The amino acid at the 119th position of human basic fibroblast growth factor(hbFGF),lysine(K119),is a critical component for its mitogenic activity.However,little is known about the effects of the characteristics of t...The amino acid at the 119th position of human basic fibroblast growth factor(hbFGF),lysine(K119),is a critical component for its mitogenic activity.However,little is known about the effects of the characteristics of this residue including charge on the mitogenic activity of hbFGF.Herein,this basic residue was replaced with neutral glutamine residue and acidic glutamic acid residue to construct mutants hbFGF^(K119Q) and hbFGF^(K119E),respectively.The mutants were produced by BL21(DE3)/pET3c expression system...展开更多
Lectins are the carbohydrate-binding proteins of non-immune origin which have been the subject of intense investigation over the last few decades owing to the variety of interesting biological properties. Most of the ...Lectins are the carbohydrate-binding proteins of non-immune origin which have been the subject of intense investigation over the last few decades owing to the variety of interesting biological properties. Most of the lectins which have been purified and characterized from plants have been obtained from dicotyledons. In the present study a lectin was purified from tubers of a monocot plant Arisaema utile (AUL) Schott by affinity chromatography on asialofetuin-linked amino activated silica beads. AUL gave a single band in SDS-PAGE at pH 8.3 corresponding to subunit Mr 13.5 kDa. The native molecular mass of AUL was 54 kDa suggesting a homotetrameric structure. AUL gave multiple bands in isoelectric focusing and in native PAGE at pH 8.3. AUL was inhibited by N-acetyl-D-lactosamine (Lac NAc), a disaccharide and asialofetuin, a complex desialylated serum glycoprotein. When treated with denaturing agents, the lectin was stable in the presence of urea (3 M), thiourea (4 M) and guanidine HCl (4 M). AUL was a glycoprotein with a carbohydrate content of 1.2%. Complete loss of activity was observed upon modification of tryptophan residues of the lectin. The activity was reduced to 25% after modification of tyrosine. Chemical modification of arginine, histidine, serine and cysteine residues of AUL did not affect its activity. Using Far UV CD spectra the estimated secondary structure was 37% α-helix, 25% β-sheet and 38% random contributions. The lectin showed potent mitogenic response towards human lymphocytes. In vitro anti-proliferative assay using 11 human cancer cell lines resulted in 50% inhibition of six cell lines viz. SW-620, HCT-15, SK-N-SH, IMR-32, Colo-205 and HT-29 at 38, 42, 43, 49, 50 and 89 µg/ml, respectively.展开更多
Aplastic anemia(AA)is a rare but serious condition in which the bone marrow fails to produce sufficient new blood cells,leading to fatigue,increased susceptibility to infection,and uncontrolled bleeding.In this editor...Aplastic anemia(AA)is a rare but serious condition in which the bone marrow fails to produce sufficient new blood cells,leading to fatigue,increased susceptibility to infection,and uncontrolled bleeding.In this editorial,we review and comment on an article by Wang et al published in 2024.This study aimed to evaluate the potential therapeutic benefits of ginsenoside Rg1 in AA,focusing on its protective effects and uncovering the underlying mechanisms.Cyclophosphamide(CTX)administration caused substantial damage to the structural integrity of the bone marrow and decreased the number of hematopoietic stem cells,thereby establishing an AA model.Compared with the AA group,ginsenoside Rg1 alleviated the effects of CTX by reducing apoptosis and inflammatory factors.Mechanistically,treatment with ginsenoside Rg1 significantly mitigated myelosuppression in mice by inhibiting the mitogen activated protein kinase signaling pathway.Thus,this study indicates that ginsenoside Rg1 could be effective in treating AA by reducing myelosuppression,primarily through its influence on the mitogen activated protein kinase signaling pathway.We expect that our review and comments will provide valuable insights for the scientific community related to this research and enhance the overall clarity of this article.展开更多
骨性关节炎(osteoarthritis,OA)特征表现为关节软骨进行性退变、萎缩凋亡、脱落消失,关节骨缘及软骨下骨反应性增生、肥厚、纤维化等([1])。在中老年人中的发病率高达89%([2])。丝裂原活化蛋白激酶(mitogen activated protein ki...骨性关节炎(osteoarthritis,OA)特征表现为关节软骨进行性退变、萎缩凋亡、脱落消失,关节骨缘及软骨下骨反应性增生、肥厚、纤维化等([1])。在中老年人中的发病率高达89%([2])。丝裂原活化蛋白激酶(mitogen activated protein kinases,MAPKs)是细胞内重要的信号传递者,参与细胞增殖、凋亡、分化、表型等多种生理过程的调节([3])。展开更多
糖尿病肾病(diabetic nephropathy,DN)是糖尿病的主要微血管并发症之一,目前已成为欧美国家以及我国终末期肾病的首要病因[1],给国民经济和个人造成巨大的经济和精神负担。足细胞裂孔隔膜上有很多蛋白参与其完整性的表达,这些蛋白的...糖尿病肾病(diabetic nephropathy,DN)是糖尿病的主要微血管并发症之一,目前已成为欧美国家以及我国终末期肾病的首要病因[1],给国民经济和个人造成巨大的经济和精神负担。足细胞裂孔隔膜上有很多蛋白参与其完整性的表达,这些蛋白的表达受损与蛋白尿的发生密切相关。Podocin蛋白即为众多裂孔隔膜蛋白之一[2]。丝裂原活化蛋白激酶(mitogen-activated protein kinase,展开更多
Peripheral blood mononuclear cells(PBMNC)isolated from patients with acuteleukemia(AL)and from normal controls were cultured in a medium containing1000units/ml of recombinant interleukin-2(IL-2).Marked LAK activ...Peripheral blood mononuclear cells(PBMNC)isolated from patients with acuteleukemia(AL)and from normal controls were cultured in a medium containing1000units/ml of recombinant interleukin-2(IL-2).Marked LAK activity was induced onthe third culture day in the normal controls,with the highest cytotoxicity appearing be-tween day 3 and 5,whereas induction of LAK activity in the AL patients began on the5th day of culture,with a peak level appearing at day 15,showing that the peak ofLAK activity was significantly delayed in AL.LAK cells surface phenotyping tests showedthat CD<sub>8</sub> and CD<sub>16</sub> positive cells began to increase significantly from day 5 and reachedthe highest level at week 3,whereas CD<sub>4</sub><sup>-</sup> subclass began to decrease at day 5 anddropped to the nadir at week 3,indicating that LAK activity was positively correlatedwith the proportion of CD<sub>8</sub><sup>+</sup> and CD<sub>16</sub><sup>+</sup> cells,but negatively with that of CD<sub>4</sub><sup>+</sup> cells.展开更多
Hepatocellular carcinoma(HCC)is one of the leading causes of death induced by cancer in the modern world and majority of the cases are related to chronic hepatitis B virus(HBV)infection.HBV-encoded X protein(HBx)is kn...Hepatocellular carcinoma(HCC)is one of the leading causes of death induced by cancer in the modern world and majority of the cases are related to chronic hepatitis B virus(HBV)infection.HBV-encoded X protein(HBx)is known to play a pivotal role in the pathogenesis of viral induced HCC.HBx is a multifunctional protein of17 kDa which modulates several cellular processes by direct or indirect interaction with a repertoire of host factors resulting in HCC.HBX might interfere with several cellular processes such as oxidative stress,DNA repair,signal transduction,transcription,protein degradation,cell cycle progression and apoptosis.A number of reports have indicated that HBx is one of the most common viral ORFs that is often integrated into the host genome and its sequence variants play a crucial role in HCC.By mutational or deletion analysis it was shown that carboxy terminal of HBx has a likely role in protein-protein interactions,transcriptional transactivation,DNA repair,cell,signaling and pathogenesis of HCC.The accumulated evidence thus far suggests that it is difficult to understand the mechanistic nature of HBx associated HCC,and HBx mediated transcriptional transactivation and signaling pathways may be a major determinant.This article addresses the role of HBx in the development of HCC with particular emphasis on HBx mutants and their putative targets.展开更多
AIM To define signaling events initiating healing after intestinal epithelial injury, activation of mitogen activated protein kinase (MAPK) pathways was assessed after wounding using an in vitro model. METHODS P...AIM To define signaling events initiating healing after intestinal epithelial injury, activation of mitogen activated protein kinase (MAPK) pathways was assessed after wounding using an in vitro model. METHODS Proteins isolated from wounded monolayers of nontransformed intestinal epithelial cells (IEC 6) were analyzed for tyrosine phosphorylation and MAPK expression by Western blot. Extracellular signal regulated kinase (ERK) 1, ERK2, and Raf 1 activities were assessed by immune complex kinase assays. RESULTS Tyrosine phosphorylation of several proteins including ERK1 was substantially increased 5 minutes after injury. Another MAPK, c Jun N terminal protein kinase (JNK), was also activated after wounding. Conditioned medium from wounded but not intact IEC 6 monolayers resulted in increased activity of ERK1, ERK2, and Raf 1 kinase. Wound conditioned medium stimulated proliferation of subconfluent IEC 6 cells compared with conditioned medium from intact IEC 6 cultures and contained higher amounts of transforming growth factor (TGF) α than supernatants of confluent IEC 6 cultures. Activation of ERK1 and ERK2 was partially inhibited by neutralizing anti TGF α. CONCLUSION Wounding of intestinal epithelial cells results in activation of Raf 1, ERK1, ERK2, and JNK1 MAPKs and subsequent cell proliferation in vitro. Activation of ERK1 and ERK2 is mediated in part by TGF α.展开更多
AIM To investigate the antioxidant effect of caffeic acid phenethyl ester (CAPE) in hepatic stellate cell-T6 (HSC-T6) cells cultured in vitro and the potential mechanisms. METHODS HSC-T6 cells were cultured in vitro a...AIM To investigate the antioxidant effect of caffeic acid phenethyl ester (CAPE) in hepatic stellate cell-T6 (HSC-T6) cells cultured in vitro and the potential mechanisms. METHODS HSC-T6 cells were cultured in vitro and treated with various concentrations of CAPE for 24, 48 and 72 h, respectively. Cell proliferation was investigated using the MTT assay, and cell ultrastructural alterations were observed by transmission electron microscopy. Flow cytometry was employed to investigate the effects of CAPE on apoptosis and the levels of reactive oxygen species in HSC-T6 cells cultured in vitro. An enzyme immunoassay instrument was used to evaluate antioxidant enzyme expression. The effect on alpha-smooth muscle actin was shown using immunofluorescence. Gene and protein levels of Nrf2, related factors, and mitogen activated protein kinases (MAPKs), in HSC-T6 cells were detected using RT-PCR and Western blot, respectively. RESULTS CAPE inhibited the proliferation and activation of HSC-T6 cells cultured in vitro. CAPE increased the antioxidant levels and the translocation of Nrf2 from the cytoplasm to the nucleus in HSC-T6 cells. Moreover, the phosphorylation of MAPKs in cells decreased in response to CAPE. Interestingly, CAPE-induced oxidative stress in the cells was significantly attenuated by pretreatment with MAPKs inhibitors. CONCLUSION CAPE inhibits cell proliferation and up-regulates the antioxidant levels in HSC-T6 cells partly through the Nrf2-MAPKs signaling pathway.展开更多
AIM: To investigate the expressions of omithine decarboxylase (ODC), MMP-2, and Erk, and their relationship in human colon tumors.METHODS: ODC activity, MMP-2 expression, and mitogenactivated protein (MAP) kinase acti...AIM: To investigate the expressions of omithine decarboxylase (ODC), MMP-2, and Erk, and their relationship in human colon tumors.METHODS: ODC activity, MMP-2 expression, and mitogenactivated protein (MAP) kinase activity (Erk phosphorylation) were determined in 58 surgically removed human colon tumors and their adjacent normal tissues, using [1-14C]-ornithine as a substrate, ELISA assay, and Western blotting, respectively.RESULTS: ODC activity, MMP-2 expression, and Erk phosphorylation were significantly elevated in colon tumors, compared to those in adjacent normal tissues. A significant correlation was observed between ODC activities and MMP-2 levels.CONCLUSION: This is the first report showing a significant correlation between ODC activities and MMP-2 levels in human colon tumors. As MMP-2 is involved in cancer invasion and metastasis, and colon cancer overexpresses ODC, suppression of ODC expression may be a rational approach to treat colon cancer which overexpresses ODC.展开更多
Objective To study the role of extracellular signal-regulated kinase (ERK) in cerebral ischemia and the mechanism of protective effects of U0126 (1,4-diamino-2,3-dicyano-1,4-bis[2-aminophenylthio] butadiene) on ischem...Objective To study the role of extracellular signal-regulated kinase (ERK) in cerebral ischemia and the mechanism of protective effects of U0126 (1,4-diamino-2,3-dicyano-1,4-bis[2-aminophenylthio] butadiene) on ischemic brain. Methods Mice underwent left middle cerebral artery occlusion (MCAO) by introducing a suture in the lumen. U0126 was injected intravenously through the internal jugular vein. The immuno-activity of phosphorylated ERK1/2 (pERK1/2), phos-phorylated mitogen activated protein kinase kinase (pMEK), and phosphorylated Elk-1 (pElk-1) was assessed by Western blot analysis and immunohistochemistry. Interleukin (IL)-1βmRNA level was measured by ribonuclease protection assay. Results Phosphorylated ERK1/2 in 2 hours MCAO mice was down-regulated after intravenous injection of U0126. The inhibition was dose dependent and treatment time related. pMEK and pElk-1 were also reduced in a similar fashion after U0126 treatment. IL-1βmRNA increased after 1 and 2 hours of MCAO. After injection of U0126, it was down-regulated during 1 to 4 hours after MCAO. Conclusion Intravenous administration of the MEK inhibitor U0126 inhibits pMEK, pERK1/2, and pElk-1 up-regulation induced by cerebral ischemia. The protective effect of U0126 against ischemic injury is probably resulted from the reduction of IL-1βmRNA via the inhibition of ERK pathway.展开更多
Rutin has anti-inflammatory, antioxidant, anti-viral, anti-tumor and immune regulatory effects. However, the neuroprotective effects of rutin in spinal cord injury are unknown. The p38 mitogen activated protein kinase...Rutin has anti-inflammatory, antioxidant, anti-viral, anti-tumor and immune regulatory effects. However, the neuroprotective effects of rutin in spinal cord injury are unknown. The p38 mitogen activated protein kinase (p38 MAPK) pathway is the most important member of the MAPK family that controls inflammation. We assumed that the mechanism of rutin in the repair of spinal cord injury is associated with the inhibition of p38 MAPK pathway. Allen’s method was used to establish a rat model of spinal cord injury. The rat model was intraperitoneally injected with rutin (30 mg/kg) for 3 days. After treatment with rutin, Basso, Beattie and Bresnahan locomotor function scores increased. Water content, tumor necrosis factor alpha, interleukin 1 beta, and interleukin 6 levels, p38 MAPK protein expression and caspase-3 and -9 activities in T8–9 spinal cord decreased. Oxidative stress related markers superoxide dismutase and glutathione peroxidase levels increased in peripheral blood. Rutin exerts neuroprotective effect through anti-oxidation, anti-inflammation, anti-apoptosis and inhibition of p38 MAPK pathway.展开更多
<abstract>The recent development of a prosaposin -/- mouse model has allowed the investigation of the role of prosaposin in the development of the male reproductive organs. A morphometric analysis of the male re...<abstract>The recent development of a prosaposin -/- mouse model has allowed the investigation of the role of prosaposin in the development of the male reproductive organs. A morphometric analysis of the male reproductive system of 37 days old mice revealed that prosaposin ablation produced a 30 % reduction in size and weight of the testes, 37 % of the epididymis, 75 % of the seminal vesicles and 60 % of the prostate glands. Light microscopy (LM) showed that smaller testis size from homozygous mutant mice was associated with reduced spermiogenesis. Both, dorsal and ventral lobules of the prostate glands were underdeveloped in the homozygous mutant. LM analysis also showed that prostatic alveoli were considerably smaller and lined by shorter epithelial cells in the homozygous mutant. Smaller tubular diameter and shorter undifferentiated epithelial cells were also observed in seminal vesicles and epididymis. In the efferent ducts of the homozygous mutant mice, the epithelium was composed exclusively of ciliated cells in contrast to the heterozygotes, which showed the presence of nonciliated cells. Radioimmunoassays demonstrated that testosterone levels were normal or higher in mice with the inactivated prosaposin gene. Immunostaining of prostate sections with an anti-androgen receptor antibody showed that the epithelial cells lining the alveoli express androgen receptor in both the heterozygous and homozygous tissue. Similarly, sections immunostained with antibodies to the phosphorylated MAPKs and Akts strongly reacted with tall prostatic secretory cells in prostate from heterozygous mouse. On the other hand, the epithelial cells in the homozygous prostate remained unstained or weakly stained. These findings demonstrate that inactivation of the prosaposin gene affected the development of the prostate gland and some components of the MAPK pathway. 63 )展开更多
Chronic intake of alcohol undoubtedly overwhelms the structural and functional capacity of the liver by initiating complex pathological events characterized by steatosis,steatohepatitis,hepatic fibrosis and cirrhosis....Chronic intake of alcohol undoubtedly overwhelms the structural and functional capacity of the liver by initiating complex pathological events characterized by steatosis,steatohepatitis,hepatic fibrosis and cirrhosis.Subsequently,these initial pathological events are sustained and ushered into a more complex and progressive liver disease,increasing the risk of fibrohepatocarcinogenesis.These coordinated pathological events mainly result from buildup of toxic metabolic derivatives of alcohol including but not limited to acetaldehyde(AA),malondialdehyde(MDA),CYP2E1-generated reactive oxygen species,alcohol-induced gut-derived lipopolysaccharide,AA/MDA protein and DNA adducts.The metabolic derivatives of alcohol together with other comorbidity factors,including hepatitis B and C viral infections,dysregulated iron metabolism,abuse of antibiotics,schistosomiasis,toxic drug metabolites,autoimmune disease and other non-specific factors,have been shown to underlie liver diseases.In view of the multiple etiology of liver diseases,attempts to delineate the mechanism by which each etiological factor causes liver disease has always proved cumbersome if not impossible.In the case of alcoholic liver disease(ALD),it is even more cumbersome and complicated as a result of the many toxic metabolic derivatives of alcohol with their varying liver-specific toxicities.In spite of all these hurdles,researchers and experts in hepatology have strived to expand knowledge and scientific discourse,particularly on ALD and its associated complications through the medium of scientific research,reviews and commentaries.Nonetheless,the molecularmechanisms underpinning ALD,particularly those underlying toxic effects of metabolic derivatives of alcohol on parenchymal and non-parenchymal hepatic cells leading to increased risk of alcohol-induced fibrohepatocarcinogenesis,are still incompletely elucidated.In this review,we examined published scientific findings on how alcohol and its metabolic derivatives mount cellular attack on each hepatic cell and the underlying molecular mechanisms leading to disruption of core hepatic homeostatic functions which probably set the stage for the initiation and progression of ALD to fibro-hepatocarcinogenesis.We also brought to sharp focus,the complex and integrative role of transforming growth factor beta/small mothers against decapentaplegic/plasminogen activator inhibitor-1 and the mitogen activated protein kinase signaling nexus as well as their cross-signaling with toll-like receptormediated gut-dependent signaling pathways implicated in ALD and fibro-hepatocarcinogenesis.Looking into the future,it is hoped that these deliberations may stimulate new research directions on this topic and shape not only therapeutic approaches but also models for studying ALD and fibro-hepatocarcinogenesis.展开更多
Much research has been conductedabroad in recent years concerningacupuncture and moxibustion on theimmunologic functions of the organism.Anoutline of this is presented as follows.EFFECTS OF ACUPUNCTUREAND MOXIBUSTION ...Much research has been conductedabroad in recent years concerningacupuncture and moxibustion on theimmunologic functions of the organism.Anoutline of this is presented as follows.EFFECTS OF ACUPUNCTUREAND MOXIBUSTION ON NORMALIMMUNOLOGIC FUNCTIONS展开更多
AIM: To investigate the functional significance of insulin-like growth factor binding protein-5 (IGFBP-5) overexpression in pancreatic cancer (PaC).METHODS: The effects of IGFBP-5 on cell growth were assessed by...AIM: To investigate the functional significance of insulin-like growth factor binding protein-5 (IGFBP-5) overexpression in pancreatic cancer (PaC).METHODS: The effects of IGFBP-5 on cell growth were assessed by stable transfection of BxPC-3 and PANC-1 cell lines and measuring cell number and DNA synthesis. Alterations in the cell cycle were assessed by flow cytometry and immunoblot analyses. Changes in cell survival and signal transduction were evaluated after mitogen and phosphatidylinositol activated protein kinase 3-kinase (PI3K) inhibitor treatment.RESULTS: After serum deprivation, IGFBP-5 expression increased both cell number and DNA synthesis in BxPC-3 cells, but reduced cell number in PANC-1 cells. Consistent with this observation, cell cycle analysis of IGFBP-5-expressing cells revealed accelerated cell cycle progression in BxPC-3 and G2/M arrest of PANC-1 cells. Signal transduction analysis revealed that Akt activation was increased in BxPC-3, but reduced in PANC-1 cells that express IGFBP-5. Inhibition of PI3K with LY294002 suppressed extracellular signal-regulated kinase-1 and -2 (ERK1/2) activation in BxPC-3, but enhanced ERK1/2 activation in PANC-1 cells that express IGFBP-5. When MEK1/2 was blocked, Akt activation remained elevated in IGFBP-5 expressing PaC cells; however, inhibition of PI3K or MEK1/2 abrogated IGFBP-5-mediated cell survival.CONCLUSION: These results indicate that IGFBP-5 expression affects the cell cycle and survival signal pathways and thus it may be an important mediator of PaC cell growth.展开更多
Animal cells require extrinsic cues for growth, proliferation and survival. The propagation of Drosophila imaginal disc cells in vitro, for example, requires the supplementation of fly extract, the composition of whic...Animal cells require extrinsic cues for growth, proliferation and survival. The propagation of Drosophila imaginal disc cells in vitro, for example, requires the supplementation of fly extract, the composition of which remains largely undefined. Here I report the biochemical purification of iron-loaded ferritin as an active ingredient of fly extract that is required for promoting the growth of clone 8 imaginal disc cells. Consistent with an essential role for iron- loaded ferritin in cultured cells, overexpression of ferritin or addition of iron in a nutrient-poor diet increases animal viability and body weight, promotes cell proliferation, and shortens the duration of postembryonic development. Conversely, overexpression of dominant-negative ferritin or addition of iron chelator causes the opposite effects. Fer- ritin mutant flies arrest development at the first-instar larval stage with a severe starvation phenotype reminiscent of that seen in starved larvae. I conclude that iron-loaded ferritin acts as an essential mitogen for cell proliferation and postembryonic development in Drosophila by maintaining iron homeostasis and antagonizing starvation response.展开更多
基金supported by grants from the Natural Science Foundation of China(No.30973671)the Natural Science Foundation of Guangdong Province of China(No.9151064001000031)
文摘The amino acid at the 119th position of human basic fibroblast growth factor(hbFGF),lysine(K119),is a critical component for its mitogenic activity.However,little is known about the effects of the characteristics of this residue including charge on the mitogenic activity of hbFGF.Herein,this basic residue was replaced with neutral glutamine residue and acidic glutamic acid residue to construct mutants hbFGF^(K119Q) and hbFGF^(K119E),respectively.The mutants were produced by BL21(DE3)/pET3c expression system...
文摘Lectins are the carbohydrate-binding proteins of non-immune origin which have been the subject of intense investigation over the last few decades owing to the variety of interesting biological properties. Most of the lectins which have been purified and characterized from plants have been obtained from dicotyledons. In the present study a lectin was purified from tubers of a monocot plant Arisaema utile (AUL) Schott by affinity chromatography on asialofetuin-linked amino activated silica beads. AUL gave a single band in SDS-PAGE at pH 8.3 corresponding to subunit Mr 13.5 kDa. The native molecular mass of AUL was 54 kDa suggesting a homotetrameric structure. AUL gave multiple bands in isoelectric focusing and in native PAGE at pH 8.3. AUL was inhibited by N-acetyl-D-lactosamine (Lac NAc), a disaccharide and asialofetuin, a complex desialylated serum glycoprotein. When treated with denaturing agents, the lectin was stable in the presence of urea (3 M), thiourea (4 M) and guanidine HCl (4 M). AUL was a glycoprotein with a carbohydrate content of 1.2%. Complete loss of activity was observed upon modification of tryptophan residues of the lectin. The activity was reduced to 25% after modification of tyrosine. Chemical modification of arginine, histidine, serine and cysteine residues of AUL did not affect its activity. Using Far UV CD spectra the estimated secondary structure was 37% α-helix, 25% β-sheet and 38% random contributions. The lectin showed potent mitogenic response towards human lymphocytes. In vitro anti-proliferative assay using 11 human cancer cell lines resulted in 50% inhibition of six cell lines viz. SW-620, HCT-15, SK-N-SH, IMR-32, Colo-205 and HT-29 at 38, 42, 43, 49, 50 and 89 &#181;g/ml, respectively.
文摘Aplastic anemia(AA)is a rare but serious condition in which the bone marrow fails to produce sufficient new blood cells,leading to fatigue,increased susceptibility to infection,and uncontrolled bleeding.In this editorial,we review and comment on an article by Wang et al published in 2024.This study aimed to evaluate the potential therapeutic benefits of ginsenoside Rg1 in AA,focusing on its protective effects and uncovering the underlying mechanisms.Cyclophosphamide(CTX)administration caused substantial damage to the structural integrity of the bone marrow and decreased the number of hematopoietic stem cells,thereby establishing an AA model.Compared with the AA group,ginsenoside Rg1 alleviated the effects of CTX by reducing apoptosis and inflammatory factors.Mechanistically,treatment with ginsenoside Rg1 significantly mitigated myelosuppression in mice by inhibiting the mitogen activated protein kinase signaling pathway.Thus,this study indicates that ginsenoside Rg1 could be effective in treating AA by reducing myelosuppression,primarily through its influence on the mitogen activated protein kinase signaling pathway.We expect that our review and comments will provide valuable insights for the scientific community related to this research and enhance the overall clarity of this article.
文摘骨性关节炎(osteoarthritis,OA)特征表现为关节软骨进行性退变、萎缩凋亡、脱落消失,关节骨缘及软骨下骨反应性增生、肥厚、纤维化等([1])。在中老年人中的发病率高达89%([2])。丝裂原活化蛋白激酶(mitogen activated protein kinases,MAPKs)是细胞内重要的信号传递者,参与细胞增殖、凋亡、分化、表型等多种生理过程的调节([3])。
文摘糖尿病肾病(diabetic nephropathy,DN)是糖尿病的主要微血管并发症之一,目前已成为欧美国家以及我国终末期肾病的首要病因[1],给国民经济和个人造成巨大的经济和精神负担。足细胞裂孔隔膜上有很多蛋白参与其完整性的表达,这些蛋白的表达受损与蛋白尿的发生密切相关。Podocin蛋白即为众多裂孔隔膜蛋白之一[2]。丝裂原活化蛋白激酶(mitogen-activated protein kinase,
文摘Peripheral blood mononuclear cells(PBMNC)isolated from patients with acuteleukemia(AL)and from normal controls were cultured in a medium containing1000units/ml of recombinant interleukin-2(IL-2).Marked LAK activity was induced onthe third culture day in the normal controls,with the highest cytotoxicity appearing be-tween day 3 and 5,whereas induction of LAK activity in the AL patients began on the5th day of culture,with a peak level appearing at day 15,showing that the peak ofLAK activity was significantly delayed in AL.LAK cells surface phenotyping tests showedthat CD<sub>8</sub> and CD<sub>16</sub> positive cells began to increase significantly from day 5 and reachedthe highest level at week 3,whereas CD<sub>4</sub><sup>-</sup> subclass began to decrease at day 5 anddropped to the nadir at week 3,indicating that LAK activity was positively correlatedwith the proportion of CD<sub>8</sub><sup>+</sup> and CD<sub>16</sub><sup>+</sup> cells,but negatively with that of CD<sub>4</sub><sup>+</sup> cells.
基金King Fahd Medical Research Center (KFMRC) and Center of Genomic Medicine (CEGMR) for financial support
文摘Hepatocellular carcinoma(HCC)is one of the leading causes of death induced by cancer in the modern world and majority of the cases are related to chronic hepatitis B virus(HBV)infection.HBV-encoded X protein(HBx)is known to play a pivotal role in the pathogenesis of viral induced HCC.HBx is a multifunctional protein of17 kDa which modulates several cellular processes by direct or indirect interaction with a repertoire of host factors resulting in HCC.HBX might interfere with several cellular processes such as oxidative stress,DNA repair,signal transduction,transcription,protein degradation,cell cycle progression and apoptosis.A number of reports have indicated that HBx is one of the most common viral ORFs that is often integrated into the host genome and its sequence variants play a crucial role in HCC.By mutational or deletion analysis it was shown that carboxy terminal of HBx has a likely role in protein-protein interactions,transcriptional transactivation,DNA repair,cell,signaling and pathogenesis of HCC.The accumulated evidence thus far suggests that it is difficult to understand the mechanistic nature of HBx associated HCC,and HBx mediated transcriptional transactivation and signaling pathways may be a major determinant.This article addresses the role of HBx in the development of HCC with particular emphasis on HBx mutants and their putative targets.
文摘AIM To define signaling events initiating healing after intestinal epithelial injury, activation of mitogen activated protein kinase (MAPK) pathways was assessed after wounding using an in vitro model. METHODS Proteins isolated from wounded monolayers of nontransformed intestinal epithelial cells (IEC 6) were analyzed for tyrosine phosphorylation and MAPK expression by Western blot. Extracellular signal regulated kinase (ERK) 1, ERK2, and Raf 1 activities were assessed by immune complex kinase assays. RESULTS Tyrosine phosphorylation of several proteins including ERK1 was substantially increased 5 minutes after injury. Another MAPK, c Jun N terminal protein kinase (JNK), was also activated after wounding. Conditioned medium from wounded but not intact IEC 6 monolayers resulted in increased activity of ERK1, ERK2, and Raf 1 kinase. Wound conditioned medium stimulated proliferation of subconfluent IEC 6 cells compared with conditioned medium from intact IEC 6 cultures and contained higher amounts of transforming growth factor (TGF) α than supernatants of confluent IEC 6 cultures. Activation of ERK1 and ERK2 was partially inhibited by neutralizing anti TGF α. CONCLUSION Wounding of intestinal epithelial cells results in activation of Raf 1, ERK1, ERK2, and JNK1 MAPKs and subsequent cell proliferation in vitro. Activation of ERK1 and ERK2 is mediated in part by TGF α.
基金Supported by the Liver Fibrosis Foundation of Wang BaoEn of China,No.20100033the Science and Technology Foundation of Shaanxi Province of China,No.2010K01-199
文摘AIM To investigate the antioxidant effect of caffeic acid phenethyl ester (CAPE) in hepatic stellate cell-T6 (HSC-T6) cells cultured in vitro and the potential mechanisms. METHODS HSC-T6 cells were cultured in vitro and treated with various concentrations of CAPE for 24, 48 and 72 h, respectively. Cell proliferation was investigated using the MTT assay, and cell ultrastructural alterations were observed by transmission electron microscopy. Flow cytometry was employed to investigate the effects of CAPE on apoptosis and the levels of reactive oxygen species in HSC-T6 cells cultured in vitro. An enzyme immunoassay instrument was used to evaluate antioxidant enzyme expression. The effect on alpha-smooth muscle actin was shown using immunofluorescence. Gene and protein levels of Nrf2, related factors, and mitogen activated protein kinases (MAPKs), in HSC-T6 cells were detected using RT-PCR and Western blot, respectively. RESULTS CAPE inhibited the proliferation and activation of HSC-T6 cells cultured in vitro. CAPE increased the antioxidant levels and the translocation of Nrf2 from the cytoplasm to the nucleus in HSC-T6 cells. Moreover, the phosphorylation of MAPKs in cells decreased in response to CAPE. Interestingly, CAPE-induced oxidative stress in the cells was significantly attenuated by pretreatment with MAPKs inhibitors. CONCLUSION CAPE inhibits cell proliferation and up-regulates the antioxidant levels in HSC-T6 cells partly through the Nrf2-MAPKs signaling pathway.
基金Supported by a Grant Under the Ministry of Education, Science,Sports, and Culture, Japan
文摘AIM: To investigate the expressions of omithine decarboxylase (ODC), MMP-2, and Erk, and their relationship in human colon tumors.METHODS: ODC activity, MMP-2 expression, and mitogenactivated protein (MAP) kinase activity (Erk phosphorylation) were determined in 58 surgically removed human colon tumors and their adjacent normal tissues, using [1-14C]-ornithine as a substrate, ELISA assay, and Western blotting, respectively.RESULTS: ODC activity, MMP-2 expression, and Erk phosphorylation were significantly elevated in colon tumors, compared to those in adjacent normal tissues. A significant correlation was observed between ODC activities and MMP-2 levels.CONCLUSION: This is the first report showing a significant correlation between ODC activities and MMP-2 levels in human colon tumors. As MMP-2 is involved in cancer invasion and metastasis, and colon cancer overexpresses ODC, suppression of ODC expression may be a rational approach to treat colon cancer which overexpresses ODC.
文摘Objective To study the role of extracellular signal-regulated kinase (ERK) in cerebral ischemia and the mechanism of protective effects of U0126 (1,4-diamino-2,3-dicyano-1,4-bis[2-aminophenylthio] butadiene) on ischemic brain. Methods Mice underwent left middle cerebral artery occlusion (MCAO) by introducing a suture in the lumen. U0126 was injected intravenously through the internal jugular vein. The immuno-activity of phosphorylated ERK1/2 (pERK1/2), phos-phorylated mitogen activated protein kinase kinase (pMEK), and phosphorylated Elk-1 (pElk-1) was assessed by Western blot analysis and immunohistochemistry. Interleukin (IL)-1βmRNA level was measured by ribonuclease protection assay. Results Phosphorylated ERK1/2 in 2 hours MCAO mice was down-regulated after intravenous injection of U0126. The inhibition was dose dependent and treatment time related. pMEK and pElk-1 were also reduced in a similar fashion after U0126 treatment. IL-1βmRNA increased after 1 and 2 hours of MCAO. After injection of U0126, it was down-regulated during 1 to 4 hours after MCAO. Conclusion Intravenous administration of the MEK inhibitor U0126 inhibits pMEK, pERK1/2, and pElk-1 up-regulation induced by cerebral ischemia. The protective effect of U0126 against ischemic injury is probably resulted from the reduction of IL-1βmRNA via the inhibition of ERK pathway.
基金supported in part by grants from the Young Scientists Awards Foundation of Shandong Province of China,No.BS2013YY049the China Postdoctoral Science Foundation,No.2012M511036
文摘Rutin has anti-inflammatory, antioxidant, anti-viral, anti-tumor and immune regulatory effects. However, the neuroprotective effects of rutin in spinal cord injury are unknown. The p38 mitogen activated protein kinase (p38 MAPK) pathway is the most important member of the MAPK family that controls inflammation. We assumed that the mechanism of rutin in the repair of spinal cord injury is associated with the inhibition of p38 MAPK pathway. Allen’s method was used to establish a rat model of spinal cord injury. The rat model was intraperitoneally injected with rutin (30 mg/kg) for 3 days. After treatment with rutin, Basso, Beattie and Bresnahan locomotor function scores increased. Water content, tumor necrosis factor alpha, interleukin 1 beta, and interleukin 6 levels, p38 MAPK protein expression and caspase-3 and -9 activities in T8–9 spinal cord decreased. Oxidative stress related markers superoxide dismutase and glutathione peroxidase levels increased in peripheral blood. Rutin exerts neuroprotective effect through anti-oxidation, anti-inflammation, anti-apoptosis and inhibition of p38 MAPK pathway.
文摘<abstract>The recent development of a prosaposin -/- mouse model has allowed the investigation of the role of prosaposin in the development of the male reproductive organs. A morphometric analysis of the male reproductive system of 37 days old mice revealed that prosaposin ablation produced a 30 % reduction in size and weight of the testes, 37 % of the epididymis, 75 % of the seminal vesicles and 60 % of the prostate glands. Light microscopy (LM) showed that smaller testis size from homozygous mutant mice was associated with reduced spermiogenesis. Both, dorsal and ventral lobules of the prostate glands were underdeveloped in the homozygous mutant. LM analysis also showed that prostatic alveoli were considerably smaller and lined by shorter epithelial cells in the homozygous mutant. Smaller tubular diameter and shorter undifferentiated epithelial cells were also observed in seminal vesicles and epididymis. In the efferent ducts of the homozygous mutant mice, the epithelium was composed exclusively of ciliated cells in contrast to the heterozygotes, which showed the presence of nonciliated cells. Radioimmunoassays demonstrated that testosterone levels were normal or higher in mice with the inactivated prosaposin gene. Immunostaining of prostate sections with an anti-androgen receptor antibody showed that the epithelial cells lining the alveoli express androgen receptor in both the heterozygous and homozygous tissue. Similarly, sections immunostained with antibodies to the phosphorylated MAPKs and Akts strongly reacted with tall prostatic secretory cells in prostate from heterozygous mouse. On the other hand, the epithelial cells in the homozygous prostate remained unstained or weakly stained. These findings demonstrate that inactivation of the prosaposin gene affected the development of the prostate gland and some components of the MAPK pathway. 63 )
基金Supported by National Natural Science Foundation of China,No.81374012 and No.81573652
文摘Chronic intake of alcohol undoubtedly overwhelms the structural and functional capacity of the liver by initiating complex pathological events characterized by steatosis,steatohepatitis,hepatic fibrosis and cirrhosis.Subsequently,these initial pathological events are sustained and ushered into a more complex and progressive liver disease,increasing the risk of fibrohepatocarcinogenesis.These coordinated pathological events mainly result from buildup of toxic metabolic derivatives of alcohol including but not limited to acetaldehyde(AA),malondialdehyde(MDA),CYP2E1-generated reactive oxygen species,alcohol-induced gut-derived lipopolysaccharide,AA/MDA protein and DNA adducts.The metabolic derivatives of alcohol together with other comorbidity factors,including hepatitis B and C viral infections,dysregulated iron metabolism,abuse of antibiotics,schistosomiasis,toxic drug metabolites,autoimmune disease and other non-specific factors,have been shown to underlie liver diseases.In view of the multiple etiology of liver diseases,attempts to delineate the mechanism by which each etiological factor causes liver disease has always proved cumbersome if not impossible.In the case of alcoholic liver disease(ALD),it is even more cumbersome and complicated as a result of the many toxic metabolic derivatives of alcohol with their varying liver-specific toxicities.In spite of all these hurdles,researchers and experts in hepatology have strived to expand knowledge and scientific discourse,particularly on ALD and its associated complications through the medium of scientific research,reviews and commentaries.Nonetheless,the molecularmechanisms underpinning ALD,particularly those underlying toxic effects of metabolic derivatives of alcohol on parenchymal and non-parenchymal hepatic cells leading to increased risk of alcohol-induced fibrohepatocarcinogenesis,are still incompletely elucidated.In this review,we examined published scientific findings on how alcohol and its metabolic derivatives mount cellular attack on each hepatic cell and the underlying molecular mechanisms leading to disruption of core hepatic homeostatic functions which probably set the stage for the initiation and progression of ALD to fibro-hepatocarcinogenesis.We also brought to sharp focus,the complex and integrative role of transforming growth factor beta/small mothers against decapentaplegic/plasminogen activator inhibitor-1 and the mitogen activated protein kinase signaling nexus as well as their cross-signaling with toll-like receptormediated gut-dependent signaling pathways implicated in ALD and fibro-hepatocarcinogenesis.Looking into the future,it is hoped that these deliberations may stimulate new research directions on this topic and shape not only therapeutic approaches but also models for studying ALD and fibro-hepatocarcinogenesis.
文摘Much research has been conductedabroad in recent years concerningacupuncture and moxibustion on theimmunologic functions of the organism.Anoutline of this is presented as follows.EFFECTS OF ACUPUNCTUREAND MOXIBUSTION ON NORMALIMMUNOLOGIC FUNCTIONS
基金Supported by A grant from the Arkansas Master Tobacco Settlement and Arkansas Biosciences Institute
文摘AIM: To investigate the functional significance of insulin-like growth factor binding protein-5 (IGFBP-5) overexpression in pancreatic cancer (PaC).METHODS: The effects of IGFBP-5 on cell growth were assessed by stable transfection of BxPC-3 and PANC-1 cell lines and measuring cell number and DNA synthesis. Alterations in the cell cycle were assessed by flow cytometry and immunoblot analyses. Changes in cell survival and signal transduction were evaluated after mitogen and phosphatidylinositol activated protein kinase 3-kinase (PI3K) inhibitor treatment.RESULTS: After serum deprivation, IGFBP-5 expression increased both cell number and DNA synthesis in BxPC-3 cells, but reduced cell number in PANC-1 cells. Consistent with this observation, cell cycle analysis of IGFBP-5-expressing cells revealed accelerated cell cycle progression in BxPC-3 and G2/M arrest of PANC-1 cells. Signal transduction analysis revealed that Akt activation was increased in BxPC-3, but reduced in PANC-1 cells that express IGFBP-5. Inhibition of PI3K with LY294002 suppressed extracellular signal-regulated kinase-1 and -2 (ERK1/2) activation in BxPC-3, but enhanced ERK1/2 activation in PANC-1 cells that express IGFBP-5. When MEK1/2 was blocked, Akt activation remained elevated in IGFBP-5 expressing PaC cells; however, inhibition of PI3K or MEK1/2 abrogated IGFBP-5-mediated cell survival.CONCLUSION: These results indicate that IGFBP-5 expression affects the cell cycle and survival signal pathways and thus it may be an important mediator of PaC cell growth.
文摘Animal cells require extrinsic cues for growth, proliferation and survival. The propagation of Drosophila imaginal disc cells in vitro, for example, requires the supplementation of fly extract, the composition of which remains largely undefined. Here I report the biochemical purification of iron-loaded ferritin as an active ingredient of fly extract that is required for promoting the growth of clone 8 imaginal disc cells. Consistent with an essential role for iron- loaded ferritin in cultured cells, overexpression of ferritin or addition of iron in a nutrient-poor diet increases animal viability and body weight, promotes cell proliferation, and shortens the duration of postembryonic development. Conversely, overexpression of dominant-negative ferritin or addition of iron chelator causes the opposite effects. Fer- ritin mutant flies arrest development at the first-instar larval stage with a severe starvation phenotype reminiscent of that seen in starved larvae. I conclude that iron-loaded ferritin acts as an essential mitogen for cell proliferation and postembryonic development in Drosophila by maintaining iron homeostasis and antagonizing starvation response.