 patients diagnosed with mixed hemorrhoids from October 2022 to September 2023 in our hospital were randomly divided into groups by dice rolling and compared with the efficacy of different tre...BACKGROUND A total of 100 patients diagnosed with mixed hemorrhoids from October 2022 to September 2023 in our hospital were randomly divided into groups by dice rolling and compared with the efficacy of different treatment options.AIM To analyze the clinical effect and prognosis of mixed hemorrhoids treated with polidocanol injection combined with automatic elastic thread ligation operation(RPH).METHODS A total of 100 patients with mixed hemorrhoids who visited our hospital from October 2022 to September 2023 were selected and randomly divided into the control group(n=50)and the treatment group(n=50)by rolling the dice.The procedure for prolapse and hemorrhoids(PPH)was adopted in the control group,while polidocanol foam injection+RPH was adopted in the treatment group.The therapeutic effects,operation time,wound healing time,hospital stay,pain situation(24 hours post-operative pain score,first defecation pain score),quality of life(QOL),incidence of complications(post-operative hemorrhage,edema,infection),incidence of anal stenosis 3 months post-operatively and recurrence rate 1 year post-operatively of the two groups were compared.RESULTS Compared with the control group,the total effective rate of treatment group was higher,and the difference was significant(P<0.05).The operation time/wound healing time/hospital stay in the treatment group were shorter than those in the control group(P<0.05).The pain scores at 24 hours after operation/first defecation pain score of the treatment group was significantly lower than those in the control group(P<0.05).After surgery,the QOL scores of the two groups decreased,with the treatment group having higher scores than that of the control group(P<0.05).Compared with the control group,the incidence of postoperative complications in the treatment group was lower,and the difference was significant(P<0.05);However,there was no significant difference in the incidence of postoperative bleeding between the two groups(P>0.05);There was no significant difference in the incidence of anal stenosis 3 months after operation and the recurrence rate 1 year after operation between the two groups(P>0.05).CONCLUSION For patients with mixed hemorrhoids,the therapeutic effect achieved by using polidocanol injection combined with RPH was better.The wounds of the patients healed faster,the postoperative pain was milder,QOL improved,and the incidence of complications was lower,and the short-term and long-term prognosis was good.展开更多
The implementation of ultrahigh-Ni cathodes in high-energy lithium-ion batteries(LIBs)is constrained by significant structural and interfacial degradation during cycling.In this study,doping-induced surface restructur...The implementation of ultrahigh-Ni cathodes in high-energy lithium-ion batteries(LIBs)is constrained by significant structural and interfacial degradation during cycling.In this study,doping-induced surface restructuring in ultrahigh-nickel cathode materials is rapidly facilitated through an ultrafast Joule heating method.Density functional theory(DFT)calculations,synchrotron X-ray absorption spectroscopy(XAS),and single-particle force test confirmed the establishment of a stable crystal framework and lattice oxygen,which mitigated H2-H3 phase transitions and improved structural reversibility.Additionally,the Sc doping process exhibits a pinning effect on the grain boundaries,as shown by scanning transmission electron microscopy(STEM),enhancing Li~+diffusion kinetics and decreasing mechanical strain during cycling.The in situ development of a cation-mixing layer at grain boundaries also creates a robust cathode/electrolyte interphase,effectively reducing interfacial parasitic reactions and transition metal dissolution,as validated by STEM and time-of-flight secondary ion mass spectrometry(TOF-SIMS).These synergistic modifications reduce particle cracking and surface/interface degradation,leading to enhanced rate capability,structural integrity,and thermal stability.Consequently,the optimized Sc-modified ultrahigh-Ni cathode(Sc-1)exhibits 93.99%capacity retention after 100 cycles at 1 C(25℃)and87.06%capacity retention after 100 cycles at 1 C(50℃),indicating excellent cycling and thermal stability.By presenting a one-step multifunctional modification approach,this research delivers an extensive analysis of the mechanisms governing the structure,microstructure,and interface properties of nickel-rich layered cathode materials(NCMs).These results underscore the potential of ultrahigh-Ni cathodes as viable candidates for advanced lithium-ion batteries(LIBs)in next-generation electric vehicles(EVs).展开更多
Mixed matrix membranes(MMMs)have demonstrated significant promise in energy-intensive gas separations by amalgamating the unique properties of fillers with the facile processability of polymers.However,achieving a sim...Mixed matrix membranes(MMMs)have demonstrated significant promise in energy-intensive gas separations by amalgamating the unique properties of fillers with the facile processability of polymers.However,achieving a simultaneous enhancement of permeability and selectivity remains a formidable challenge,due to the difficulty of achieving an optimal match between polymers and fillers.In this study,we incorporate a porous carbon-based zinc oxide composite(C@ZnO)into high-permeability polymers of intrinsic microporosity(PIMs)to fabricate MMMs.The dipole–dipole interaction between C@ZnO and PIMs ensures their exceptional compatibility,mitigating the formation of non-selective voids in the resulting MMMs.Concurrently,C@ZnO with abundant interconnected pores can provide additional low-resistance pathways for gas transport in MMMs.As a result,the CO_(2) permeability of the optimized C@ZnO/PIM-1 MMMs is elevated to 13,215 barrer,while the CO_(2)/N_(2) and CO_(2)/CH_(4) selectivity reached 21.5 and 14.4,respectively,substantially surpassing the 2008 Robeson upper bound.Additionally,molecular simulation results further corroborate that the augmented membrane gas selectivity is attributed to the superior CO_(2) affinity of C@ZnO.In summary,we believe that this work not only expands the application of MMMs for gas separation but also heralds a paradigm shift in the application of porous carbon materials.展开更多
Sodium cocoyl glycinate(SCG),an environmentally friendly anionic amino acid surfactant,is widely used in daily chemical products as an upgraded alternative to traditional surfactants.In this study,crude Camellia oleif...Sodium cocoyl glycinate(SCG),an environmentally friendly anionic amino acid surfactant,is widely used in daily chemical products as an upgraded alternative to traditional surfactants.In this study,crude Camellia oleifera saponin(COS)was purified using AB-8 macroporous adsorption resin,and its composition and structure were analyzed.The effects of different mole fractions of COS(αCOS)on surface tension(γ),oil-water interfacial tension(IFT),emulsification,and foam properties of COS-SCG binary mixed systems were investigated in mixtures of SCG with purified COS.The stability ofγand foamability under diverse environmental conditions were also discussed.The results indicated that the COS-SCG system exhibited remarkable surface-active synergism.The minimum critical micelle concentration(cmc)of the mixed system was lower than that of SCG,and adding a small mole fraction of COS(1%-2%)induced a synergistic reduction ofγ.Specifically,the cmc andγwere 2.50×10-4 mol/L and 23.1 mN/m forαCOS=1%,respectively.The system exhibited exceptional IFT reduction capacity,achieving a minimum value of 1.42 mN/m atαCOS=10%.The mixed system reached a foaming volume(atαCOS=50%)and foam stability(atαCOS=75%)were 51.0 mL and 97.37%,respectively.Microscopic analysis further confirmed these outstanding foam properties.Moreover,the COS-SCG system displayed reducedγwith enhanced foaming volume under elevated temperatures(35-75℃)and salinity(0-20 g/L).However,acidic conditions and hard water compromised bothγstability and foamability.展开更多
Tin-lead(Sn-Pb)mixed perovskites are extensively investigated in near-infrared(NIR)photodetectors(PDs)owing to their excellent photoelectric performance.However,achieving high-performance Sn-Pb mixed PDs remains chall...Tin-lead(Sn-Pb)mixed perovskites are extensively investigated in near-infrared(NIR)photodetectors(PDs)owing to their excellent photoelectric performance.However,achieving high-performance Sn-Pb mixed PDs remains challenging,primarily because of the rapid crystallization and the susceptibility of Sn^(2+) to oxidation.To ad⁃dress these issues,this study introduces the multifunctional molecules 2,3-difluorobenzenamine(DBM)to modulate the crystallization of Sn-Pb mixed perovskites and retard the oxidation of Sn^(2+),thereby significantly enhancing film quality.Compared with the pristine film,Sn-Pb mixed perovskite films modulated by DBM molecules exhibit a high⁃ly homogeneous morphology,reduced roughness and defect density.The self-powered NIR PDs fabricated with the improved films have a spectral response range from 300 nm to 1100 nm,a peak responsivity of 0.51 A·W^(-1),a spe⁃cific detectivity as high as 2.46×10^(11)Jones within the NIR region(780 nm to 1100 nm),a linear dynamic range ex⁃ceeding 152 dB,and ultrafast rise/fall time of 123/464 ns.Thanks to the outstanding performance of PDs,the fabri⁃cated 5×5 PDs array demonstrates superior imaging ability in the NIR region up to 980 nm.This work advances the development of Sn-Pb mixed perovskites for NIR detection and paves the way for their commercialization.展开更多
An aluminoborate,Na_(2.5)Rb[Al{B_(5)O_(10)}{B_(3)O_(5)}]·0.5NO_(3)·H_(2)O(1),was synthesized under hydrothermal condition,which was built by mixed oxoboron clusters and AlO_(4)tetrahedra.In the structure,the...An aluminoborate,Na_(2.5)Rb[Al{B_(5)O_(10)}{B_(3)O_(5)}]·0.5NO_(3)·H_(2)O(1),was synthesized under hydrothermal condition,which was built by mixed oxoboron clusters and AlO_(4)tetrahedra.In the structure,the[B_(5)O_(10)]^(5-)and[B_(3)O_(7)]^(5-)clusters are alternately connected to form 1D[B_(8)O_(15)]_(n)^(6n-)chains,which are further linked by AlO_(4)units to form a 2D monolayer with 7‑membered ring and 10‑membered ring windows.Two adjacent monolayers with opposite orientations further form a porous‑layered structure with six channels through B—O—Al bonds.Compound 1 was characterized by single crystal X‑ray diffraction,powder X‑ray diffraction(PXRD),IR spectroscopy,UV‑Vis diffuse reflection spectroscopy,and thermogravimetric analysis(TGA),respectively.UV‑Vis diffuse reflectance analysis indicates that compound 1 shows a wide transparency range with a short cutoff edge of 201 nm,suggesting it may have potential application in UV regions.CCDC:2383923.展开更多
DNA microarray technology is an extremely effective technique for studying gene expression patterns in cells, and the main challenge currently faced by this technology is how to analyze the large amount of gene expres...DNA microarray technology is an extremely effective technique for studying gene expression patterns in cells, and the main challenge currently faced by this technology is how to analyze the large amount of gene expression data generated. To address this, this paper employs a mixed-effects model to analyze gene expression data. In terms of data selection, 1176 genes from the white mouse gene expression dataset under two experimental conditions were chosen, setting up two conditions: pneumococcal infection and no infection, and constructing a mixed-effects model. After preprocessing the gene chip information, the data were imported into the model, preliminary results were calculated, and permutation tests were performed to biologically validate the preliminary results using GSEA. The final dataset consists of 20 groups of gene expression data from pneumococcal infection, which categorizes functionally related genes based on the similarity of their expression profiles, facilitating the study of genes with unknown functions.展开更多
In petroleum,mercaptan impurities generate malodorous fumes that pose risks to both human health and the environment,and leading to substandard oil quality.Lye desulfurization is a widely employed technique for elimin...In petroleum,mercaptan impurities generate malodorous fumes that pose risks to both human health and the environment,and leading to substandard oil quality.Lye desulfurization is a widely employed technique for eliminating mercaptans from oil.In traditional scrubber towers,lye and oil are poorly mixed,the desulfurization efficiency is low,and the lye consumption is high.To enhance washing efficiency,a droplet micromixer and corresponding fiber coalescence separator were developed.By optimizing the structure and operating parameters,more effective mixing and separation were achieved,and both caustic washing and desulfurization were enhanced.The proposed mixer/separator outperforms the industry standard by reducing the caustic loading by 30%and offers superior economic and engineering performances.The results of this study offer a direction for designing and optimizing a mercaptan removal unit to enhance the scrubbing effectiveness and decrease expenses to achieve more efficient and green production process.展开更多
Despite public and private investments in the senior housing sector,an alternative to retirement homes is not yet truly present in Italy,except for a few rare cases.The spots in residential facilities for the elderly ...Despite public and private investments in the senior housing sector,an alternative to retirement homes is not yet truly present in Italy,except for a few rare cases.The spots in residential facilities for the elderly are limited and not enough to fill a demand for spaces that is continuously increasing.Another underlying problem is that the type of user that senior housing is aimed at is not currently considered by the Italian market;the impact of factors that can decrease the quality of life in elderly people,such as loneliness,lack of physical activity or loss of routine is underestimated.This set of negative factors promotes the opposite of what is considered active aging.In recent years senior houses,intended as a residential typology for self-sufficient elderly people,have undergone a significant evolution,reflecting social,demographic and technological changes;this reflects a paradigm shift in the way society approaches care to the elderly,focusing increasingly on autonomy,personalization and well-being.From 2010 to 2024,there has been greater attention towards customization of programs and spaces dedicated to the elderly,with the aim of offering services that meet everyone’s specific needs.Senior houses are becoming more oriented towards a wellbeing-based approach and are starting to focus on social inclusion as well,promoting recreational and cultural activities to improve the quality of life of elderly vips.A strategy used for social inclusion is to dedicate part of the project to functions open to the public(kindergartens,community centers,spaces for associations,etc.)so that the project fits into the urban level of the city by interacting with it.The proposal is to integrate cultural spaces with senior housing in a way that the elderly residents can become the keepers and narrators of local heritage,creating intergenerational communities.展开更多
Images obtained from hyperspectral sensors provide information about the target area that extends beyond the visible portions of the electromagnetic spectrum.However,due to sensor limitations and imperfections during ...Images obtained from hyperspectral sensors provide information about the target area that extends beyond the visible portions of the electromagnetic spectrum.However,due to sensor limitations and imperfections during the image acquisition and transmission phases,noise is introduced into the acquired image,which can have a negative impact on downstream analyses such as classification,target tracking,and spectral unmixing.Noise in hyperspectral images(HSI)is modelled as a combination from several sources,including Gaussian/impulse noise,stripes,and deadlines.An HSI restoration method for such a mixed noise model is proposed.First,a joint optimisation framework is proposed for recovering hyperspectral data corrupted by mixed Gaussian-impulse noise by estimating both the clean data as well as the sparse/impulse noise levels.Second,a hyper-Laplacian prior is used along both the spatial and spectral dimensions to express sparsity in clean image gradients.Third,to model the sparse nature of impulse noise,anℓ_(1)−norm over the impulse noise gradient is used.Because the proposed methodology employs two distinct priors,the authors refer to it as the hyperspectral dual prior(HySpDualP)denoiser.To the best of authors'knowledge,this joint optimisation framework is the first attempt in this direction.To handle the non-smooth and nonconvex nature of the generalℓ_(p)−norm-based regularisation term,a generalised shrinkage/thresholding(GST)solver is employed.Finally,an efficient split-Bregman approach is used to solve the resulting optimisation problem.Experimental results on synthetic data and real HSI datacube obtained from hyperspectral sensors demonstrate that the authors’proposed model outperforms state-of-the-art methods,both visually and in terms of various image quality assessment metrics.展开更多
Open channel confluences,where two streams or rivers converge,play a crucial role in hydraulic engineering and river dynamics.These confluences are characterized by complex hydrodynamics influenced by the discharge ra...Open channel confluences,where two streams or rivers converge,play a crucial role in hydraulic engineering and river dynamics.These confluences are characterized by complex hydrodynamics influenced by the discharge ratios of merging water bodies.This study investigated the mixing structure at open channel confluences using three-dimensional numerical modeling.A comprehensive three-dimensional numerical model was developed and validated against a dataset obtained from controlled laboratory experiments.This dataset incorporated three-dimensional time-averaged velocity measurements.The skew-induced and stress-induced equation systems were adopted as the core governing equations,providing a framework for simulating various scenarios.A total of ten different cases were analyzed.The results highlighted the effect of discharge ratios on turbulence,lateral and vertical vorticities,and the distribution of mixing,which intensified with higher magnitudes of discharge ratios.The mixing structure,driven by velocity gradients and vorticity,revealed the significant role of lateral and vertical vorticities in determining hydrodynamic behaviors and mixing distributions at confluences.Specifically,the momentum ratio of incoming flows governed the spatial evolution of mixing processes.This study revealed that the distribution of mixing served as a key indicator for identifying the formation of mid-channel scours.High normalized velocities induced toward the left bank led to the superelevation of the water surface,enhancing the potential for bed material and the formation of significant scour holes beneath the elevated water surface.This novel approach provides a deeper understanding of the mixing patterns at confluences,particularly in scenarios with equilibrated discharge ratios but in different magnitudes.展开更多
This study evaluates the feasibility of incorporating alternative sustainable energy sources,specifically bioenergy and green hydrogen,into The Gambia’s energy mix to support the nation’s long-term energy developmen...This study evaluates the feasibility of incorporating alternative sustainable energy sources,specifically bioenergy and green hydrogen,into The Gambia’s energy mix to support the nation’s long-term energy development goals.The feedstocks analyzed include agricultural crop residues such as rice,cassava,groundnuts,maize,sorghum,oil palm fruit,seed cotton,and millet,as well as municipal solid waste(MSW).An assessment was conducted to calculate the theoretical potential generated from the organic components of both MSW and crop residues,utilizing data collected from 2017 to 2021 and projections extending to 2038.The results were employed to calculate potential yields of biomethane and electricity production,using Buswell’s equation as a framework for determining biogas generation from various organic materials.Additionally,the potential for hydrogen production via steam methane reforming was evaluated using stoichiometric principles.The technical potential for electricity and hydrogen generation was then established based on their respective conversion efficiencies.This study is the first to comprehensively assess the technical potential for both bioenergy and green hydrogen production from crop residues and MSW in The Gambia.By quantifying yields of electricity(64.5 MW)and hydrogen(6.2 million kmol),and proposing a site-specific pilot project strategy,it bridges the gap between theoretical potential and practical implementation,providing a scalable roadmap for energy diversification in low-income nations.To address data management and infrastructure gaps,a strategy is proposed that includes automated data collection,awareness programs,and waste-to-energy initiatives,aimed at enhancing energy resilience and sustainability in The Gambia.展开更多
Developing cost-effective single-crystalline Ni-rich Co-poor cathodes operating at high-voltage is one of the most important ways to achieve higher energy Li-ion batteries. However, the Li/O loss and Li/Ni mixing unde...Developing cost-effective single-crystalline Ni-rich Co-poor cathodes operating at high-voltage is one of the most important ways to achieve higher energy Li-ion batteries. However, the Li/O loss and Li/Ni mixing under high-temperature lithiation result in electrochemical kinetic hysteresis and structural instability. Herein, we report a highly-ordered single-crystalline LiNi0.85Co0.05Mn0.10O2(NCM85) cathode by doping K+and F-ions. To be specific, the K-ion as a fluxing agent can remarkably decrease the solid-state lithiation temperature by ~30°C, leading to less Li/Ni mixing and oxygen vacancy. Meanwhile, the strong transitional metal(TM)-F bonds are helpful for enhancing de-/lithiation kinetics and limiting the lattice oxygen escape even at 4.5 V high-voltage. Their advantages synergistically endow the single-crystalline NCM85 cathode with a very high reversible capacity of 222.3 mAh g-1. A superior capacity retention of 91.3% is obtained after 500 times at 1 C in pouch-type full cells, and a prediction value of 75.3% is given after cycling for 5000 h. These findings are reckoned to expedite the exploitation and application of high-voltage single-crystalline Ni-rich cathodes for next-generation Li-ion batteries.展开更多
文摘BACKGROUND Mixed connective tissue disease(MCTD)is a rare autoimmune disorder charac-terized by overlapping features of systemic lupus erythematosus,systemic sc-lerosis,and polymyositis,and presence of anti-U1 ribonucleoprotein antibodies.Coexistence with tuberculosis(TB),a common infectious disease in endemic areas,poses a significant diagnostic challenge due to overlapping clinical and radio-logical features.CASE SUMMARY We report a 35-year-old Pakistani female presenting with oral ulcers,body rash,worsening dyspnea,and a history of joint pains initially treated as rheumatoid arthritis.She was on antituberculous therapy(ATT)for presumed pulmonary TB.Laboratory findings revealed anemia,leukopenia,raised erythrocyte sedimen-tation rate,positive anti-Sm/RNP,anti-dsDNA,and anti-SSA/Ro antibodies,confirming MCTD with clinical features of systemic lupus erythematosus,Sjogren syndrome,and systemic sclerosis.The patient was also positive for hepatitis C and active TB.Treatment involved corticosteroids alongside continuation of ATT,resulting in significant clinical improvement over 12 days,with resolution of symptoms and improved laboratory parameters.The patient remained stable on follow-up with hydroxychloroquine and prednisolone.CONCLUSION This case highlights the diagnostic complexity when autoimmune diseases coexist with TB,particularly in TB-endemic regions.Early recognition and integrated management of both conditions are crucial to improving outcomes.Clinicians should maintain a broad differential diagnosis and perform compre-hensive immunological workup in patients with overlapping symptoms.
基金supported by the National Key R&D Program of China(Grant No.2023YFA1406702)the Innovation Program for Quantum Science and Technology 2021ZD0302005+1 种基金the XPLORER Prizepartly supported by the Start-up Research Fund of Southeast University(RF1028624190)。
文摘Topological band theory has been studied for free fermions for decades,and one of the most profound physical results is the bulk-boundary correspondence.Recently a focus in topological physics is extending topological classification to mixed states.Here,we focus on Gaussian mixed states for which the modular Hamiltonians of the density matrix are quadratic free fermion models with U(1)symmetry and can be classified by topological invariants.The bulk-boundary correspondence is then manifested as stable gapless modes of the modular Hamiltonian and degenerate spectrum of the density matrix.In this article,we show that these gapless modes can be detected by the full counting statistics,mathematically described by a function introduced as F(θ).A divergent derivative atθ=πcan be used to probe the gapless modes in the modular Hamiltonian.Based on this,a topological indicator,whose quantization to unity senses topologically nontrivial mixed states,is introduced.We present the physical intuition of these results and also demonstrate these results with concrete models in both one-and two-dimensions.Our results pave the way for revealing the physical significance of topology in mixed states.
基金Supported by the National Research Foundation of Korea Grant Funded by the Korea Government,No.RS-2024-00440477the Korea Institute of Science and Technology Institutional Program,No.2E33111-24-042.
文摘BACKGROUND Mixed lineage kinase domain-like protein(MLKL)serves as a critical mediator in necroptosis,a form of regulated cell death linked to various liver diseases.This study aims to specifically investigate the role of MLKL’s adenosine triphosphate(ATP)-binding pocket in facilitating necroptosis-independent pathways that may contribute to liver disease progression.By focusing on this mechanism,we seek to identify potential therapeutic targets that can modulate MLKL activity,offering new strategies for the prevention and treatment of liver-related pathologies.AIM To investigate the possibility of using the ATP-binding pocket-associated,necro-ptosis-independent MLKL pathway as a target for liver diseases.METHODS Cell death following necroptosis stimuli was evaluated using cell proliferation assays,flow cytometry,and electron microscopy in various cells.The human liver organoid system was used to evaluate whether the MLKL ATP pocket-binding inhibitor could attenuate inflammation.Additionally,alcoholic and non-alcoholic fatty liver diseases animal models were used to determine whether MLKL ATP pocket inhibitors could attenuate liver injury.RESULTS While an MLKL ATP pocket-binding inhibitor did not prevent necroptosis-induced cell death in RAW 264.7 cells,it did reduce the necroptosis-led expression of CXCL2,ICAM,and VCAM.Notably,MLKL ATP pocket inhibitor diminishes the expression of CXCL2,ICAM,and VCAM by inhibiting the IκB kinase and nuclear factor kappa-B pathways without inducing necroptosis-induced cell death in two-dimensional cell culture as well as the human-derived liver organoid system.Although MLKL ATP-binding inhibitor was ineffective in non-alcoholic fatty liver disease animal models,MLKL ATP-binding inhibitor attenuated hepatic inflammation in the alcoholic liver disease model.CONCLUSION MLKL ATP pocket-binding inhibitor exerted anti-inflammatory effects through the necroptosis-independent MLKL pathway in an animal model of alcoholic liver disease.
文摘Brazil’s deforestation monitoring integrates accuracy and current monitoring for land use and land cover applications.Regular monitoring of deforestation and non-deforestation requires Sentinel-2 multispectral satellite images of several bands at various frequencies,the mix of high-and low-resolution images that make object classification difficult because of the mixed pixel problem.Accuracy is impacted by the mixed pixel problem,which occurs when pixels belong to different classes and makes detection challenging.To identify mixed pixels,Band Math is used to merge numerous bands to generate a new band NDVI.Thresholding is used to analyze the edges of deforested and non-deforested areas.Segmentation is then used to analyze the pixels which helps to identify the number of mixed pixels to compute the deforested and non-deforested areas.Segmented image pixels are used to categorize the deforestation of the Brazilian Amazon Forest between 2019 and 2023.Verify how many pixels are mixed to improve accuracy and identify mixed pixel issues;compare the mixed and pure pixels of fuzzy clustering with the subtracted morphological image pixels.With the help of segmentation and clustering researchers effectively validate mixed pixels in a specific area.The proposed methodology is easy to analyze and helpful for an appropriate calculation of deforested and non-deforested areas.
基金financially supported by the Fundamental Research Funds for the Central Universities(Grant No.30923011018)。
文摘The present study introduces a screw-pressing charging method to tackle deficiencies in automation and charge uniformity during the melt-casting of polymer-based energetic materials.To ensure the safety of the experiments,this study used inert materials with similar physical properties to partially substitute for the actual energetic components in the preparation of simulant materials.By thoroughly analyzing slurry physical properties,a simulation framework and an extensive performance evaluation method were developed.Such tools guide the design of the structure and configuration of process parameters.Results demonstrate that employing the Pin element significantly enhances radial mixing within the screw,minimizes temperature variations in the slurry,and improves both efficiency and safety in the mixing process.Further,adjustments such as widening the cone angle of the barrel,modifying the solid content of the slurry,and varying the speed of the screw can optimize the mechanical and thermal coupling in the flow field.These adjustments promote higher-quality slurry and create a safer production environment for the extrusion process.
文摘BACKGROUND A total of 100 patients diagnosed with mixed hemorrhoids from October 2022 to September 2023 in our hospital were randomly divided into groups by dice rolling and compared with the efficacy of different treatment options.AIM To analyze the clinical effect and prognosis of mixed hemorrhoids treated with polidocanol injection combined with automatic elastic thread ligation operation(RPH).METHODS A total of 100 patients with mixed hemorrhoids who visited our hospital from October 2022 to September 2023 were selected and randomly divided into the control group(n=50)and the treatment group(n=50)by rolling the dice.The procedure for prolapse and hemorrhoids(PPH)was adopted in the control group,while polidocanol foam injection+RPH was adopted in the treatment group.The therapeutic effects,operation time,wound healing time,hospital stay,pain situation(24 hours post-operative pain score,first defecation pain score),quality of life(QOL),incidence of complications(post-operative hemorrhage,edema,infection),incidence of anal stenosis 3 months post-operatively and recurrence rate 1 year post-operatively of the two groups were compared.RESULTS Compared with the control group,the total effective rate of treatment group was higher,and the difference was significant(P<0.05).The operation time/wound healing time/hospital stay in the treatment group were shorter than those in the control group(P<0.05).The pain scores at 24 hours after operation/first defecation pain score of the treatment group was significantly lower than those in the control group(P<0.05).After surgery,the QOL scores of the two groups decreased,with the treatment group having higher scores than that of the control group(P<0.05).Compared with the control group,the incidence of postoperative complications in the treatment group was lower,and the difference was significant(P<0.05);However,there was no significant difference in the incidence of postoperative bleeding between the two groups(P>0.05);There was no significant difference in the incidence of anal stenosis 3 months after operation and the recurrence rate 1 year after operation between the two groups(P>0.05).CONCLUSION For patients with mixed hemorrhoids,the therapeutic effect achieved by using polidocanol injection combined with RPH was better.The wounds of the patients healed faster,the postoperative pain was milder,QOL improved,and the incidence of complications was lower,and the short-term and long-term prognosis was good.
基金supported by the National Key R&D Program of China(2022YFB3803501)the National Natural Science Foundation of China(22179008,22209156)+5 种基金support from the Beijing Nova Program(20230484241)support from the China Postdoctoral Science Foundation(2024M754084)the Postdoctoral Fellowship Program of CPSF(GZB20230931)support from beamline BL08U1A of Shanghai Synchrotron Radiation Facility(2024-SSRF-PT-506950)beamline 1W1B of the Beijing Synchrotron Radiation Facility(2021-BEPC-PT-006276)support from Initial Energy Science&Technology Co.,Ltd(IEST)。
文摘The implementation of ultrahigh-Ni cathodes in high-energy lithium-ion batteries(LIBs)is constrained by significant structural and interfacial degradation during cycling.In this study,doping-induced surface restructuring in ultrahigh-nickel cathode materials is rapidly facilitated through an ultrafast Joule heating method.Density functional theory(DFT)calculations,synchrotron X-ray absorption spectroscopy(XAS),and single-particle force test confirmed the establishment of a stable crystal framework and lattice oxygen,which mitigated H2-H3 phase transitions and improved structural reversibility.Additionally,the Sc doping process exhibits a pinning effect on the grain boundaries,as shown by scanning transmission electron microscopy(STEM),enhancing Li~+diffusion kinetics and decreasing mechanical strain during cycling.The in situ development of a cation-mixing layer at grain boundaries also creates a robust cathode/electrolyte interphase,effectively reducing interfacial parasitic reactions and transition metal dissolution,as validated by STEM and time-of-flight secondary ion mass spectrometry(TOF-SIMS).These synergistic modifications reduce particle cracking and surface/interface degradation,leading to enhanced rate capability,structural integrity,and thermal stability.Consequently,the optimized Sc-modified ultrahigh-Ni cathode(Sc-1)exhibits 93.99%capacity retention after 100 cycles at 1 C(25℃)and87.06%capacity retention after 100 cycles at 1 C(50℃),indicating excellent cycling and thermal stability.By presenting a one-step multifunctional modification approach,this research delivers an extensive analysis of the mechanisms governing the structure,microstructure,and interface properties of nickel-rich layered cathode materials(NCMs).These results underscore the potential of ultrahigh-Ni cathodes as viable candidates for advanced lithium-ion batteries(LIBs)in next-generation electric vehicles(EVs).
基金financial support from the National Natural Science Foundation of China(Nos.22108258 and 52003251)Program for Science&Technology Innovation Talents in Universities of Henan Province(24HASTIT004)+1 种基金Outstanding Youth Fund of Henan Scientific Committee(222300420085)Science and Technology Joint Project of Henan Province(222301420041)。
文摘Mixed matrix membranes(MMMs)have demonstrated significant promise in energy-intensive gas separations by amalgamating the unique properties of fillers with the facile processability of polymers.However,achieving a simultaneous enhancement of permeability and selectivity remains a formidable challenge,due to the difficulty of achieving an optimal match between polymers and fillers.In this study,we incorporate a porous carbon-based zinc oxide composite(C@ZnO)into high-permeability polymers of intrinsic microporosity(PIMs)to fabricate MMMs.The dipole–dipole interaction between C@ZnO and PIMs ensures their exceptional compatibility,mitigating the formation of non-selective voids in the resulting MMMs.Concurrently,C@ZnO with abundant interconnected pores can provide additional low-resistance pathways for gas transport in MMMs.As a result,the CO_(2) permeability of the optimized C@ZnO/PIM-1 MMMs is elevated to 13,215 barrer,while the CO_(2)/N_(2) and CO_(2)/CH_(4) selectivity reached 21.5 and 14.4,respectively,substantially surpassing the 2008 Robeson upper bound.Additionally,molecular simulation results further corroborate that the augmented membrane gas selectivity is attributed to the superior CO_(2) affinity of C@ZnO.In summary,we believe that this work not only expands the application of MMMs for gas separation but also heralds a paradigm shift in the application of porous carbon materials.
文摘Sodium cocoyl glycinate(SCG),an environmentally friendly anionic amino acid surfactant,is widely used in daily chemical products as an upgraded alternative to traditional surfactants.In this study,crude Camellia oleifera saponin(COS)was purified using AB-8 macroporous adsorption resin,and its composition and structure were analyzed.The effects of different mole fractions of COS(αCOS)on surface tension(γ),oil-water interfacial tension(IFT),emulsification,and foam properties of COS-SCG binary mixed systems were investigated in mixtures of SCG with purified COS.The stability ofγand foamability under diverse environmental conditions were also discussed.The results indicated that the COS-SCG system exhibited remarkable surface-active synergism.The minimum critical micelle concentration(cmc)of the mixed system was lower than that of SCG,and adding a small mole fraction of COS(1%-2%)induced a synergistic reduction ofγ.Specifically,the cmc andγwere 2.50×10-4 mol/L and 23.1 mN/m forαCOS=1%,respectively.The system exhibited exceptional IFT reduction capacity,achieving a minimum value of 1.42 mN/m atαCOS=10%.The mixed system reached a foaming volume(atαCOS=50%)and foam stability(atαCOS=75%)were 51.0 mL and 97.37%,respectively.Microscopic analysis further confirmed these outstanding foam properties.Moreover,the COS-SCG system displayed reducedγwith enhanced foaming volume under elevated temperatures(35-75℃)and salinity(0-20 g/L).However,acidic conditions and hard water compromised bothγstability and foamability.
基金Supported by National Key Research and Development Program of China(2022YFA1404201)National Natural Science Foundation of China(62205187,U23A20380,U22A2091,62222509,62127817,62075120)+3 种基金Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China(IRT_17R70)Fundamental Research Program of Shanxi Province(202103021223032,202303021222031)Project Funded by China Postdoctoral Science Foundation(2022M722006)Fund for Shanxi“1331 Project”Key Subjects Construction。
文摘Tin-lead(Sn-Pb)mixed perovskites are extensively investigated in near-infrared(NIR)photodetectors(PDs)owing to their excellent photoelectric performance.However,achieving high-performance Sn-Pb mixed PDs remains challenging,primarily because of the rapid crystallization and the susceptibility of Sn^(2+) to oxidation.To ad⁃dress these issues,this study introduces the multifunctional molecules 2,3-difluorobenzenamine(DBM)to modulate the crystallization of Sn-Pb mixed perovskites and retard the oxidation of Sn^(2+),thereby significantly enhancing film quality.Compared with the pristine film,Sn-Pb mixed perovskite films modulated by DBM molecules exhibit a high⁃ly homogeneous morphology,reduced roughness and defect density.The self-powered NIR PDs fabricated with the improved films have a spectral response range from 300 nm to 1100 nm,a peak responsivity of 0.51 A·W^(-1),a spe⁃cific detectivity as high as 2.46×10^(11)Jones within the NIR region(780 nm to 1100 nm),a linear dynamic range ex⁃ceeding 152 dB,and ultrafast rise/fall time of 123/464 ns.Thanks to the outstanding performance of PDs,the fabri⁃cated 5×5 PDs array demonstrates superior imaging ability in the NIR region up to 980 nm.This work advances the development of Sn-Pb mixed perovskites for NIR detection and paves the way for their commercialization.
文摘An aluminoborate,Na_(2.5)Rb[Al{B_(5)O_(10)}{B_(3)O_(5)}]·0.5NO_(3)·H_(2)O(1),was synthesized under hydrothermal condition,which was built by mixed oxoboron clusters and AlO_(4)tetrahedra.In the structure,the[B_(5)O_(10)]^(5-)and[B_(3)O_(7)]^(5-)clusters are alternately connected to form 1D[B_(8)O_(15)]_(n)^(6n-)chains,which are further linked by AlO_(4)units to form a 2D monolayer with 7‑membered ring and 10‑membered ring windows.Two adjacent monolayers with opposite orientations further form a porous‑layered structure with six channels through B—O—Al bonds.Compound 1 was characterized by single crystal X‑ray diffraction,powder X‑ray diffraction(PXRD),IR spectroscopy,UV‑Vis diffuse reflection spectroscopy,and thermogravimetric analysis(TGA),respectively.UV‑Vis diffuse reflectance analysis indicates that compound 1 shows a wide transparency range with a short cutoff edge of 201 nm,suggesting it may have potential application in UV regions.CCDC:2383923.
文摘DNA microarray technology is an extremely effective technique for studying gene expression patterns in cells, and the main challenge currently faced by this technology is how to analyze the large amount of gene expression data generated. To address this, this paper employs a mixed-effects model to analyze gene expression data. In terms of data selection, 1176 genes from the white mouse gene expression dataset under two experimental conditions were chosen, setting up two conditions: pneumococcal infection and no infection, and constructing a mixed-effects model. After preprocessing the gene chip information, the data were imported into the model, preliminary results were calculated, and permutation tests were performed to biologically validate the preliminary results using GSEA. The final dataset consists of 20 groups of gene expression data from pneumococcal infection, which categorizes functionally related genes based on the similarity of their expression profiles, facilitating the study of genes with unknown functions.
基金supported by the National Natural Science Foundation of China(52025103)the Xplorer Prize(XPLORER-2022-1034).
文摘In petroleum,mercaptan impurities generate malodorous fumes that pose risks to both human health and the environment,and leading to substandard oil quality.Lye desulfurization is a widely employed technique for eliminating mercaptans from oil.In traditional scrubber towers,lye and oil are poorly mixed,the desulfurization efficiency is low,and the lye consumption is high.To enhance washing efficiency,a droplet micromixer and corresponding fiber coalescence separator were developed.By optimizing the structure and operating parameters,more effective mixing and separation were achieved,and both caustic washing and desulfurization were enhanced.The proposed mixer/separator outperforms the industry standard by reducing the caustic loading by 30%and offers superior economic and engineering performances.The results of this study offer a direction for designing and optimizing a mercaptan removal unit to enhance the scrubbing effectiveness and decrease expenses to achieve more efficient and green production process.
文摘Despite public and private investments in the senior housing sector,an alternative to retirement homes is not yet truly present in Italy,except for a few rare cases.The spots in residential facilities for the elderly are limited and not enough to fill a demand for spaces that is continuously increasing.Another underlying problem is that the type of user that senior housing is aimed at is not currently considered by the Italian market;the impact of factors that can decrease the quality of life in elderly people,such as loneliness,lack of physical activity or loss of routine is underestimated.This set of negative factors promotes the opposite of what is considered active aging.In recent years senior houses,intended as a residential typology for self-sufficient elderly people,have undergone a significant evolution,reflecting social,demographic and technological changes;this reflects a paradigm shift in the way society approaches care to the elderly,focusing increasingly on autonomy,personalization and well-being.From 2010 to 2024,there has been greater attention towards customization of programs and spaces dedicated to the elderly,with the aim of offering services that meet everyone’s specific needs.Senior houses are becoming more oriented towards a wellbeing-based approach and are starting to focus on social inclusion as well,promoting recreational and cultural activities to improve the quality of life of elderly vips.A strategy used for social inclusion is to dedicate part of the project to functions open to the public(kindergartens,community centers,spaces for associations,etc.)so that the project fits into the urban level of the city by interacting with it.The proposal is to integrate cultural spaces with senior housing in a way that the elderly residents can become the keepers and narrators of local heritage,creating intergenerational communities.
文摘Images obtained from hyperspectral sensors provide information about the target area that extends beyond the visible portions of the electromagnetic spectrum.However,due to sensor limitations and imperfections during the image acquisition and transmission phases,noise is introduced into the acquired image,which can have a negative impact on downstream analyses such as classification,target tracking,and spectral unmixing.Noise in hyperspectral images(HSI)is modelled as a combination from several sources,including Gaussian/impulse noise,stripes,and deadlines.An HSI restoration method for such a mixed noise model is proposed.First,a joint optimisation framework is proposed for recovering hyperspectral data corrupted by mixed Gaussian-impulse noise by estimating both the clean data as well as the sparse/impulse noise levels.Second,a hyper-Laplacian prior is used along both the spatial and spectral dimensions to express sparsity in clean image gradients.Third,to model the sparse nature of impulse noise,anℓ_(1)−norm over the impulse noise gradient is used.Because the proposed methodology employs two distinct priors,the authors refer to it as the hyperspectral dual prior(HySpDualP)denoiser.To the best of authors'knowledge,this joint optimisation framework is the first attempt in this direction.To handle the non-smooth and nonconvex nature of the generalℓ_(p)−norm-based regularisation term,a generalised shrinkage/thresholding(GST)solver is employed.Finally,an efficient split-Bregman approach is used to solve the resulting optimisation problem.Experimental results on synthetic data and real HSI datacube obtained from hyperspectral sensors demonstrate that the authors’proposed model outperforms state-of-the-art methods,both visually and in terms of various image quality assessment metrics.
文摘Open channel confluences,where two streams or rivers converge,play a crucial role in hydraulic engineering and river dynamics.These confluences are characterized by complex hydrodynamics influenced by the discharge ratios of merging water bodies.This study investigated the mixing structure at open channel confluences using three-dimensional numerical modeling.A comprehensive three-dimensional numerical model was developed and validated against a dataset obtained from controlled laboratory experiments.This dataset incorporated three-dimensional time-averaged velocity measurements.The skew-induced and stress-induced equation systems were adopted as the core governing equations,providing a framework for simulating various scenarios.A total of ten different cases were analyzed.The results highlighted the effect of discharge ratios on turbulence,lateral and vertical vorticities,and the distribution of mixing,which intensified with higher magnitudes of discharge ratios.The mixing structure,driven by velocity gradients and vorticity,revealed the significant role of lateral and vertical vorticities in determining hydrodynamic behaviors and mixing distributions at confluences.Specifically,the momentum ratio of incoming flows governed the spatial evolution of mixing processes.This study revealed that the distribution of mixing served as a key indicator for identifying the formation of mid-channel scours.High normalized velocities induced toward the left bank led to the superelevation of the water surface,enhancing the potential for bed material and the formation of significant scour holes beneath the elevated water surface.This novel approach provides a deeper understanding of the mixing patterns at confluences,particularly in scenarios with equilibrated discharge ratios but in different magnitudes.
文摘This study evaluates the feasibility of incorporating alternative sustainable energy sources,specifically bioenergy and green hydrogen,into The Gambia’s energy mix to support the nation’s long-term energy development goals.The feedstocks analyzed include agricultural crop residues such as rice,cassava,groundnuts,maize,sorghum,oil palm fruit,seed cotton,and millet,as well as municipal solid waste(MSW).An assessment was conducted to calculate the theoretical potential generated from the organic components of both MSW and crop residues,utilizing data collected from 2017 to 2021 and projections extending to 2038.The results were employed to calculate potential yields of biomethane and electricity production,using Buswell’s equation as a framework for determining biogas generation from various organic materials.Additionally,the potential for hydrogen production via steam methane reforming was evaluated using stoichiometric principles.The technical potential for electricity and hydrogen generation was then established based on their respective conversion efficiencies.This study is the first to comprehensively assess the technical potential for both bioenergy and green hydrogen production from crop residues and MSW in The Gambia.By quantifying yields of electricity(64.5 MW)and hydrogen(6.2 million kmol),and proposing a site-specific pilot project strategy,it bridges the gap between theoretical potential and practical implementation,providing a scalable roadmap for energy diversification in low-income nations.To address data management and infrastructure gaps,a strategy is proposed that includes automated data collection,awareness programs,and waste-to-energy initiatives,aimed at enhancing energy resilience and sustainability in The Gambia.
基金supported by the National Natural Science Foundation of China(U22A20429 and 22308103)Shanghai Pilot Program for Basic Research(22TQ1400100-13)+2 种基金Postdoctoral Fellowship Program of CPSF(GZB20230214)China Postdoctoral Science Foundation(2023M731083)the Fundamental Research Funds for the Central Universities.
文摘Developing cost-effective single-crystalline Ni-rich Co-poor cathodes operating at high-voltage is one of the most important ways to achieve higher energy Li-ion batteries. However, the Li/O loss and Li/Ni mixing under high-temperature lithiation result in electrochemical kinetic hysteresis and structural instability. Herein, we report a highly-ordered single-crystalline LiNi0.85Co0.05Mn0.10O2(NCM85) cathode by doping K+and F-ions. To be specific, the K-ion as a fluxing agent can remarkably decrease the solid-state lithiation temperature by ~30°C, leading to less Li/Ni mixing and oxygen vacancy. Meanwhile, the strong transitional metal(TM)-F bonds are helpful for enhancing de-/lithiation kinetics and limiting the lattice oxygen escape even at 4.5 V high-voltage. Their advantages synergistically endow the single-crystalline NCM85 cathode with a very high reversible capacity of 222.3 mAh g-1. A superior capacity retention of 91.3% is obtained after 500 times at 1 C in pouch-type full cells, and a prediction value of 75.3% is given after cycling for 5000 h. These findings are reckoned to expedite the exploitation and application of high-voltage single-crystalline Ni-rich cathodes for next-generation Li-ion batteries.