Wheel polygonal wear can immensely worsen wheel/rail interactions and vibration performances of the train and track,and ultimately,lead to the shortening of service life of railway components.At present,wheel/rail med...Wheel polygonal wear can immensely worsen wheel/rail interactions and vibration performances of the train and track,and ultimately,lead to the shortening of service life of railway components.At present,wheel/rail medium-or high-frequency frictional interactions are perceived as an essential reason of the high-order polygonal wear of railway wheels,which are potentially resulted by the flexible deformations of the train/track system or other external excitations.In this work,the effect of wheel/rail flexibility on polygonal wear evolution of heavy-haul locomotive wheels is explored with aid of the long-term wheel polygonal wear evolution simulations,in which different flexible modeling of the heavy-haul wheel/rail coupled system is implemented.Further,the mitigation measures for the polygonal wear of heavy-haul locomotive wheels are discussed.The results point out that the evolution of polygonal wear of heavy-haul locomotive wheels can be veritably simulated with consideration of the flexible effect of both wheelset and rails.Execution of mixed-line operation of heavy-haul trains and application of multicut wheel re-profiling can effectively reduce the development of wheel polygonal wear.This research can provide a deep-going understanding of polygonal wear evolution mechanism of heavy-haul locomotive wheels and its mitigation measures.展开更多
Debris flow hazards seriously threaten thesafety and sustainable development of mountainousareas. Numerous debris flow mitigation measures havebeen implemented worldwide;however, acomprehensive assessment of the speci...Debris flow hazards seriously threaten thesafety and sustainable development of mountainousareas. Numerous debris flow mitigation measures havebeen implemented worldwide;however, acomprehensive assessment of the specific disasterreduction effects of these measures and their economic,social and ecological benefits is yet to be performed.The western region of Sichuan Province frequentlysuffers from geohazards such as debris flow, and thegovernment has adopted many mitigation measures.This study assessed the benefits of debris flowmitigation measures and identified the key influencingfactors via a field-based study conducted in 81 villagesin western Sichuan province, China. A framework forthe evaluation of the benefits of rural debris flowmitigation measures was constructed andquantitatively evaluated using a survey. Snowballsampling was performed to recruit 81 village leadersand 468 farmers. The results showed that managementand engineering measures were the main methodsused to mitigate debris flow;ecological measures wereauxiliary. The average satisfaction scores of farmers forthese three types of measures were 4.07, 3.90, and 3.56,respectively (as measured on a five-point Likert scale).In contrast, in terms of the benefits of these mitigationmeasures, only a small proportion of villages (11.11%)obtained a high level of comprehensive benefits fromthe debris flow mitigation measures, while the majority(88.89%) received medium to low-level benefits. Toimprove this situation, we further studied and foundthat the main factors that restricted villages fromachieving high-level comprehensive benefits were theunpredictable nature of debris flows, labour forceoutflow and remoteness. Effective control measures, agood economic environment and strong governmentassistance were reported as crucial factors forimproving these comprehensive benefits. This studyprovides socio-scientific references for decisionmakingon rural debris flow mitigation measures while keeping villages at the centre of economic development.展开更多
The design of remediation works for the mitigation and prevention of the associated risk is needed where these geological hazards affect anthropized areas. Remedial measures for landslides commonly include slope resha...The design of remediation works for the mitigation and prevention of the associated risk is needed where these geological hazards affect anthropized areas. Remedial measures for landslides commonly include slope reshaping, plumbing, drainage, retaining structures and internal slope reinforcement, while debris flow control works consist in open or closed control structures. The effectiveness of the remedial works implemented must be assessed by evaluating the reduction of the risk over time. The choice of the most appropriate and cost-effective intervention must consider the type of hazard and environmental issues, and selects, wherever possible, naturalistic engineering operations that are consequently implemented according to the environmental regulations or the design and specification standards imposed by the competent public administrations. The mitigation procedures consist of five basic steps:(a) acquisition of the knowledge of the hazard process;(b) risk assessment with identification of possible disaster scenarios;(c) planning and designing of specific remedial measures to reduce and/or eliminate the potential risk;(d) slope monitoring after application of remedial measures,(e) transfer of knowledge to the stakeholders. This paper presents two case studies describing the practice for the design of the mitigation measures adopted for debris flow and active landslide sites in North-Eastern Italy. The first case study is a debris flow site, for which, based on observation of past events and numerical simulations using the software FLOW-2D, the most suitable mitigation measures were found to be the construction of a debris basin, barriers and breakers. The second case study deals with an active landslide threatening a village. Based on the landslide kinematics and the results of numerical simulations performed with the code FLAC, hard engineering remedial works were planned to reduce the driving forces with benching and by increasing the available resisting forces using jet grout piles and deep drainage.展开更多
Impact pile driving is an interesting technique for the construction of deep foundations from a practical and economical point of view.However,the generalization of this technique can be restricted due to the excessiv...Impact pile driving is an interesting technique for the construction of deep foundations from a practical and economical point of view.However,the generalization of this technique can be restricted due to the excessive vibration levels that can be generated,which can be especially problematic in residential areas.However,different mitigation measures can be applied to prevent excessive vibration levels inside buildings located near construction sites.To compare its efficiency through a numerical prediction tool,two experimental test sites are first presented and characterized.From the results obtained,it was found that the construction of an open trench near the impact source can be used as an efficient mitigation measure to reduce the maximum vibration levels evaluated in this study.展开更多
The wide distribution of saline-alkali land in China is a restrictive factor for the sustainable development of agriculture.Saline-alkaline soil inhibits the growth and development of crops,reducing its yield and qual...The wide distribution of saline-alkali land in China is a restrictive factor for the sustainable development of agriculture.Saline-alkaline soil inhibits the growth and development of crops,reducing its yield and quality.In this article,we summarized the germination status,physiological characteristics,response mechanisms and mitigation measures of different crops under saline-alkali stress in recent years,aiming to provide important reference for the study of saline-alkali tolerance mechanism in crops,cultivation of crop varieties tolerant to salts and alkalis and improvement of the utilization rate of saline-alkali land,and put forward suggestions for future development trend of saline-alkali land crops and mitigation measures.展开更多
In this contribution, we use a coupled air quality modelling system (AQM) as a tool to design and develop an air quality plan in Madrid. AQM has allowed us to obtain a preliminary evaluation of the effect of mitigatio...In this contribution, we use a coupled air quality modelling system (AQM) as a tool to design and develop an air quality plan in Madrid. AQM has allowed us to obtain a preliminary evaluation of the effect of mitigation measures over regional and local air quality levels. To achieve these goals, we have prepared a sophisticated AQM, coupling the meteorological model WRF, the emission model AEMM, and the photochemical model CMAQ. AQM was evaluated using the whole modelling year 2010 working with high horizontal resolution, 3 km for the region of Madrid and 1km for urban metropolitan area of Madrid. Two different analyses have been realized: a source apportionment exercise following a zero-out methodology to obtain the contribution to the air quality levels of the different emission sector;and an evaluation of the main mitigation measures considered in the air quality plan using sensitivity analysis. The air quality plan was focused on the improvement of NO<sub>2</sub> levels and AQM analyzed the effect of the mitigation measures during ten episodes of 2011 where NO<sub>2</sub> or O<sub>3</sub> levels were the highest of the year;so we analyzed the effect of the mitigation plan in worst conditions. Results provided by the AQM system show that it accomplishes the European Directive modelling uncertainty requirements and the mean absolute gross error for 1-h maximum daily NO<sub>2</sub> is 31% over locations with higher levels of this atmospheric pollutant;the road traffic is the main contributor to the air quality levels providing a 81% for NO<sub>2</sub>, 67% for CO and 46% for PM<sub>10</sub>;measures defined in the plan achieve to reduce up to 11 μgm<sup>-3</sup> NO<sub>2</sub> levels offering highest reductions over urban areas with traffic influence.展开更多
Subsynchronous oscillation (SSO) with low amplitude that exceeds cumulative fatigue threshold of the generator shaft frequently could significantly reduce the shaft's service life, which is a new SSO problem that ...Subsynchronous oscillation (SSO) with low amplitude that exceeds cumulative fatigue threshold of the generator shaft frequently could significantly reduce the shaft's service life, which is a new SSO problem that emerges in recent years. According to the real recording oscillograph, the basic reason for frequently over-threshold SSO with low amplitude at multi-power plants was analyzed based on Hulunbuir League system. The sensitivities of the electrical damping to the main electrical parameters in the contributing loop of subsynchronous torsional interaction were calculated. Based on the sensitivities, a simulation method was presented, which was used to excite the same oscillation as the actual case by exerting disturbance on the firing angle. The limitation of wide-band and narrow-band supplementary subsynchronous damping controller (SSDC) for mitigating this kind of SSO was analyzed based on the electromagnetic transient simulation model of Hulunbuir League system. The difference of supplementary excitation damping controller (SEDC) and parallel-form FACTS connected to the generator terminal was compared from the aspects of response time and the ability of damping torque supplying. The analysis indicates that their response time is similar but FACTS has stronger ability of damping torque supplying than SEDC. Time-domain simulation method was used to compare the mitigation effects of SEDC, static var compensator (SVC) and static synchronous compensator (STATCOM). Considering the mitigation effect, the floor space limit of the power plant and so on, STATCOM was considered as the best mitigation measure. A control strategy of cascaded STATCOM for engineering application was presented and the capacity for SSO mitigation as well as output characteristics was analyzed. The analysis indicates that STATCOM using the proposed control strategy has better mitigation effect and output characteristics with smaller capacity.展开更多
By examining the two neighboring Haihe Bridges with semi-and full-closed bridge decks,the aerodynamic interference between the two decks on the vortex-induced vibration(VIV)and the corresponding aerodynamic mitigation...By examining the two neighboring Haihe Bridges with semi-and full-closed bridge decks,the aerodynamic interference between the two decks on the vortex-induced vibration(VIV)and the corresponding aerodynamic mitigation measures are investigated via a series of wind tunnel tests with a spring-suspended sectional model aided with computational fluid dynamics(CFD)method.The results show that the VIV responses of both bridges can be significantly affected by the aerodynamic interference and that the extent of the influence varies with the shapes of the windward and leeward decks.The VIV amplitudes of the windward bridge are often fairly close to those of the single bridge.However,those of the leeward bridge are magnified substantially by aerodynamic interference if the same structural and aerodynamic configurations are adopted for the two bridges.Otherwise,the VIV responses are not significantly increased and may even be reduced by the aerodynamic interference if different configurations are employed for the two bridges.Furthermore,an effective combined measure of adding wind barriers and sharpening the wind fairing noses of the two box decks is presented for mitigating both the vertical and torsional VIV responses of the windward and leeward bridges.展开更多
At present, China's demand for various energy sources is gradually increasing, and the demand for various conventional energy sources is gradually showing an upward trend. However, due to the limited resources, th...At present, China's demand for various energy sources is gradually increasing, and the demand for various conventional energy sources is gradually showing an upward trend. However, due to the limited resources, the development of sustainable energy sources will become an inevitable trend in the future market development. The establishment and improvement of wind power projects is more to effectively improve the development of energy. However, in the actual operation process, the wind power project itself has a relatively large impact on the environment, especially for some nature reserves, the ecological impact is particularly prominent. Therefore, as a research manager, it is necessary to deeply analyze and evaluate the direct impact of the wind power project on the ecological environment of the nature reserve under the existing working conditions. Based on the current evaluation model, this paper puts forward targeted measures to mitigate compensation, in order to speed up the transformation and optimization of working methods, realize the innovation of management methods, mitigate environmental conflicts, and increase the promotion and use of new energy sources. It also lays a solid foundation for the later development of market economy.展开更多
Humans have always engaged with their surroundings and the ecology in which they live.However,during the industrial age,this contact has been more intense and has had a substantial impact on environment and ecosystems...Humans have always engaged with their surroundings and the ecology in which they live.However,during the industrial age,this contact has been more intense and has had a substantial impact on environment and ecosystems.For example,overexploitation of natural resources,mining,pollution,and deforestation are all elements that negatively affect biodiversity and natural resources.Few studies have been conducted to evaluate the damage caused,despite the significant uncontrolled pressure from human activity.However,maintaining its environment is essential to the survival of coastal fishing.Goal:This study’s goal was to evaluate how human activity affected Tabounsou’s coastal ecology in order to suggest remedial actions for sustainable management.The following was the methodological approach used:executive consultation and archival analysis;stakeholder survey(locals,farmers,salt producers,fishers,and loggers);inventory of species;anthropogenic activity inventory;evaluation of how human activity affects aquatic life in the research region;suggestion and action for sustainable management;Outcome:Executive consultation indicated that the main issues are:construction projects that reduce the estuary’s surface area;agricultural practices such as woodcutting and salt farming;the rise in resource exploitation;noncompliance with fisheries laws;and the catching of young fish.Eighty-three percent of fisherman ditch their nets on the coast after using them,but only seventeen percent burn them.With a 75%frequency rate,the same survey indicates that most fisherman fish around the coast.In the Tabounsou area,according to loggers’survey,68%of the wood cut is Rhizophora,24%is Avicennia,and 8%is Laguncularia.Three fish stocks,representing nine families and nine species,were identified by the species inventory.At 18%and 15%,respectively,the actors most frequently capture the species Pseudotolithus elongatus and Arius parkii.According to a poll of 30 farmers,90%of them apply fertilizer to their soil,while only 10%do not.During the dry season,salt is grown.According to two actors,Bougna Toro Toro produces 100 kg of salt per day,followed by Khoumawadé,which produces 80 kg,and Toumbibougni,which produces 70 kg.展开更多
The longitudinal ventilation strategy is commonly used for road tunnels in urban environment in Sweden.This is partly due to how tunnels in urban environment was planned and designed before the EU Directive[1](2004/54...The longitudinal ventilation strategy is commonly used for road tunnels in urban environment in Sweden.This is partly due to how tunnels in urban environment was planned and designed before the EU Directive[1](2004/54/EC)came in place.Even in new tunnels both to practical and economic reasons the use of longitudinal ventilation has been an outspoken demand from the Swedish road authority,SRA.Swedish law[2]requires that a risk analysis is carried out to demonstrate that an acceptable level of risk is achieved in the tunnels with longitudinal ventilation if there is a risk of queues.Otherwise transverse or semi-transverse ventilation strategy shall be used.During recent development,or a late awakening,it is clear that dense populated areas in Sweden will experience queues.This threatens the foundation of the Swedish modern tunnel safety concept which calls for enhancement.This paper presents the risk-reducing effect of three alternative strategies,enhancements package,focusing on evacuation safety for road users.It is a combination of traffic management,fixed firefighting systems,reduced distance between escape routes and regulation of traffic with dangerous goods.In addition,it provides a comprehensive review of safety system details,combined with a longitudinal ventilation concept.展开更多
Agricultural production plays an important role in affecting atmospheric nitrous oxide (N20) concentrations. Field measurements were conducted in Dalian City, Liaoning Province in Northeast China from two consecutiv...Agricultural production plays an important role in affecting atmospheric nitrous oxide (N20) concentrations. Field measurements were conducted in Dalian City, Liaoning Province in Northeast China from two consecutive years (2009 and 2010) to estimate NzO emissions from a spring maize field, a main cropping system across the Chinese agricultural regions. The observed flux data in conjunction with the local climate, soil and management information were utilized to test a process-based model, DeNitrification-DeComposition (DNDC), for its applicability for the cropping system. The validated DNDC was then used for exploring strategies to reduce N20 emissions from the target field. The results showed that the major N20 pulse emissions occurred with duration of about 3-5 d after fertilizer application in both years 2009 and 2010, which on average accounted for about 60% of the total N20 emissions each year. Rainfall and fertilizer application were the major factors influencing the N20 emissions from spring maize field. The average N20 flUXeS from the CK (control plot, without fertilization) and FP (traditional chemical N fertilizer) treatments were 23.1 and 60.6 gg m-2 h-~ in 2009, respectively, and 21.5 and 64.3 gg m-2 h-~ in 2010, respectively. The emission factors (EFs) of the applied N fertilizer (270 kg N ha-1) as N20- N were 0.62% in 2009 and 0.77% in 2010, respectively. The comparison of modeled daily NzO emission fluxes against observations indicated that the DNDC model had a good performance even if without adjusting the internal parameters. The modeled results showed that management practices such as no-till, changing timing or rate of fertilizer application, increasing residue incorporation, and other technically applicable measures could effectively reduce N20 emissions from the tested fields. Our study indicated that avoiding application of N fertilizers at heavy rainfall events or splitting the fertilizer into more applications would be the most feasible approaches to reduce N20 emissions from spring maize production in Northeast China.展开更多
The vibrations induced by the passage of high-speed trains(HSTs)are considered a crucial issue in the field of environmental and geotechnical engineering.Several wave barriers have been investigated to reduce the detr...The vibrations induced by the passage of high-speed trains(HSTs)are considered a crucial issue in the field of environmental and geotechnical engineering.Several wave barriers have been investigated to reduce the detrimental effects of HST-induced vibrations.This study is focused on the potential implementation of an innovative mitigation technique to alleviate the developed vibrations.In particular,the use of expanded polystyrene(EPS)blocks as partial fill material of embankment slopes was examined.The efficiency of the proposed mitigation technique was numerically investigated.More specifically,a 3 D soil-track model was developed to study the cross-section of a railway track,embankment,and the underlying soil layers.The passage of the HST,Thalys,was simulated using a moving load method,and the soil response was calculated at several distances from the track.Several parameters influenced the effectiveness of the examined mitigation measure.Therefore,to ensure an optimal design,a robust procedure is necessary which considers the impact of these factors.Hence,the implementation of EPS blocks on several embankments with different geometry,in terms of height and slope angle,was investigated.展开更多
With the development of the time and the progress of economy,great changes have taken place in the environment.In recent years,it is common to see bad weather,such as hurricane,drought,lightning and so on.The emergenc...With the development of the time and the progress of economy,great changes have taken place in the environment.In recent years,it is common to see bad weather,such as hurricane,drought,lightning and so on.The emergence of these weather has the greatest impact on farmers and crops,especially the lightning weather,not only that,but also sometimes cause personal injury.In face of the frequent occurrence of bad weather in recent years and its harm and threat to China's agriculture,rural areas,personnel,etc.,the author makes a detailed study on the causes of rural lightning weather,analyzes the lightning protection measures in rural areas and their shortcomings,and summarizes the relevant improvement measures.展开更多
Bridges serve as essential parts of transportation infrastructure,facilitating the movement of people and goods across rivers,valleys,and other obstacles.However,they are also susceptible to a wide range of natural ha...Bridges serve as essential parts of transportation infrastructure,facilitating the movement of people and goods across rivers,valleys,and other obstacles.However,they are also susceptible to a wide range of natural hazards,including floods,earthquakes,and landslides,which can damage or even collapse these structures,leading to severe economic and human losses.A risk index has been developed to address this issue,which quantifies the likelihood and severity of natural hazards occurring in a specific location.The application of risk indices for natural hazards in bridge management involves a data collection process and mathematical modelling.The data collection process gathers information on bridges’location,condition,and vulnerability,while mathematical modelling uses the data to assess the risk of natural hazards.Overall,risk indices provide a quantitative measure of the vulnerability of bridges to natural hazards and help to prioritize maintenance and repair activities.Mitigation measures are then evaluated and implemented based on the risk assessment results.By using this tool,the UBMS research group has developed an algorithm for risk assessment which will be essential in the decision-making process,specifically focused on enhancing Fund Optimization,Deterioration Modelling,and Risk Analysis.These developments effectively fulfill the primary objectives associated with addressing and mitigating hazards.This development also helps bridge managers understand the potential threats posed by natural hazards and allocate resources more efficiently to ensure the safety and longevity of critical transportation infrastructure.展开更多
Urban areas globally are escalating contributors to carbon dioxide(CO_(2))emissions,challenging sustainable development.This study proposes a novel micro-scale approach utilizing GIS to quantify CO_(2)emission spatial...Urban areas globally are escalating contributors to carbon dioxide(CO_(2))emissions,challenging sustainable development.This study proposes a novel micro-scale approach utilizing GIS to quantify CO_(2)emission spatial distribution,enhancing urban sustainability assessment.Employing a“bottom-up”methodology,emissions were calculated for various sources,revealing Isfahan’s urban area emits 13,855,525 tons of CO_(2)annually.Major contributors include stationary and mobile sources such as power plants(50.61%),road and rail transport(17.18%),and residential sectors(21.78%).Spatial distribution mapping showed that 81.68%of CO_(2)emissions originate from stationary sources,notably power plants.Furthermore,mobile sources,including road transport,contribute 17.16%,with emissions concentrated in main urban arteries.Agricultural machinery adds 1.14%of emissions,spatially distributed across Isfahan’s agricultural lands.Integration of emissions maps depicts the city’s total CO_(2)emissions,highlighting sectoral contributions.Despite limitations in data granularity,this study provides valuable insights into urban CO_(2)emissions dynamics,facilitating targeted mitigation strategies.Quantitative achievements include precise CO_(2)emission quantification and spatial distribution mapping,crucial for formulating effective urban sustainability policies.展开更多
This study aims to determine the environmental aspects and impacts of the phase relating to the operation of Manantali’s hydroelectric structures and facilities according to the requirements of the ISO 14001 version ...This study aims to determine the environmental aspects and impacts of the phase relating to the operation of Manantali’s hydroelectric structures and facilities according to the requirements of the ISO 14001 version 2015 standard. To do this, the mapping of the different work areas made it possible to identify all the activities within the framework of the farm. Based on the mapping, environmental measurements made including noise level, brightness, electric and magnetic fields, total particles, PM10, PM2.5, PM1 showed the work areas with the exposure limit values exceeded. The inventories of the waste produced show eighteen (18) types of waste, 67% of which are special industrial waste (SIW), 28% are ordinary industrial waste (OIW) and 5% are inert industrial waste (IIW). The identification and assessment of environmental aspects and impacts made it possible to determine sixteen (16) positive and negative significant environmental aspects (ESAs). The positive AES must be maintained, and for the negative ones, mitigation and mitigation measures must be put in place in order to manage them effectively. This will ultimately improve environmental management in the operation of hydroelectric structures and facilities.展开更多
Ongoing wind energy developments play a key role in mitigating the global effects of climate change and the energy crisis;however,they have complex ecological consequences for many flying animals.The Yellow Sea coast ...Ongoing wind energy developments play a key role in mitigating the global effects of climate change and the energy crisis;however,they have complex ecological consequences for many flying animals.The Yellow Sea coast is considered as an ecological bottleneck for migratory waterbirds along the East Asian–Australasian flyway(EAAF),and is also an important wind farm base in China.However,the effects of large-scale onshore wind farms along the EAAF on multidimensional waterbird diversity,and how to mitigate these effects,remain unclear.Here we examined how wind farms and their surrounding landscapes affected multidimensional waterbird diversity along the Yellow Sea coast.Taxonomic,functional,and phylogenetic diversity of the waterbird assemblages,and mean pairwise distances and nearest taxon distances with null models were quantified in relation to 4 different wind turbine densities.We also measured 6 landscape variables.Multi-dimensional waterbird diversity(taxonomic,functional,and phylogenetic diversity)significantly decreased with increasing wind turbine density.Functional and phylogenetic structures tended to be clustered in waterbird communities,and environmental filtering drove waterbird community assemblages.Furthermore,waterbird diversity was regulated by a combination of wind turbine density and landscape variables,with edge density of aquaculture ponds,in addition to wind turbine density,having the greatest independent contribution to waterbird diversity.These results suggest that attempts to mitigate the impact of wind farms on waterbird diversity could involve the landscape transformation of wind farm regions,for example,by including high-edge-density aquaculture ponds(i.e.,industrial ponds)around wind farms,instead of traditional low-edge-density aquaculture ponds.展开更多
This study conducted microtremor testing along six survey lines that cross three typical earth fissures in the Datong basin to determine the dynamic response characteristics of earth fissure sites with regard to the F...This study conducted microtremor testing along six survey lines that cross three typical earth fissures in the Datong basin to determine the dynamic response characteristics of earth fissure sites with regard to the Fourier amplitude spectrum,response spectrum,and Arias intensity.The results show the following.(1)The predominant frequency of an earth fissure site is mainly affected by the thickness and the shear wave velocity of the soil layer and is minimally effected by the presence of an earth fissure.(2)Earth fissures have a pronounced amplification effect on dynamic response.Fourier amplitude,response acceleration,and Arias intensity are high near an earth fissure and decrease with an increase in distance from the earth fissure,tending toward stability at a distance of 20 m.(3)The area that is seriously affected by this amplification is within 6-8 m of an earth fissure,and the general affected area is farther out than this,to a distance of 25 m.(4)New construction should be avoided in an area affected by the amplification,and existing buildings in general and seriously affected areas need to be reinforced to increase their seismic fortification intensity.展开更多
This paper gives an account of the diverse dimensions of research on disaster risk reduction in mountain regions derived from an open call of the Journal of Mountain Science that brought 21 contributions.This special ...This paper gives an account of the diverse dimensions of research on disaster risk reduction in mountain regions derived from an open call of the Journal of Mountain Science that brought 21 contributions.This special issue includes topics as diverse as landslide dynamics and mechanisms,landslide inventories and landslide susceptibility models,insights to landslide hazards and disasters and mitigation measures,disaster response and disaster risk reduction.The overall structure of the paper takes the form of three sections.The first part begins by laying out the significance of disaster risk reduction in mountain areas,whereas the second one looks at the research insights on disaster risk reduction in mountains provided by the contributions comprised in the special volume.The final section identifies areas for further research.展开更多
基金Supported by National Natural Science Foundation of China(Grant Nos.U2268210,52302474,52072249).
文摘Wheel polygonal wear can immensely worsen wheel/rail interactions and vibration performances of the train and track,and ultimately,lead to the shortening of service life of railway components.At present,wheel/rail medium-or high-frequency frictional interactions are perceived as an essential reason of the high-order polygonal wear of railway wheels,which are potentially resulted by the flexible deformations of the train/track system or other external excitations.In this work,the effect of wheel/rail flexibility on polygonal wear evolution of heavy-haul locomotive wheels is explored with aid of the long-term wheel polygonal wear evolution simulations,in which different flexible modeling of the heavy-haul wheel/rail coupled system is implemented.Further,the mitigation measures for the polygonal wear of heavy-haul locomotive wheels are discussed.The results point out that the evolution of polygonal wear of heavy-haul locomotive wheels can be veritably simulated with consideration of the flexible effect of both wheelset and rails.Execution of mixed-line operation of heavy-haul trains and application of multicut wheel re-profiling can effectively reduce the development of wheel polygonal wear.This research can provide a deep-going understanding of polygonal wear evolution mechanism of heavy-haul locomotive wheels and its mitigation measures.
基金supported by the Science and Technology Research Program of the Institute of Mountain Hazards and Environment,Chinese Academy of Sciences(Grant No.IMHE-ZDRW-08)the Sichuan Science and Technology Program(Grant No.2022JDR0209).
文摘Debris flow hazards seriously threaten thesafety and sustainable development of mountainousareas. Numerous debris flow mitigation measures havebeen implemented worldwide;however, acomprehensive assessment of the specific disasterreduction effects of these measures and their economic,social and ecological benefits is yet to be performed.The western region of Sichuan Province frequentlysuffers from geohazards such as debris flow, and thegovernment has adopted many mitigation measures.This study assessed the benefits of debris flowmitigation measures and identified the key influencingfactors via a field-based study conducted in 81 villagesin western Sichuan province, China. A framework forthe evaluation of the benefits of rural debris flowmitigation measures was constructed andquantitatively evaluated using a survey. Snowballsampling was performed to recruit 81 village leadersand 468 farmers. The results showed that managementand engineering measures were the main methodsused to mitigate debris flow;ecological measures wereauxiliary. The average satisfaction scores of farmers forthese three types of measures were 4.07, 3.90, and 3.56,respectively (as measured on a five-point Likert scale).In contrast, in terms of the benefits of these mitigationmeasures, only a small proportion of villages (11.11%)obtained a high level of comprehensive benefits fromthe debris flow mitigation measures, while the majority(88.89%) received medium to low-level benefits. Toimprove this situation, we further studied and foundthat the main factors that restricted villages fromachieving high-level comprehensive benefits were theunpredictable nature of debris flows, labour forceoutflow and remoteness. Effective control measures, agood economic environment and strong governmentassistance were reported as crucial factors forimproving these comprehensive benefits. This studyprovides socio-scientific references for decisionmakingon rural debris flow mitigation measures while keeping villages at the centre of economic development.
文摘The design of remediation works for the mitigation and prevention of the associated risk is needed where these geological hazards affect anthropized areas. Remedial measures for landslides commonly include slope reshaping, plumbing, drainage, retaining structures and internal slope reinforcement, while debris flow control works consist in open or closed control structures. The effectiveness of the remedial works implemented must be assessed by evaluating the reduction of the risk over time. The choice of the most appropriate and cost-effective intervention must consider the type of hazard and environmental issues, and selects, wherever possible, naturalistic engineering operations that are consequently implemented according to the environmental regulations or the design and specification standards imposed by the competent public administrations. The mitigation procedures consist of five basic steps:(a) acquisition of the knowledge of the hazard process;(b) risk assessment with identification of possible disaster scenarios;(c) planning and designing of specific remedial measures to reduce and/or eliminate the potential risk;(d) slope monitoring after application of remedial measures,(e) transfer of knowledge to the stakeholders. This paper presents two case studies describing the practice for the design of the mitigation measures adopted for debris flow and active landslide sites in North-Eastern Italy. The first case study is a debris flow site, for which, based on observation of past events and numerical simulations using the software FLOW-2D, the most suitable mitigation measures were found to be the construction of a debris basin, barriers and breakers. The second case study deals with an active landslide threatening a village. Based on the landslide kinematics and the results of numerical simulations performed with the code FLAC, hard engineering remedial works were planned to reduce the driving forces with benching and by increasing the available resisting forces using jet grout piles and deep drainage.
基金Programmatic funding-UIDP/04708/2020 of the CONSTRUCT-Instituto de I&D em Estruturas e Construções-funded by national funds through the FCT/MCTES(PIDDAC)Project PTDC/ECI-CON/29634/2017-POCI-01-0145-FEDER-029634-funded by FEDER funds through COMPETE2020-Programa Operacional Competitividade e Internacionalização(POCI)by national funds(PIDDAC)through FCT/MCTES。
文摘Impact pile driving is an interesting technique for the construction of deep foundations from a practical and economical point of view.However,the generalization of this technique can be restricted due to the excessive vibration levels that can be generated,which can be especially problematic in residential areas.However,different mitigation measures can be applied to prevent excessive vibration levels inside buildings located near construction sites.To compare its efficiency through a numerical prediction tool,two experimental test sites are first presented and characterized.From the results obtained,it was found that the construction of an open trench near the impact source can be used as an efficient mitigation measure to reduce the maximum vibration levels evaluated in this study.
基金Tiemenguan Science and Technology Project of the Second Division of Xinjiang Production and Construction Corps(2019NYGG13)XPCC People’s Practical Livelihood Matter Project of"Improving the Level of Agricultural Science and Technology".
文摘The wide distribution of saline-alkali land in China is a restrictive factor for the sustainable development of agriculture.Saline-alkaline soil inhibits the growth and development of crops,reducing its yield and quality.In this article,we summarized the germination status,physiological characteristics,response mechanisms and mitigation measures of different crops under saline-alkali stress in recent years,aiming to provide important reference for the study of saline-alkali tolerance mechanism in crops,cultivation of crop varieties tolerant to salts and alkalis and improvement of the utilization rate of saline-alkali land,and put forward suggestions for future development trend of saline-alkali land crops and mitigation measures.
文摘In this contribution, we use a coupled air quality modelling system (AQM) as a tool to design and develop an air quality plan in Madrid. AQM has allowed us to obtain a preliminary evaluation of the effect of mitigation measures over regional and local air quality levels. To achieve these goals, we have prepared a sophisticated AQM, coupling the meteorological model WRF, the emission model AEMM, and the photochemical model CMAQ. AQM was evaluated using the whole modelling year 2010 working with high horizontal resolution, 3 km for the region of Madrid and 1km for urban metropolitan area of Madrid. Two different analyses have been realized: a source apportionment exercise following a zero-out methodology to obtain the contribution to the air quality levels of the different emission sector;and an evaluation of the main mitigation measures considered in the air quality plan using sensitivity analysis. The air quality plan was focused on the improvement of NO<sub>2</sub> levels and AQM analyzed the effect of the mitigation measures during ten episodes of 2011 where NO<sub>2</sub> or O<sub>3</sub> levels were the highest of the year;so we analyzed the effect of the mitigation plan in worst conditions. Results provided by the AQM system show that it accomplishes the European Directive modelling uncertainty requirements and the mean absolute gross error for 1-h maximum daily NO<sub>2</sub> is 31% over locations with higher levels of this atmospheric pollutant;the road traffic is the main contributor to the air quality levels providing a 81% for NO<sub>2</sub>, 67% for CO and 46% for PM<sub>10</sub>;measures defined in the plan achieve to reduce up to 11 μgm<sup>-3</sup> NO<sub>2</sub> levels offering highest reductions over urban areas with traffic influence.
基金supported by the Key Project of the National 12th Five-Year Research Programme of China (Grant No. 2011BAA01B02)the Fundamental Research Funds for the Central Universities of China (Grant No.12QN37)
文摘Subsynchronous oscillation (SSO) with low amplitude that exceeds cumulative fatigue threshold of the generator shaft frequently could significantly reduce the shaft's service life, which is a new SSO problem that emerges in recent years. According to the real recording oscillograph, the basic reason for frequently over-threshold SSO with low amplitude at multi-power plants was analyzed based on Hulunbuir League system. The sensitivities of the electrical damping to the main electrical parameters in the contributing loop of subsynchronous torsional interaction were calculated. Based on the sensitivities, a simulation method was presented, which was used to excite the same oscillation as the actual case by exerting disturbance on the firing angle. The limitation of wide-band and narrow-band supplementary subsynchronous damping controller (SSDC) for mitigating this kind of SSO was analyzed based on the electromagnetic transient simulation model of Hulunbuir League system. The difference of supplementary excitation damping controller (SEDC) and parallel-form FACTS connected to the generator terminal was compared from the aspects of response time and the ability of damping torque supplying. The analysis indicates that their response time is similar but FACTS has stronger ability of damping torque supplying than SEDC. Time-domain simulation method was used to compare the mitigation effects of SEDC, static var compensator (SVC) and static synchronous compensator (STATCOM). Considering the mitigation effect, the floor space limit of the power plant and so on, STATCOM was considered as the best mitigation measure. A control strategy of cascaded STATCOM for engineering application was presented and the capacity for SSO mitigation as well as output characteristics was analyzed. The analysis indicates that STATCOM using the proposed control strategy has better mitigation effect and output characteristics with smaller capacity.
基金The work was supported by the Ministry of Science and Technology of China through the Fundamental Research Fund for State Key Laboratories(Grant No.SLDRCE08-A-02)the National Nature Science Foundation of China(Grant No.50978204).
文摘By examining the two neighboring Haihe Bridges with semi-and full-closed bridge decks,the aerodynamic interference between the two decks on the vortex-induced vibration(VIV)and the corresponding aerodynamic mitigation measures are investigated via a series of wind tunnel tests with a spring-suspended sectional model aided with computational fluid dynamics(CFD)method.The results show that the VIV responses of both bridges can be significantly affected by the aerodynamic interference and that the extent of the influence varies with the shapes of the windward and leeward decks.The VIV amplitudes of the windward bridge are often fairly close to those of the single bridge.However,those of the leeward bridge are magnified substantially by aerodynamic interference if the same structural and aerodynamic configurations are adopted for the two bridges.Otherwise,the VIV responses are not significantly increased and may even be reduced by the aerodynamic interference if different configurations are employed for the two bridges.Furthermore,an effective combined measure of adding wind barriers and sharpening the wind fairing noses of the two box decks is presented for mitigating both the vertical and torsional VIV responses of the windward and leeward bridges.
文摘At present, China's demand for various energy sources is gradually increasing, and the demand for various conventional energy sources is gradually showing an upward trend. However, due to the limited resources, the development of sustainable energy sources will become an inevitable trend in the future market development. The establishment and improvement of wind power projects is more to effectively improve the development of energy. However, in the actual operation process, the wind power project itself has a relatively large impact on the environment, especially for some nature reserves, the ecological impact is particularly prominent. Therefore, as a research manager, it is necessary to deeply analyze and evaluate the direct impact of the wind power project on the ecological environment of the nature reserve under the existing working conditions. Based on the current evaluation model, this paper puts forward targeted measures to mitigate compensation, in order to speed up the transformation and optimization of working methods, realize the innovation of management methods, mitigate environmental conflicts, and increase the promotion and use of new energy sources. It also lays a solid foundation for the later development of market economy.
文摘Humans have always engaged with their surroundings and the ecology in which they live.However,during the industrial age,this contact has been more intense and has had a substantial impact on environment and ecosystems.For example,overexploitation of natural resources,mining,pollution,and deforestation are all elements that negatively affect biodiversity and natural resources.Few studies have been conducted to evaluate the damage caused,despite the significant uncontrolled pressure from human activity.However,maintaining its environment is essential to the survival of coastal fishing.Goal:This study’s goal was to evaluate how human activity affected Tabounsou’s coastal ecology in order to suggest remedial actions for sustainable management.The following was the methodological approach used:executive consultation and archival analysis;stakeholder survey(locals,farmers,salt producers,fishers,and loggers);inventory of species;anthropogenic activity inventory;evaluation of how human activity affects aquatic life in the research region;suggestion and action for sustainable management;Outcome:Executive consultation indicated that the main issues are:construction projects that reduce the estuary’s surface area;agricultural practices such as woodcutting and salt farming;the rise in resource exploitation;noncompliance with fisheries laws;and the catching of young fish.Eighty-three percent of fisherman ditch their nets on the coast after using them,but only seventeen percent burn them.With a 75%frequency rate,the same survey indicates that most fisherman fish around the coast.In the Tabounsou area,according to loggers’survey,68%of the wood cut is Rhizophora,24%is Avicennia,and 8%is Laguncularia.Three fish stocks,representing nine families and nine species,were identified by the species inventory.At 18%and 15%,respectively,the actors most frequently capture the species Pseudotolithus elongatus and Arius parkii.According to a poll of 30 farmers,90%of them apply fertilizer to their soil,while only 10%do not.During the dry season,salt is grown.According to two actors,Bougna Toro Toro produces 100 kg of salt per day,followed by Khoumawadé,which produces 80 kg,and Toumbibougni,which produces 70 kg.
文摘The longitudinal ventilation strategy is commonly used for road tunnels in urban environment in Sweden.This is partly due to how tunnels in urban environment was planned and designed before the EU Directive[1](2004/54/EC)came in place.Even in new tunnels both to practical and economic reasons the use of longitudinal ventilation has been an outspoken demand from the Swedish road authority,SRA.Swedish law[2]requires that a risk analysis is carried out to demonstrate that an acceptable level of risk is achieved in the tunnels with longitudinal ventilation if there is a risk of queues.Otherwise transverse or semi-transverse ventilation strategy shall be used.During recent development,or a late awakening,it is clear that dense populated areas in Sweden will experience queues.This threatens the foundation of the Swedish modern tunnel safety concept which calls for enhancement.This paper presents the risk-reducing effect of three alternative strategies,enhancements package,focusing on evacuation safety for road users.It is a combination of traffic management,fixed firefighting systems,reduced distance between escape routes and regulation of traffic with dangerous goods.In addition,it provides a comprehensive review of safety system details,combined with a longitudinal ventilation concept.
基金funded by the Special Fund for Agriculture-Scientific Non-Profit Research, China(201103039)the National Basic Research Program of China(2012CB417104)by the Basic R&D Operations Special Fund forthe Central Level Non-Profit Research Institute of China(2012-35)
文摘Agricultural production plays an important role in affecting atmospheric nitrous oxide (N20) concentrations. Field measurements were conducted in Dalian City, Liaoning Province in Northeast China from two consecutive years (2009 and 2010) to estimate NzO emissions from a spring maize field, a main cropping system across the Chinese agricultural regions. The observed flux data in conjunction with the local climate, soil and management information were utilized to test a process-based model, DeNitrification-DeComposition (DNDC), for its applicability for the cropping system. The validated DNDC was then used for exploring strategies to reduce N20 emissions from the target field. The results showed that the major N20 pulse emissions occurred with duration of about 3-5 d after fertilizer application in both years 2009 and 2010, which on average accounted for about 60% of the total N20 emissions each year. Rainfall and fertilizer application were the major factors influencing the N20 emissions from spring maize field. The average N20 flUXeS from the CK (control plot, without fertilization) and FP (traditional chemical N fertilizer) treatments were 23.1 and 60.6 gg m-2 h-~ in 2009, respectively, and 21.5 and 64.3 gg m-2 h-~ in 2010, respectively. The emission factors (EFs) of the applied N fertilizer (270 kg N ha-1) as N20- N were 0.62% in 2009 and 0.77% in 2010, respectively. The comparison of modeled daily NzO emission fluxes against observations indicated that the DNDC model had a good performance even if without adjusting the internal parameters. The modeled results showed that management practices such as no-till, changing timing or rate of fertilizer application, increasing residue incorporation, and other technically applicable measures could effectively reduce N20 emissions from the tested fields. Our study indicated that avoiding application of N fertilizers at heavy rainfall events or splitting the fertilizer into more applications would be the most feasible approaches to reduce N20 emissions from spring maize production in Northeast China.
基金Project supported by Greece and the European Union(European Social Fund)through the Operational Programme“Human Resources Development,Education,and Lifelong Learning 2014-2020”in the Context of the Project“Strengthening Human Resources Research Potential via Doctorate Research-2nd Cycle”(No.MIS 5000432)。
文摘The vibrations induced by the passage of high-speed trains(HSTs)are considered a crucial issue in the field of environmental and geotechnical engineering.Several wave barriers have been investigated to reduce the detrimental effects of HST-induced vibrations.This study is focused on the potential implementation of an innovative mitigation technique to alleviate the developed vibrations.In particular,the use of expanded polystyrene(EPS)blocks as partial fill material of embankment slopes was examined.The efficiency of the proposed mitigation technique was numerically investigated.More specifically,a 3 D soil-track model was developed to study the cross-section of a railway track,embankment,and the underlying soil layers.The passage of the HST,Thalys,was simulated using a moving load method,and the soil response was calculated at several distances from the track.Several parameters influenced the effectiveness of the examined mitigation measure.Therefore,to ensure an optimal design,a robust procedure is necessary which considers the impact of these factors.Hence,the implementation of EPS blocks on several embankments with different geometry,in terms of height and slope angle,was investigated.
文摘With the development of the time and the progress of economy,great changes have taken place in the environment.In recent years,it is common to see bad weather,such as hurricane,drought,lightning and so on.The emergence of these weather has the greatest impact on farmers and crops,especially the lightning weather,not only that,but also sometimes cause personal injury.In face of the frequent occurrence of bad weather in recent years and its harm and threat to China's agriculture,rural areas,personnel,etc.,the author makes a detailed study on the causes of rural lightning weather,analyzes the lightning protection measures in rural areas and their shortcomings,and summarizes the relevant improvement measures.
文摘Bridges serve as essential parts of transportation infrastructure,facilitating the movement of people and goods across rivers,valleys,and other obstacles.However,they are also susceptible to a wide range of natural hazards,including floods,earthquakes,and landslides,which can damage or even collapse these structures,leading to severe economic and human losses.A risk index has been developed to address this issue,which quantifies the likelihood and severity of natural hazards occurring in a specific location.The application of risk indices for natural hazards in bridge management involves a data collection process and mathematical modelling.The data collection process gathers information on bridges’location,condition,and vulnerability,while mathematical modelling uses the data to assess the risk of natural hazards.Overall,risk indices provide a quantitative measure of the vulnerability of bridges to natural hazards and help to prioritize maintenance and repair activities.Mitigation measures are then evaluated and implemented based on the risk assessment results.By using this tool,the UBMS research group has developed an algorithm for risk assessment which will be essential in the decision-making process,specifically focused on enhancing Fund Optimization,Deterioration Modelling,and Risk Analysis.These developments effectively fulfill the primary objectives associated with addressing and mitigating hazards.This development also helps bridge managers understand the potential threats posed by natural hazards and allocate resources more efficiently to ensure the safety and longevity of critical transportation infrastructure.
文摘Urban areas globally are escalating contributors to carbon dioxide(CO_(2))emissions,challenging sustainable development.This study proposes a novel micro-scale approach utilizing GIS to quantify CO_(2)emission spatial distribution,enhancing urban sustainability assessment.Employing a“bottom-up”methodology,emissions were calculated for various sources,revealing Isfahan’s urban area emits 13,855,525 tons of CO_(2)annually.Major contributors include stationary and mobile sources such as power plants(50.61%),road and rail transport(17.18%),and residential sectors(21.78%).Spatial distribution mapping showed that 81.68%of CO_(2)emissions originate from stationary sources,notably power plants.Furthermore,mobile sources,including road transport,contribute 17.16%,with emissions concentrated in main urban arteries.Agricultural machinery adds 1.14%of emissions,spatially distributed across Isfahan’s agricultural lands.Integration of emissions maps depicts the city’s total CO_(2)emissions,highlighting sectoral contributions.Despite limitations in data granularity,this study provides valuable insights into urban CO_(2)emissions dynamics,facilitating targeted mitigation strategies.Quantitative achievements include precise CO_(2)emission quantification and spatial distribution mapping,crucial for formulating effective urban sustainability policies.
文摘This study aims to determine the environmental aspects and impacts of the phase relating to the operation of Manantali’s hydroelectric structures and facilities according to the requirements of the ISO 14001 version 2015 standard. To do this, the mapping of the different work areas made it possible to identify all the activities within the framework of the farm. Based on the mapping, environmental measurements made including noise level, brightness, electric and magnetic fields, total particles, PM10, PM2.5, PM1 showed the work areas with the exposure limit values exceeded. The inventories of the waste produced show eighteen (18) types of waste, 67% of which are special industrial waste (SIW), 28% are ordinary industrial waste (OIW) and 5% are inert industrial waste (IIW). The identification and assessment of environmental aspects and impacts made it possible to determine sixteen (16) positive and negative significant environmental aspects (ESAs). The positive AES must be maintained, and for the negative ones, mitigation and mitigation measures must be put in place in order to manage them effectively. This will ultimately improve environmental management in the operation of hydroelectric structures and facilities.
基金fnancially supported by the Science and Technology Commission of Shanghai Municipality(No.18DZ1205000)Natural Science Foundation of China(No.31901099)+3 种基金Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station,Ministry of Education,Shanghai Science and Technology Committee(ECNU-YDEWS-2022)Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering,Institute of Biodiversity Science,Fudan University(2023-FDU-KF-02)Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration(SHUES2023A04)“Pioneer”and“Leading Goose”R&D Program of Zhejiang(2024C02002).
文摘Ongoing wind energy developments play a key role in mitigating the global effects of climate change and the energy crisis;however,they have complex ecological consequences for many flying animals.The Yellow Sea coast is considered as an ecological bottleneck for migratory waterbirds along the East Asian–Australasian flyway(EAAF),and is also an important wind farm base in China.However,the effects of large-scale onshore wind farms along the EAAF on multidimensional waterbird diversity,and how to mitigate these effects,remain unclear.Here we examined how wind farms and their surrounding landscapes affected multidimensional waterbird diversity along the Yellow Sea coast.Taxonomic,functional,and phylogenetic diversity of the waterbird assemblages,and mean pairwise distances and nearest taxon distances with null models were quantified in relation to 4 different wind turbine densities.We also measured 6 landscape variables.Multi-dimensional waterbird diversity(taxonomic,functional,and phylogenetic diversity)significantly decreased with increasing wind turbine density.Functional and phylogenetic structures tended to be clustered in waterbird communities,and environmental filtering drove waterbird community assemblages.Furthermore,waterbird diversity was regulated by a combination of wind turbine density and landscape variables,with edge density of aquaculture ponds,in addition to wind turbine density,having the greatest independent contribution to waterbird diversity.These results suggest that attempts to mitigate the impact of wind farms on waterbird diversity could involve the landscape transformation of wind farm regions,for example,by including high-edge-density aquaculture ponds(i.e.,industrial ponds)around wind farms,instead of traditional low-edge-density aquaculture ponds.
基金National Natural Science Foundation of China under Grant No.41772275the Fundamental Research Funds for the Central Universities under Grant No.300102268203。
文摘This study conducted microtremor testing along six survey lines that cross three typical earth fissures in the Datong basin to determine the dynamic response characteristics of earth fissure sites with regard to the Fourier amplitude spectrum,response spectrum,and Arias intensity.The results show the following.(1)The predominant frequency of an earth fissure site is mainly affected by the thickness and the shear wave velocity of the soil layer and is minimally effected by the presence of an earth fissure.(2)Earth fissures have a pronounced amplification effect on dynamic response.Fourier amplitude,response acceleration,and Arias intensity are high near an earth fissure and decrease with an increase in distance from the earth fissure,tending toward stability at a distance of 20 m.(3)The area that is seriously affected by this amplification is within 6-8 m of an earth fissure,and the general affected area is farther out than this,to a distance of 25 m.(4)New construction should be avoided in an area affected by the amplification,and existing buildings in general and seriously affected areas need to be reinforced to increase their seismic fortification intensity.
文摘This paper gives an account of the diverse dimensions of research on disaster risk reduction in mountain regions derived from an open call of the Journal of Mountain Science that brought 21 contributions.This special issue includes topics as diverse as landslide dynamics and mechanisms,landslide inventories and landslide susceptibility models,insights to landslide hazards and disasters and mitigation measures,disaster response and disaster risk reduction.The overall structure of the paper takes the form of three sections.The first part begins by laying out the significance of disaster risk reduction in mountain areas,whereas the second one looks at the research insights on disaster risk reduction in mountains provided by the contributions comprised in the special volume.The final section identifies areas for further research.