Aero engines are key power components that provide thrust for the aircraft.The cerme turbine disc allows the new-generation domestic fighter aircraft to increase the overall thrust of the aero engine.Quantifying coati...Aero engines are key power components that provide thrust for the aircraft.The cerme turbine disc allows the new-generation domestic fighter aircraft to increase the overall thrust of the aero engine.Quantifying coatings and analyzing the stress on the teeth play critical roles in improving the turbine disc’s performance,which are two issues must be solved urgently.First,this work pro poses a quantitative analysis algorithm to conduct the Three-Dimensional(3D)distribution informa tion mining of the extracted coatings.Then,it proposes an Industrial Computed Laminography(ICL)reconstruction algorithm for non-destructively reconstructing the turbine disc’s high-quality3D morphological actual feature.Finally,a Finite Element Analysis(FEA)under the ultimate thrus is conducted on ICL reconstruction to verify the working status of the new-generation aero-engine turbine disc.The results show that the proposed quantitative analysis algorithm digitizes the aggre gated conditions of the coating with a statistically normalized Z_(1)value of–2.15 and a confidence leve higher than 95%.Three image-quality quantitative indicators:Peak Signal-to-Noise Ratio(PSNR)Structural Similarity Index Measure(SSIM),and Normalized Mean Square Distance(NMSD)of the proposed ICL reconstruction algorithm on turbine disc laminographic image are 26.45,0.88,and 0.73respectively,which are better than other algorithms.The mechanical analysis of ICL more realisti cally reflects the stress and deformation than that of 3D modeling.This work provides new ideas for the iterative research of new-generation aero-engine turbine discs.展开更多
In recent years,with the development of the social Internet of Things(IoT),all kinds of data accumulated on the network.These data,which contain a lot of social information and opinions.However,these data are rarely f...In recent years,with the development of the social Internet of Things(IoT),all kinds of data accumulated on the network.These data,which contain a lot of social information and opinions.However,these data are rarely fully analyzed,which is a major obstacle to the intelligent development of the social IoT.In this paper,we propose a sentence similarity analysis model to analyze the similarity in people’s opinions on hot topics in social media and news pages.Most of these data are unstructured or semi-structured sentences,so the accuracy of sentence similarity analysis largely determines the model’s performance.For the purpose of improving accuracy,we propose a novel method of sentence similarity computation to extract the syntactic and semantic information of the semi-structured and unstructured sentences.We mainly consider the subjects,predicates and objects of sentence pairs and use Stanford Parser to classify the dependency relation triples to calculate the syntactic and semantic similarity between two sentences.Finally,we verify the performance of the model with the Microsoft Research Paraphrase Corpus(MRPC),which consists of 4076 pairs of training sentences and 1725 pairs of test sentences,and most of the data came from the news of social data.Extensive simulations demonstrate that our method outperforms other state-of-the-art methods regarding the correlation coefficient and the mean deviation.展开更多
Visual Place Recognition(VPR)technology aims to use visual information to judge the location of agents,which plays an irreplaceable role in tasks such as loop closure detection and relocation.It is well known that pre...Visual Place Recognition(VPR)technology aims to use visual information to judge the location of agents,which plays an irreplaceable role in tasks such as loop closure detection and relocation.It is well known that previous VPR algorithms emphasize the extraction and integration of general image features,while ignoring the mining of salient features that play a key role in the discrimination of VPR tasks.To this end,this paper proposes a Domain-invariant Information Extraction and Optimization Network(DIEONet)for VPR.The core of the algorithm is a newly designed Domain-invariant Information Mining Module(DIMM)and a Multi-sample Joint Triplet Loss(MJT Loss).Specifically,DIMM incorporates the interdependence between different spatial regions of the feature map in the cascaded convolutional unit group,which enhances the model’s attention to the domain-invariant static object class.MJT Loss introduces the“joint processing of multiple samples”mechanism into the original triplet loss,and adds a new distance constraint term for“positive and negative”samples,so that the model can avoid falling into local optimum during training.We demonstrate the effectiveness of our algorithm by conducting extensive experiments on several authoritative benchmarks.In particular,the proposed method achieves the best performance on the TokyoTM dataset with a Recall@1 metric of 92.89%.展开更多
Dear Editor,This letter focuses on the remaining useful life(RUL)prediction task under limited labeled samples.Existing machine-learning-based RUL prediction methods for this task usually pay attention to mining degra...Dear Editor,This letter focuses on the remaining useful life(RUL)prediction task under limited labeled samples.Existing machine-learning-based RUL prediction methods for this task usually pay attention to mining degradation information to improve the prediction accuracy of degradation value or health indicator for the next epoch.However,they ignore the cumulative prediction error caused by iterations before reaching the failure point.展开更多
Geological reports are a significant accomplishment for geologists involved in geological investigations and scientific research as they contain rich data and textual information.With the rapid development of science ...Geological reports are a significant accomplishment for geologists involved in geological investigations and scientific research as they contain rich data and textual information.With the rapid development of science and technology,a large number of textual reports have accumulated in the field of geology.However,many non-hot topics and non-English speaking regions are neglected in mainstream geoscience databases for geological information mining,making it more challenging for some researchers to extract necessary information from these texts.Natural Language Processing(NLP)has obvious advantages in processing large amounts of textual data.The objective of this paper is to identify geological named entities from Chinese geological texts using NLP techniques.We propose the RoBERTa-Prompt-Tuning-NER method,which leverages the concept of Prompt Learning and requires only a small amount of annotated data to train superior models for recognizing geological named entities in low-resource dataset configurations.The RoBERTa layer captures context-based information and longer-distance dependencies through dynamic word vectors.Finally,we conducted experiments on the constructed Geological Named Entity Recognition(GNER)dataset.Our experimental results show that the proposed model achieves the highest F1 score of 80.64%among the four baseline algorithms,demonstrating the reliability and robustness of using the model for Named Entity Recognition of geological texts.展开更多
Analyzed and compared with some digitizeed mine build state first.Secondly analyzed opportunity and challenge that the Chinese mine faces,and pointed out certainty and necessity of building digitization of mine,Summar...Analyzed and compared with some digitizeed mine build state first.Secondly analyzed opportunity and challenge that the Chinese mine faces,and pointed out certainty and necessity of building digitization of mine,Summarized the present task that charac- teristic,DM,MGIS of the digital mine develop and construct and employ finally,and carry on the summary to structure and function of the component mine integrated information system.展开更多
In the last century, there has been a significant development in the evaluation of methods to predict ground movement due to underground extraction. Some remarkable developments in three-dimensional computational meth...In the last century, there has been a significant development in the evaluation of methods to predict ground movement due to underground extraction. Some remarkable developments in three-dimensional computational methods have been supported in civil engineering, subsidence engineering and mining engineering practice. However, ground movement problem due to mining extraction sequence is effectively four dimensional (4D). A rational prediction is getting more and more important for long-term underground mining planning. Hence, computer-based analytical methods that realistically simulate spatially distributed time-dependent ground movement process are needed for the reliable long-term underground mining planning to minimize the surface environmental damages. In this research, a new computational system is developed to simulate four-dimensional (4D) ground movement by combining a stochastic medium theory, Knothe time-delay model and geographic information system (GIS) technology. All the calculations are implemented by a computational program, in which the components of GIS are used to fulfill the spatial-temporal analysis model. In this paper a tight coupling strategy based on component object model of GIS technology is used to overcome the problems of complex three-dimensional extraction model and spatial data integration. Moreover, the implementation of computational of the interfaces of the developed tool is described. The GIS based developed tool is validated by two study cases. The developed computational tool and models are achieved within the GIS system so the effective and efficient calculation methodology can be obtained, so the simulation problems of 4D ground movement due to underground mining extraction sequence can be solved by implementation of the developed tool in GIS.展开更多
基金supported by the National Natural Science Foundation of China(No.51975026)。
文摘Aero engines are key power components that provide thrust for the aircraft.The cerme turbine disc allows the new-generation domestic fighter aircraft to increase the overall thrust of the aero engine.Quantifying coatings and analyzing the stress on the teeth play critical roles in improving the turbine disc’s performance,which are two issues must be solved urgently.First,this work pro poses a quantitative analysis algorithm to conduct the Three-Dimensional(3D)distribution informa tion mining of the extracted coatings.Then,it proposes an Industrial Computed Laminography(ICL)reconstruction algorithm for non-destructively reconstructing the turbine disc’s high-quality3D morphological actual feature.Finally,a Finite Element Analysis(FEA)under the ultimate thrus is conducted on ICL reconstruction to verify the working status of the new-generation aero-engine turbine disc.The results show that the proposed quantitative analysis algorithm digitizes the aggre gated conditions of the coating with a statistically normalized Z_(1)value of–2.15 and a confidence leve higher than 95%.Three image-quality quantitative indicators:Peak Signal-to-Noise Ratio(PSNR)Structural Similarity Index Measure(SSIM),and Normalized Mean Square Distance(NMSD)of the proposed ICL reconstruction algorithm on turbine disc laminographic image are 26.45,0.88,and 0.73respectively,which are better than other algorithms.The mechanical analysis of ICL more realisti cally reflects the stress and deformation than that of 3D modeling.This work provides new ideas for the iterative research of new-generation aero-engine turbine discs.
基金supported by the Major Scientific and Technological Projects of CNPC under Grant ZD2019-183-006partially supported by the Shandong Provincial Natural Science Foundation,China under Grant ZR2020MF006partially supported by“the Fundamental Research Funds for the Central Universities”of China University of Petroleum(East China)under Grant 20CX05017A,18CX02139A.
文摘In recent years,with the development of the social Internet of Things(IoT),all kinds of data accumulated on the network.These data,which contain a lot of social information and opinions.However,these data are rarely fully analyzed,which is a major obstacle to the intelligent development of the social IoT.In this paper,we propose a sentence similarity analysis model to analyze the similarity in people’s opinions on hot topics in social media and news pages.Most of these data are unstructured or semi-structured sentences,so the accuracy of sentence similarity analysis largely determines the model’s performance.For the purpose of improving accuracy,we propose a novel method of sentence similarity computation to extract the syntactic and semantic information of the semi-structured and unstructured sentences.We mainly consider the subjects,predicates and objects of sentence pairs and use Stanford Parser to classify the dependency relation triples to calculate the syntactic and semantic similarity between two sentences.Finally,we verify the performance of the model with the Microsoft Research Paraphrase Corpus(MRPC),which consists of 4076 pairs of training sentences and 1725 pairs of test sentences,and most of the data came from the news of social data.Extensive simulations demonstrate that our method outperforms other state-of-the-art methods regarding the correlation coefficient and the mean deviation.
基金supported by the Natural Science Foundation of Xinjiang Uygur Autonomous Region under grant number 2022D01B186.
文摘Visual Place Recognition(VPR)technology aims to use visual information to judge the location of agents,which plays an irreplaceable role in tasks such as loop closure detection and relocation.It is well known that previous VPR algorithms emphasize the extraction and integration of general image features,while ignoring the mining of salient features that play a key role in the discrimination of VPR tasks.To this end,this paper proposes a Domain-invariant Information Extraction and Optimization Network(DIEONet)for VPR.The core of the algorithm is a newly designed Domain-invariant Information Mining Module(DIMM)and a Multi-sample Joint Triplet Loss(MJT Loss).Specifically,DIMM incorporates the interdependence between different spatial regions of the feature map in the cascaded convolutional unit group,which enhances the model’s attention to the domain-invariant static object class.MJT Loss introduces the“joint processing of multiple samples”mechanism into the original triplet loss,and adds a new distance constraint term for“positive and negative”samples,so that the model can avoid falling into local optimum during training.We demonstrate the effectiveness of our algorithm by conducting extensive experiments on several authoritative benchmarks.In particular,the proposed method achieves the best performance on the TokyoTM dataset with a Recall@1 metric of 92.89%.
基金supported in part by the National Natural Science Foundation of China(U2034209)the Postdoctoral Science Foundation of Chongqing(cstc2021jcyj-bsh X0047)+1 种基金the Fundamental Research Funds for the Central Universities(2022CDJJMRH-008)the National Natural Science Foundation of China(62203075)
文摘Dear Editor,This letter focuses on the remaining useful life(RUL)prediction task under limited labeled samples.Existing machine-learning-based RUL prediction methods for this task usually pay attention to mining degradation information to improve the prediction accuracy of degradation value or health indicator for the next epoch.However,they ignore the cumulative prediction error caused by iterations before reaching the failure point.
基金supported by the National Natural Science Foundation of China(Nos.42488201,42172137,42050104,and 42050102)the National Key R&D Program of China(No.2023YFF0804000)Sichuan Provincial Youth Science&Technology Innovative Research Group Fund(No.2022JDTD0004)
文摘Geological reports are a significant accomplishment for geologists involved in geological investigations and scientific research as they contain rich data and textual information.With the rapid development of science and technology,a large number of textual reports have accumulated in the field of geology.However,many non-hot topics and non-English speaking regions are neglected in mainstream geoscience databases for geological information mining,making it more challenging for some researchers to extract necessary information from these texts.Natural Language Processing(NLP)has obvious advantages in processing large amounts of textual data.The objective of this paper is to identify geological named entities from Chinese geological texts using NLP techniques.We propose the RoBERTa-Prompt-Tuning-NER method,which leverages the concept of Prompt Learning and requires only a small amount of annotated data to train superior models for recognizing geological named entities in low-resource dataset configurations.The RoBERTa layer captures context-based information and longer-distance dependencies through dynamic word vectors.Finally,we conducted experiments on the constructed Geological Named Entity Recognition(GNER)dataset.Our experimental results show that the proposed model achieves the highest F1 score of 80.64%among the four baseline algorithms,demonstrating the reliability and robustness of using the model for Named Entity Recognition of geological texts.
基金the Fund of Center for Doctors of Ministry of Education of China(20050147002)Key Laboratory Project of Institution of Higher Education of Liaoning Province(20060370)
文摘Analyzed and compared with some digitizeed mine build state first.Secondly analyzed opportunity and challenge that the Chinese mine faces,and pointed out certainty and necessity of building digitization of mine,Summarized the present task that charac- teristic,DM,MGIS of the digital mine develop and construct and employ finally,and carry on the summary to structure and function of the component mine integrated information system.
文摘In the last century, there has been a significant development in the evaluation of methods to predict ground movement due to underground extraction. Some remarkable developments in three-dimensional computational methods have been supported in civil engineering, subsidence engineering and mining engineering practice. However, ground movement problem due to mining extraction sequence is effectively four dimensional (4D). A rational prediction is getting more and more important for long-term underground mining planning. Hence, computer-based analytical methods that realistically simulate spatially distributed time-dependent ground movement process are needed for the reliable long-term underground mining planning to minimize the surface environmental damages. In this research, a new computational system is developed to simulate four-dimensional (4D) ground movement by combining a stochastic medium theory, Knothe time-delay model and geographic information system (GIS) technology. All the calculations are implemented by a computational program, in which the components of GIS are used to fulfill the spatial-temporal analysis model. In this paper a tight coupling strategy based on component object model of GIS technology is used to overcome the problems of complex three-dimensional extraction model and spatial data integration. Moreover, the implementation of computational of the interfaces of the developed tool is described. The GIS based developed tool is validated by two study cases. The developed computational tool and models are achieved within the GIS system so the effective and efficient calculation methodology can be obtained, so the simulation problems of 4D ground movement due to underground mining extraction sequence can be solved by implementation of the developed tool in GIS.