期刊文献+
共找到43篇文章
< 1 2 3 >
每页显示 20 50 100
Misorientation and dislocation evolution in rapid residual stress relaxation by electropulsing
1
作者 Ayan Bhowmik Jin Lee Tan +5 位作者 Yongjing Yang Aprilia Aprilia Nicholas Chia Paul Williams Martyn Jones Wei Zhou 《Journal of Materials Science & Technology》 2025年第6期292-299,共8页
This study investigates the effect of high current density electropulsing on the material in a rapid stress relaxation process.An AISI 1020 steel was shot-peened to induce surface compressive residual stresses in a co... This study investigates the effect of high current density electropulsing on the material in a rapid stress relaxation process.An AISI 1020 steel was shot-peened to induce surface compressive residual stresses in a controlled manner and subsequently electropulsed to investigate the changes in microstructure and defect configuration.AISI 1020 steel was chosen as it has a simple microstructure(plain ferritic)and composition with low alloying conditions.It is an appropriate material to study the effect of trans-mitting electric pulses on the microstructural defect evolution.A combination of electron-backscattered diffraction and transmission electron microscopy proved to be an effective tool in characterizing the post-electropulsing effects critically.By application of electropulsing,a reduction in the surface residual stress layer was noticed.Also,reductions in misorientation and dislocation density together with the disentan-glement of dislocations within the cold-worked layer were observed after electropulsing.Additionally,the annihilation of shot-peening-induced deformation bands beyond the residual layer depth was observed.These effects have been rationalised by taking into account the various possibilities of athermal effects of electropulsing. 展开更多
关键词 ELECTROPULSING Residual stress misorientation Dislocation annihilation TEM
原文传递
Effect of Mg Addition on the Ferrite Grain Boundaries Misorientation in HAZ of Low Carbon Steels 被引量:11
2
作者 Kai Zhu Zhenguo Yang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2011年第3期252-256,共5页
The relation between the Mg treatment and ferrite grain boundaries misorientation was investigated. The orientation imaging microscopy technique based on electron backscattered diffraction technique (EBSD) was used ... The relation between the Mg treatment and ferrite grain boundaries misorientation was investigated. The orientation imaging microscopy technique based on electron backscattered diffraction technique (EBSD) was used in this work. (t was found that the addition of 0.005 wt% Mg to the steel could evidently increase the ratio of acicular ferrite crystals appearing at large angles boundaries to each other, which was attributed to the nucleation of the second-phase particles by the Mg treatment. The FBSD techniques provide a power- ful method to characterize and quantify the ferrite grain boundaries misorientation, in order to relate it to toughness. 展开更多
关键词 Low carbon steels Mg Boundaries misorientation Electron backscattered diffraction technique (EBSD)
原文传递
Misorientation dependent thermal condition-solute field cooperative effect on competitive grain growth in the converging case during directional solidification of a nickel-base superalloy 被引量:5
3
作者 X.B.Meng J.G.Li +10 位作者 C.N.Jing J.D.Liu S.Y.Ma J.J.Liang C.W.Zhang M.Wang B.T.Tang T.Lin J.L.Chen X.L.Zhang Q.Li 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第1期151-159,共9页
Nowadays,thermal condition and solute field are considered as the potential dominant factors controlling competitive grain growth during directional solidification process.However,the controlling modes and critical co... Nowadays,thermal condition and solute field are considered as the potential dominant factors controlling competitive grain growth during directional solidification process.However,the controlling modes and critical conditions of competitive grain growth have been drastically debated over the past two decades.In this work,thermal condition and solute field are combined to study the competitive grain growth in the converging case by experimental observation and numerical simulation of bicrystal samples.We find the competitive grain growth is controlled by the cooperative effect of thermal condition and solute field,and the controlling modes are related to the bicrystal misorientation between favorably and unfavorably oriented grains.When the unfavorably oriented grain is low misoriented,unfavorably oriented grain dominates grain selection,and the competitive grain growth performs as solute field domination.However,with the increase of unfavorably oriented grain’s misorientation,the grain selection converts into favorably oriented grain domination,and the competitive grain growth changes to thermal condition domination.To explain these abnormal transformation phenomena,we propose a misorientation dependent thermal condition-solute field cooperative domination model and identify the critical conditions by a critical misorientation(θ_(cm)).According to dynamic equation of dendrite growth,we calculate the critical misorientationθ;to prove this model.The theoretical calculation results agree well with the experimental results. 展开更多
关键词 Competitive grain growth Cooperative effect Thermal condition Solute field Critical misorientation Unusual overgrowth Abnormal transformation
原文传递
High-temperature fatigue strength of grain boundaries with different misorientations in nickel-based superalloy bicrystals 被引量:3
4
作者 D.F.Shi Z.J.Zhang +4 位作者 Y.H.Yang Y.Z.Zhou R.Liu P.Zhang Z.F.Zhang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第23期94-106,共13页
Nickel-based single-crystal superalloys are widely used in the manufacture of aeroengine turbine vanes for their excellent high-temperature performance. Low-angle grain boundaries (LAGBs) will be generated inevitably ... Nickel-based single-crystal superalloys are widely used in the manufacture of aeroengine turbine vanes for their excellent high-temperature performance. Low-angle grain boundaries (LAGBs) will be generated inevitably during their manufacture, which are often characterized by grain boundary misorientation (GBM) and will weaken the mechanical properties of superalloys. However, the relationship between GBM and the fatigue properties of superalloys at elevated temperatures has seldom been investigated due to the difficulty in the sample preparation and experiment process. Based on six kinds of bicrystals with different tilt LAGBs made by a second-generation single-crystal superalloy, the effects of misorientation on the grain boundary microstructure and fatigue properties (980 °C) of superalloys were studied systematically in this work. It is found that, with the increase of GBM, the GB precipitates combined with the cast micropores increase monotonically, accordingly both the fatigue life and fatigue strength decrease successively. Fatigue fracture observations show that the cracks of all the bicrystals initiated from the cast micropores at GBs, and then propagated along the GBs. Therefore, the coupling effect of cast micropores and GBM on the fatigue damage mechanisms of the bicrystals are evaluated according to their hindering degrees on the piled-up dislocations. Combining with a hysteresis energy model, a quantitative fatigue strength prediction model of superalloys is established and is well verified by abundant experimental data. This study could provide guidance for fatigue performance prediction and structural design of superalloys. 展开更多
关键词 SUPERALLOYS BICRYSTALS Grain boundary misorientation Fatigue strength Fatigue crack
原文传递
INFLUENCE OF A MISORIENTATION ANGLE ON AN ENERGR OF THE SYMMETRIC GRAIN BOUNDARY IN FCC METALS 被引量:1
5
作者 M. D. Starostenkov, B. F. Demyanov and A. V. Weckman General Physics Department, Altai State Technical University, Lenin st., 46, Barnaul, 656099, Russia 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2000年第2期540-545,共6页
In the present work the research of grain boundary (CB) energy versus angle of misorientation in fcc metals Al, Cu, An and Ni was carried out. An axis of CB misorientation is a direction [100], angle of misorientatio... In the present work the research of grain boundary (CB) energy versus angle of misorientation in fcc metals Al, Cu, An and Ni was carried out. An axis of CB misorientation is a direction [100], angle of misorientation makes from 2皍p in 23*. The interatomic interaction was opproximated by Morse' s pair semi-empirical potential. Two variants of relaxation technique were used: (1) rigid relax- ation with the change of atom quantity per a GB (vacancy relaxation ) and (2) full atomic relaxation by a molecular static method. The obtained orientation dependence has a good agreement with experi- ment. There are cusps on a curve in the range of special GB angles.The comparison of obtained curves with calculated ones in model Van der Merwe was carried out. Dependencies obtained in our investiga- tions are not smooth and have an oscillatory character. The oscillations reflect a discrete structure of a lattice. 展开更多
关键词 FCC metal misorientation angle boumdary energy structure relaxation
在线阅读 下载PDF
Control of symmetric properties of metamorphic In0.27Ga0.73As layers by substrate misorientation
6
作者 于淑珍 董建荣 +4 位作者 孙玉润 李奎龙 曾徐路 赵勇明 杨辉 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第3期408-413,共6页
Asymmetry in dislocation density and strain relaxation has a significant impact on device performance since it leads to anisotropic electron transport in metamorphic materials. So it is preferred to obtain metamorphic... Asymmetry in dislocation density and strain relaxation has a significant impact on device performance since it leads to anisotropic electron transport in metamorphic materials. So it is preferred to obtain metamorphic materials with symmetric properties. In this paper, we grew metamorphic Ino.27Gao.73As epilayers with symmetric low threading dislocation density and symmetric strain relaxation in two (110) directions using InA1GaAs buffer layers on 7° misoriented GaAs (001) substrates. To understand the control mechanism of symmetric properties of Ino.27Gao.73As layers by the substrate miscut angles, Ino.27Gao.73As grown on 2° and 15° misoriented substrates were also characterized as reference by atomic force microscopy, transmission electron microscopy, and high resolution triple axis x-ray diffraction. The phase separation and interaction of 60° misfit dislocations were found to be the reasons for asymmetry properties of Ino.27Gao33As grown on 2° and 15° substrates, respectively. Photoluminescence results proved that the Ino.27G°ao.73As with symmetric properties has better optical properties than the Ino.27Gao.73As with asymmetric properties at room temperature. These results imply that high quality metamorphic Ino.27Gao.73As can be achieved with controllable isotropic electron transport property. 展开更多
关键词 Ino.27Gao.73As substrate misorientation SYMMETRY MOCVD
原文传递
Effect of Effective Grain Size and Grain Boundary of Large Misorientation on Upper Shelf Energy in Pipeline Steels
7
作者 张小立 JIANG Zhiqiang +1 位作者 LI Shixian FAN Jiwei 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2016年第3期606-610,共5页
X65, X70, and X80 belong to high grade pipeline steels. Toughness is one of the most important properties of pipeline steels when the pipeline transports the gas or oil, and the means to control toughness is very impo... X65, X70, and X80 belong to high grade pipeline steels. Toughness is one of the most important properties of pipeline steels when the pipeline transports the gas or oil, and the means to control toughness is very important for exploring even higher grade pipeline steels. We established the relationship between toughness and crystallographic parameters of high grade pipeline steels by studying the crystallographic parameters of X65, X70, and X80 using EBSD and analyzing Charpy CVN of X65, X70 and X80. The results show that the effective grain size, the frequency distribution of grain boundary misorientation and the ratio of high angle grain boundary to small angle grain boundary are important parameters. The finer the effective grain size, and the higher the frequency distribution of grain boundaries (〉 50~), the more excellent toughness of high grade pipeline steels will be. 展开更多
关键词 high grade pipeline steels effective grain size grain boundary of large misorientation upper shelf energy
原文传递
Fracture mode identification of low alloy steels and cast irons by electron back-scattered diffraction misorientation analysis
8
作者 Shao-Shi Rui Yi-Bo Shang +4 位作者 Wenhui Qiu Li-Sha Niu Hui-Ji Shi Shunsaku Matsumoto Yasuharu Chuman 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2017年第12期1582-1595,共14页
The fracture modes of low alloy steels and cast irons under tensile and fatigue conditions were identified by electron back-scattered diffraction(EBSD) misorientation analysis in this research. The curves of grain r... The fracture modes of low alloy steels and cast irons under tensile and fatigue conditions were identified by electron back-scattered diffraction(EBSD) misorientation analysis in this research. The curves of grain reference orientation deviation(GROD) distribution perpendicular to the fracture surface were obtained by EBSD observation, and the characteristics of each fracture mode were identified. The GROD value of the specimen fractured in tension decreases to a constant related to the elongation of corresponding specimen in the far field(farther than 5 mm away from the fracture surface). The peak exhibits in GROD curves of two smooth specimens and a notched specimen near the fracture surface(within 5 mm away from the fracture surface), and the formation mechanisms were discussed in detail based on the influences of specimen geometries(smooth or notched) and material toughness. The GROD value of fatigue fractured specimen is close to that at undeformed condition in the whole field, except the small area near the crack path. The loading conditions(constant stress amplitude loading or constant stress intensity factor range K loading) and the EBSD striation formation during fatigue crack propagation were also studied by EBSD observation parallel to the crack path. 展开更多
关键词 Fracture mode identification Low alloy steels Cast irons Electron back-scattered diffraction (EBSD) misorientation
原文传递
Thermal-solutal convection-induced low-angle grain boundaries in single-crystal nickel-based superalloy solidification 被引量:3
9
作者 Luwei Yang Neng Ren +5 位作者 Jun Li Chinnapat Panwisawas Yancheng Zhang Mingxu Xia Hongbiao Dong Jianguo Li 《Journal of Materials Science & Technology》 2025年第5期214-229,共16页
Low-angle grain boundaries(LAGBs)are one of the solidification defects in single-crystal nickel-based superalloys and are detrimental to the mechanical properties.The formation of LAGBs is related to dendrite deformat... Low-angle grain boundaries(LAGBs)are one of the solidification defects in single-crystal nickel-based superalloys and are detrimental to the mechanical properties.The formation of LAGBs is related to dendrite deformation,while the mechanism has not been fully understood at the mesoscale.In this work,a model coupling dendrite growth,thermal-solutal-fluid flow,thermal stress and flow-induced dendrite deformation via cellular automaton-finite volume method and finite element method is developed to study the formation of LAGBs in single crystal superalloys.Results reveal that the bending of dendrites is primarily attributed to the thermal-solutal convection-induced dendrite deformation.The mechanical stress of dendrite deformation develops and stabilises as solidification proceeds.As the width of the mushy zone gets stable,stresses are built up and then dendritic elastoplastic bending occurs at some thin primary dendrites with the wider inter-dendritic space.There are three characteristic zones of stress distribution along the solidification direction:(i)no stress concentration in the fully solidified regions;(ii)stress developing in the primary dendrite bridging region,and(iii)stress decrease in the inter-dendritic uncontacted zone.The stresses reach maximum near the initial dendrite bridging position.The lower temperature gradients,the finer primary dendritic trunks and sudden reductions in local dendritic trunk radius jointly promote the elastoplastic deformation of the dendrites.Corresponding measures are suggested to reduce LAGBs. 展开更多
关键词 Dendrite deformation Low-angle grain boundary misorientation Thermal-solutal convection SUPERALLOYS
原文传递
The role of grain and twin boundaries on discontinuous precipitation of Mg_(17)Al_(12) phase in Mg-Al alloy
10
作者 Yi Wang Fei Guo +6 位作者 Luyao Jiang Hang Yu Gege Wang Congren Shen Zhongwei Wang Linjiang Chai Yanlong Ma 《Journal of Magnesium and Alloys》 2025年第6期2855-2865,共11页
Mechanism of discontinuous precipitation(DP) in AZ80 alloy was investigated by phase-orientation correlated characterization.The results show DPs nucleate by turning the original grain boundaries(GBs) as reaction fron... Mechanism of discontinuous precipitation(DP) in AZ80 alloy was investigated by phase-orientation correlated characterization.The results show DPs nucleate by turning the original grain boundaries(GBs) as reaction front(RF),and further driving the RF to realize their growth.The DPs regions retained the same orientations as their parent grains.The misorientation angle and rotation axis of RFs had strong influence on DPs nucleation.The low-angle GBs,twin boundaries(TBs) and the GBs with specific misorientation axis which are known as low energy and low mobility GBs can hardly initiate DPs.In addition,the TBs had a strong ability to inhibit the growth of DPs,but it should be noticed that the growth of DPs cannot be totally inhibited by TBs.DPs can engulf the twins when the growth direction is approximately parallel to the long axis of TBs.The inhibition behavior is related to the distribution of Al solute atoms near the RF,boundary interactions of the TBs and twin tips with the RF,and the morphology of the continuous precipitations within the twins. 展开更多
关键词 AZ80 alloy Discontinuous precipitation Grain boundary misorientation Extension twinning
在线阅读 下载PDF
Three-Point Bending Deformation Behavior of a High Plasticity Mg–2.6Er–0.6Zr Alloy Sheet
11
作者 Yuanxiao Dai Yue Zhang +3 位作者 Mei Wang Jie Liu Yaobo Hu Bin Jiang 《Acta Metallurgica Sinica(English Letters)》 2025年第7期1109-1126,共18页
Bending is a crucial deformation process in metal sheet forming.In this study,the microstructural evolution of a highly ductile Mg–Er–Zr alloy sheet was examined in various bending regions under different bending st... Bending is a crucial deformation process in metal sheet forming.In this study,the microstructural evolution of a highly ductile Mg–Er–Zr alloy sheet was examined in various bending regions under different bending strains using electron backscatter diffraction and optical microscopy.The results show that the Mg–Er–Zr extruded sheet has excellent bending properties,with a failure bending strain of 39.3%,bending yield strength,and ultimate bending strength of 75.1 MPa and 250.5 MPa,respectively.The exceptional bending properties of the Mg–Er–Zr extruded sheets are primarily due to their fine grain size and the formation of rare-earth(RE)textures resulting from Er addition.Specifically,the in-grain misorientation axes(IGMA)and the twinning behaviors in various regions of the specimen during bending were thoroughly analyzed.Due to the polarity of the tensile twins and their low activation stress,a significant number of tensile twins are activated in the compression zone to regulate plastic deformation.The addition of Er weakens the basal texture of the sheet and reduces the critical resolved shear stress difference between non-basal slip and basal slip.Consequently,in the tensile zone,the basal and non-basal slips co-operate to coordinate the plastic deformation,effectively impeding crack initiation and propagation,and thereby enhancing the bending toughness of the Mg–Er–Zr sheet. 展开更多
关键词 Mg alloy sheet Three-point bending Deformation mechanism In-grain misorientation axis(IGMA)
原文传递
Deformation mode-determined misorientation and microstructural characteristics in rolled pure Zr sheet 被引量:3
12
作者 CHAI LinJiang XIA JiYing +4 位作者 ZHI Yan GOU YinNing CHEN LiangYu YANG ZhiNan GUO Ning 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2018年第9期1346-1352,共7页
In this work, commercially pure Zr sheets were subjected to β air cooling and then rolled to different reductions(10% and 50%)at room temperature. Microstructures of both the β-air-cooled and the rolled specimens we... In this work, commercially pure Zr sheets were subjected to β air cooling and then rolled to different reductions(10% and 50%)at room temperature. Microstructures of both the β-air-cooled and the rolled specimens were well characterized by electron channelling contrast imaging and electron backscatter diffraction techniques, with special attentions paid to their misorientation characteristics. Results show that the β-air-cooled specimen owns a Widmanst?tten structure featured by lamellar grains with typical phase transformation misorientations. The 10% rolling allows prismatic slip and tensile twinning({11-21}<11-2-6> and{10-12}<10-11>) to be activated profusely, which produce new low-angle(~3°–5°) and high-angle(~35° and ~85°) misorientation peaks, respectively. After increasing the rolling reduction to 50%, twinning is suppressed and dislocation slip becomes the dominant deformation mode, with the lamellar grains highly elongated and aligned towards the rolling direction.Meanwhile, only one strong low-angle misorientation peak related to the prismatic slip is presented in the 50%-rolled specimen,with all other peaks disappeared. Analyses on local misorientations reveal that hardly any residual strains exist in the β-air-cooled specimen, which should be related to their sufficient relaxation during slow cooling. Residual strains introduced by 10% rolling are heterogeneously distributed near grain/twin boundaries while heavier deformation(50% rolling) produces much larger residual strains pervasively existing throughout the specimen microstructure. 展开更多
关键词 pure Zr ROLLING misorientation TWINNING electron backscatter diffraction
原文传递
Misorientation characteristics and textural changes induced by dense twins in high-purity Ti sheet after small strain rolling
13
作者 DAI JiaHong ZENG LingGuo +5 位作者 LI ZhiJun CHAI LinJiang ZHENG ZhiYing WU Hao MURTY KL GUO Ning 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2019年第11期1968-1975,共8页
A high-purity Ti(HP-Ti)sheet was subjected to small strain rolling(10%reduction)with microstructural and textural characteristics examined by electron channeling contrast imaging and electron backscatter diffraction t... A high-purity Ti(HP-Ti)sheet was subjected to small strain rolling(10%reduction)with microstructural and textural characteristics examined by electron channeling contrast imaging and electron backscatter diffraction techniques.Particular attentions were paid to misorientation and textural changes aroused by twins in the rolled HP-Ti sheet.Results show that after the 10%rolling,almost all the prior equiaxed grains in the initial specimen are twinned,leading to remarkable grain refinement.The presence of two major misorientation angle peaks around 65°and 85°is ascribed to{11-22}<11-23>and{10-12}<10-11>twinning,respectively,and two minor peaks around 47°and 77°are due mainly to impingement of various variants of such twins.Distinct from earlier work,the small strain rolling is confirmed to be able to induce drastic textural changes in pure Ti sheets:largely reduced texture intensity and appearance of new textural components.This can essentially be attributed to enhanced twinning activity due to much lower impurity contents of the present material.Primary{11?22}twins are mainly responsible for the new textural component of c-axes aligned near the rolling direction with spread,while the component of caxes parallel to the normal direction is due to reorientation of secondary{10-12}twins.This study clearly demonstrates the capability of small strain rolling to effectively modify both microstructures and textures of the HP?Ti sheet and may shed some light on exploring feasible processings for such materials. 展开更多
关键词 titanium SHEET cold ROLLING misorientation TWINNING texture
原文传递
EBSD-based analysis of the stress rupture behaviors for Ni-based superalloy IN718
14
作者 YE Ruoru LI Jidong GU Yu 《Baosteel Technical Research》 2024年第4期9-19,共11页
The optimized stress rupture properties of IN718 are of great interest to the aerospace industry,particularly in the presence of a notch.The deformation mechanisms for the stress rupture properties of IN718 after diff... The optimized stress rupture properties of IN718 are of great interest to the aerospace industry,particularly in the presence of a notch.The deformation mechanisms for the stress rupture properties of IN718 after different heat treatments,using electron back-scattered diffraction(EBSD)as an important tool,were investigated.The notch sensitivity of IN718 was closely associated with the distribution of theδphase.When the area fraction(A(f))of theδphase was less than 0.56%,the sample failed at the notch;while when A(f)≥2.98%,the notch sensitivity disappeared,and failure occurred on the smooth gauge.Heterogeneous deformation with strain concentrated at the grain boundaries was observed for the notch-and smooth-gauge-failed samples through EBSD analysis.Although intergranular cracking was detected in both cases,the failure mechanisms were different.Grain boundary sliding was the dominant failure mechanism for the notch-failed samples,whereas microvoid coalescence was the dominant failure mechanism for the smooth-gauge-failed samples. 展开更多
关键词 IN718 notch sensitivity stress rupture kernel average misorientation(KAM) grain reference orientation deviation(GROD)
在线阅读 下载PDF
Production of Mg-Al-Zn magnesium alloy sheets with ultrafine-grain microstructure by accumulative roll-bonding 被引量:11
15
作者 詹美燕 张卫文 张大童 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第5期991-997,共7页
Accumulative roll-bonding (ARB) was applied to Mg-Al-Zn magnesium alloy sheets to prepare ultrafine-grain microstructure. Significant grain refinement is achieved after three cycles of ARB with average grain size of... Accumulative roll-bonding (ARB) was applied to Mg-Al-Zn magnesium alloy sheets to prepare ultrafine-grain microstructure. Significant grain refinement is achieved after three cycles of ARB with average grain size of about 1.3 μm. The microstructure is characterized by nearly uniform ultrafine equiaxed microstructure without twins. The evolution of the misorientation distribution during ARB was measured by EBSD. Grain refinement can be contributed to the grain subdivision induced by severe accumulated strain, the accumulated strain enhanced concurrent dynamic recovery and recrystallization as well as the complicated distribution of interface and shear strain during ARB. 展开更多
关键词 Mg-Al-Zn magnesium alloys MICROSTRUCTURE grain refinement dynamic recrystallization misorientation
在线阅读 下载PDF
Texture Analysis of Damascene Copper Interconnects 被引量:2
16
作者 王晓冬 吉元 +4 位作者 钟涛兴 李志国 夏洋 刘丹敏 肖卫强 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2008年第6期1136-1140,共5页
Texture and grain boundary character distribution of Cu interconnects with different line width for as-deposited and annealed conditions were measured by EBSD. All specimens appear mixed texture and (111) texture is... Texture and grain boundary character distribution of Cu interconnects with different line width for as-deposited and annealed conditions were measured by EBSD. All specimens appear mixed texture and (111) texture is the dominate component.As-deposited interconnects undergo the phenomenon of self-annealing at RT,in which some abnormally large grains are found. Lower aspect ratio of lines and anneal treatment procured larger grains and stronger (111) texture. Meanwhile, the intensity proportion of other textures with lower strain energy to (111) texture is decreased. As-deposited specimens reveal (111)(112? and (111) (231) components, (111) (110) component appeared and (111) (112? and (111) (231) components were developed during the annealing process. High angle boundaries are dominant in all specimens, boundaries with a misorientation of 55°-60° and ∑3 ones in higher proportion, followed by lower boundaries with a misorientation of 35°-40° and 29 boundaries. As the aspect ratio of lines and anneal treatment increase,there is a gradual in- crement in ∑3 boundaries and a decrease in ∑9 boundaries. 展开更多
关键词 Cu interconnects TEXTURE misorientation coincident site lattice boundaries EBSD
在线阅读 下载PDF
同步辐射白光形貌术观察LiTaO_3晶体中的小角晶界 被引量:2
17
作者 魏景谦 胡小波 +6 位作者 王继扬 尹鑫 郭明 刘宏 刘耀岗 饶晓方 田玉莲 《人工晶体学报》 EI CAS CSCD 北大核心 2000年第S1期250-,共1页
关键词 LiTaO 3 crystal white beam synchrotron radiation topography sub grain bound ary misorientation
在线阅读 下载PDF
In situ analysis of multi-twin morphology and growth using synchrotron polychromatic X-ray microdiffraction
18
作者 李理 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第7期2156-2164,共9页
Synchrotron polychromatic X-ray microdiffraction(micro-XRD) was applied to study in situ deformation twinning of commercially AZ31(Mg-3Al-1Zn) strip subjected to uniaxial tension.The morphology and growth of twins... Synchrotron polychromatic X-ray microdiffraction(micro-XRD) was applied to study in situ deformation twinning of commercially AZ31(Mg-3Al-1Zn) strip subjected to uniaxial tension.The morphology and growth of twins were analyzed in situ under the load level from 64 to 73 MPa.The X-ray microdiffraction data,collected on beamline 12.3.2 at the Advanced Light Source,were then used to map an area of 396μm x 200μm within the region of interest.The experimental set-up and X-ray diffraction microscopy with a depth resolution allow the position and orientation of each illuminated grain to be determined at the submicron size.A list of parent grains sorted by crystallographic orientation were selected to examine their twinning behavior.The results depict twin variant selection,local misorientation fluctuation and mosaic spread for multi-twins within the same parent grain.As load increases,the amplitude of misorientation fluctuation along twin trace keeps increasing.This is attributable to the accumulation of geometrically necessary dislocations. 展开更多
关键词 synchrotron polychromatic X-ray deformation twinning in situ analysis local misorientation geometrically necessary dislocations
在线阅读 下载PDF
Relationships between microhardness, microstructure, and grain orientation in laser-welded joints with different welding speeds for Ti6Al4V titanium alloy 被引量:14
19
作者 Zhen-zhen XU Zhi-qiang DONG +2 位作者 Zhao-hui YU Wen-ke WANG Jian-xun ZHANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第5期1277-1289,共13页
The microhardness curve trend and its relationships with microstructure and misorientation were analyzed to enhance the comprehension of the microstructure and mechanical property of micro-areas in Ti6 Al4 V laser-wel... The microhardness curve trend and its relationships with microstructure and misorientation were analyzed to enhance the comprehension of the microstructure and mechanical property of micro-areas in Ti6 Al4 V laser-welded joints with different welding speeds. The microhardness measured on the fusion line(H_m) is the highest from the weld center to the base metal. H_m increases with increasing weld width in a welded joint and increasing degree of the non-uniformity in all studied welded joints. The microhardness decreases from the weld metal to the base metal with decreasing amount of martensite α’ and increasing amount of original α phase. When the microstructure is mainly composed of martensite α’, the microhardness changes with the cooling rate, grain size of the martensite, and peak values of the fraction of misorientation angle of the martensite in a wide weld metal zone or weld center at different welding speeds, whereas the difference is small in a narrow weld metal zone. 展开更多
关键词 MICROHARDNESS MICROSTRUCTURE misorientation angle NON-UNIFORMITY welding speed
在线阅读 下载PDF
Microstructure evolutions and interfacial bonding behavior of Ni-based superalloys during solid state plastic deformation bonding 被引量:11
20
作者 Jian Yang Zhang Bin Xu +3 位作者 Naeemul Haq Tariq MingYue Sun DianZhong Li Yi Yi Li 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2020年第11期1-11,共11页
As an advanced solid state bonding process,plastic deformation bonding(PDB)is a highly reliable metallurgical joining method that produces significant plastic deformation at the bonding interface of welded joints thro... As an advanced solid state bonding process,plastic deformation bonding(PDB)is a highly reliable metallurgical joining method that produces significant plastic deformation at the bonding interface of welded joints through thermo-mechanical coupling.In this study,PDB behavior of IN718 superalloy was systematically investigated by performing a series of isothermal compression tests at various processing conditions.It was revealed that new grains evolved in the bonding area through discontinuous dynamic recrystallization(DDRX)at 1000–1150℃.Electron backscattered diffraction(EBSD)and transmission electron microscopy(TEM)results revealed that the bonding of joints is related with interfacial grain boundary(IGB)bulging process,which is considered as a nucleation process of DRXed grain under different deformation environments.During recrystallization process,the bonded interface moved due to strain-induced boundary migration(SIBM)process.Stored energy difference(caused by accumulation of dislocations at the bonding interface)was the dominant factor for SIBM during DRX.The mechanical properties of the bonded joints were dependent upon the recrystallized microstructure and SIBM ensued during PDB. 展开更多
关键词 Isothermal compression bondingDynamic recrystallization Microstructures Grain boundary misorientation
原文传递
上一页 1 2 3 下一页 到第
使用帮助 返回顶部