期刊文献+
共找到150篇文章
< 1 2 8 >
每页显示 20 50 100
Hybrid Hierarchical Particle Swarm Optimization with Evolutionary Artificial Bee Colony Algorithm for Task Scheduling in Cloud Computing
1
作者 Shasha Zhao Huanwen Yan +3 位作者 Qifeng Lin Xiangnan Feng He Chen Dengyin Zhang 《Computers, Materials & Continua》 SCIE EI 2024年第1期1135-1156,共22页
Task scheduling plays a key role in effectively managing and allocating computing resources to meet various computing tasks in a cloud computing environment.Short execution time and low load imbalance may be the chall... Task scheduling plays a key role in effectively managing and allocating computing resources to meet various computing tasks in a cloud computing environment.Short execution time and low load imbalance may be the challenges for some algorithms in resource scheduling scenarios.In this work,the Hierarchical Particle Swarm Optimization-Evolutionary Artificial Bee Colony Algorithm(HPSO-EABC)has been proposed,which hybrids our presented Evolutionary Artificial Bee Colony(EABC),and Hierarchical Particle Swarm Optimization(HPSO)algorithm.The HPSO-EABC algorithm incorporates both the advantages of the HPSO and the EABC algorithm.Comprehensive testing including evaluations of algorithm convergence speed,resource execution time,load balancing,and operational costs has been done.The results indicate that the EABC algorithm exhibits greater parallelism compared to the Artificial Bee Colony algorithm.Compared with the Particle Swarm Optimization algorithm,the HPSO algorithmnot only improves the global search capability but also effectively mitigates getting stuck in local optima.As a result,the hybrid HPSO-EABC algorithm demonstrates significant improvements in terms of stability and convergence speed.Moreover,it exhibits enhanced resource scheduling performance in both homogeneous and heterogeneous environments,effectively reducing execution time and cost,which also is verified by the ablation experimental. 展开更多
关键词 Cloud computing distributed processing evolutionary artificial bee colony algorithm hierarchical particle swarm optimization load balancing
在线阅读 下载PDF
A Chaotic Local Search-Based Particle Swarm Optimizer for Large-Scale Complex Wind Farm Layout Optimization 被引量:4
2
作者 Zhenyu Lei Shangce Gao +2 位作者 Zhiming Zhang Haichuan Yang Haotian Li 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第5期1168-1180,共13页
Wind energy has been widely applied in power generation to alleviate climate problems.The wind turbine layout of a wind farm is a primary factor of impacting power conversion efficiency due to the wake effect that red... Wind energy has been widely applied in power generation to alleviate climate problems.The wind turbine layout of a wind farm is a primary factor of impacting power conversion efficiency due to the wake effect that reduces the power outputs of wind turbines located in downstream.Wind farm layout optimization(WFLO)aims to reduce the wake effect for maximizing the power outputs of the wind farm.Nevertheless,the wake effect among wind turbines increases significantly as the number of wind turbines increases in the wind farm,which severely affect power conversion efficiency.Conventional heuristic algorithms suffer from issues of low solution quality and local optimum for large-scale WFLO under complex wind scenarios.Thus,a chaotic local search-based genetic learning particle swarm optimizer(CGPSO)is proposed to optimize large-scale WFLO problems.CGPSO is tested on four larger-scale wind farms under four complex wind scenarios and compares with eight state-of-the-art algorithms.The experiment results indicate that CGPSO significantly outperforms its competitors in terms of performance,stability,and robustness.To be specific,a success and failure memories-based selection is proposed to choose a chaotic map for chaotic search local.It improves the solution quality.The parameter and search pattern of chaotic local search are also analyzed for WFLO problems. 展开更多
关键词 Chaotic local search(CLS) evolutionary computation genetic learning particle swarm optimization(PSO) wake effect wind farm layout optimization(WFLO)
在线阅读 下载PDF
Weed Classification Using Particle Swarm Optimization and Deep Learning Models
3
作者 M.Manikandakumar P.Karthikeyan 《Computer Systems Science & Engineering》 SCIE EI 2023年第1期913-927,共15页
Weed is a plant that grows along with nearly allfield crops,including rice,wheat,cotton,millets and sugar cane,affecting crop yield and quality.Classification and accurate identification of all types of weeds is a cha... Weed is a plant that grows along with nearly allfield crops,including rice,wheat,cotton,millets and sugar cane,affecting crop yield and quality.Classification and accurate identification of all types of weeds is a challenging task for farmers in earlier stage of crop growth because of similarity.To address this issue,an efficient weed classification model is proposed with the Deep Convolutional Neural Network(CNN)that implements automatic feature extraction and performs complex feature learning for image classification.Throughout this work,weed images were trained using the proposed CNN model with evolutionary computing approach to classify the weeds based on the two publicly available weed datasets.The Tamil Nadu Agricultural University(TNAU)dataset used as afirst dataset that consists of 40 classes of weed images and the other dataset is from Indian Council of Agriculture Research–Directorate of Weed Research(ICAR-DWR)which contains 50 classes of weed images.An effective Particle Swarm Optimization(PSO)technique is applied in the proposed CNN to automa-tically evolve and improve its classification accuracy.The proposed model was evaluated and compared with pre-trained transfer learning models such as GoogLeNet,AlexNet,Residual neural Network(ResNet)and Visual Geometry Group Network(VGGNet)for weed classification.This work shows that the performance of the PSO assisted proposed CNN model is significantly improved the success rate by 98.58%for TNAU and 97.79%for ICAR-DWR weed datasets. 展开更多
关键词 Deep learning convolutional neural network weed classification transfer learning particle swarm optimization evolutionary computing Algorithm 1:Metrics Evaluation
在线阅读 下载PDF
An Improved Particle Swarm Optimization Algorithm Based on Ensemble Technique
4
作者 施彦 黄聪明 《Defence Technology(防务技术)》 SCIE EI CAS 2006年第4期310-314,共5页
An improved particle swarm optimization (PSO) algorithm based on ensemble technique is presented. The algorithm combines some previous best positions (pbest) of the particles to get an ensemble position (Epbest), whic... An improved particle swarm optimization (PSO) algorithm based on ensemble technique is presented. The algorithm combines some previous best positions (pbest) of the particles to get an ensemble position (Epbest), which is used to replace the global best position (gbest). It is compared with the standard PSO algorithm invented by Kennedy and Eberhart and some improved PSO algorithms based on three different benchmark functions. The simulation results show that the improved PSO based on ensemble technique can get better solutions than the standard PSO and some other improved algorithms under all test cases. 展开更多
关键词 机器学习 进化计算 粒子群优化算法 系综技术
在线阅读 下载PDF
Stability,Convergence of Harmonious Particle Swarm Optimizer and Its Application
5
作者 潘峰 陈杰 +2 位作者 蔡涛 甘明刚 王光辉 《Journal of Beijing Institute of Technology》 EI CAS 2008年第1期35-40,共6页
Particle swarm optimizer (PSO), a new evolutionary computation algorithm, exhibits good performance for optimization problems, although PSO can not guarantee convergence of a global minimum, even a local minimum. Ho... Particle swarm optimizer (PSO), a new evolutionary computation algorithm, exhibits good performance for optimization problems, although PSO can not guarantee convergence of a global minimum, even a local minimum. However, there are some adjustable parameters and restrictive conditions which can affect performance of the algorithm. The sufficient conditions for asymptotic stability of an acceleration factor and inertia weight are deduced in this paper. The value of the inertia weight w is enhanced to ( - 1, 1). Furthermore a new adaptive PSO algorithm--harmonious PSO (HPSO) is proposed and proved that HPSO is a global search algorithm. Finally it is focused on a design task of a servo system controller. Considering the existence of model uncertainty and noise from sensors, HPSO are applied to optimize the parameters of fuzzy PID controller. The experiment results demonstrate the efficiency of the methods. 展开更多
关键词 evolutionary computation particle swarm optimizer asymptotic stability global convergence fuzzy PID
在线阅读 下载PDF
Momentum particle swarm optimizer
6
作者 Liu Yu Qin Zheng +1 位作者 Wang Xianghua He Xingshi 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第4期941-946,共6页
The previous particle swarm optimizers lack direct mechanism to prevent particles beyond predefined search space, which results in invalid solutions in some special cases. A momentum factor is introduced into the orig... The previous particle swarm optimizers lack direct mechanism to prevent particles beyond predefined search space, which results in invalid solutions in some special cases. A momentum factor is introduced into the original particle swarm optimizer to resolve this problem. Furthermore, in order to accelerate convergence, a new strategy about updating velocities is given. The resulting approach is mromentum-PSO which guarantees that particles are never beyond predefined search space without checking boundary in every iteration. In addition, linearly decreasing wight PSO (LDW-PSO) equipped with a boundary checking strategy is also discussed, which is denoted as LDWBC-PSO. LDW-PSO, LDWBC-PSO and momentum-PSO are compared in optimization on five test functions. The experimental results show that in some special cases LDW-PSO finds invalid solutions and LDWBC-PSO has poor performance, while momentum-PSO not only exhibits good performance but also reduces computational cost for updating velocities. 展开更多
关键词 evolutionary computation particle swarm optimization optimization algorithm.
在线阅读 下载PDF
基于改进灰狼算法求解武器目标分配问题
7
作者 陈阳 李姜 +2 位作者 王烨 高远 郭立红 《兵器装备工程学报》 北大核心 2025年第6期227-233,共7页
针对群智能优化算法求解武器目标分配问题搜索效率低的现状,提出了一种改进的灰狼优化算法。不同于传统的灰狼优化算法,该研究创新性地借鉴了遗传算法的思想,在灰狼优化过程中引入了交叉算子,这一改进不仅增加了种群内部的信息共享机会... 针对群智能优化算法求解武器目标分配问题搜索效率低的现状,提出了一种改进的灰狼优化算法。不同于传统的灰狼优化算法,该研究创新性地借鉴了遗传算法的思想,在灰狼优化过程中引入了交叉算子,这一改进不仅增加了种群内部的信息共享机会,还有效提升了算法的全局探索能力,使得算法能够在更大范围内寻找最优解,避免陷入局部最优的问题。仿真结果表明,在目标数量与武器数量均为20的测试组中,改进后的灰狼优化算法相较于标准的粒子群优化算法(PSO)和传统的灰狼优化算法(GWO),取得了更为优异的成绩,改进算法的适应度中位数相对于PSO和GWO分别下降了11.57%和6.37%。改进灰狼优化算法显著提升了GWO算法的全局寻优能力,且能够有效解决WTA问题。 展开更多
关键词 武器目标分配问题 群智能优化 灰狼优化算法 粒子群算法 进化计算
在线阅读 下载PDF
非支配排序粒子群遗传算法解决车辆位置路由问题
8
作者 刘琼昕 王甜甜 王亚男 《吉林大学学报(工学版)》 北大核心 2025年第7期2464-2474,共11页
提出一种混合全局局部搜索的非支配排序粒子群遗传算法,该算法能够有效解决车辆位置路由问题。全局搜索使用粒子群和遗传算法以提高收敛速度,使用第三代非支配排序遗传算法挑选种群下一代个体以保留种群多样性。局部搜索策略针对优质和... 提出一种混合全局局部搜索的非支配排序粒子群遗传算法,该算法能够有效解决车辆位置路由问题。全局搜索使用粒子群和遗传算法以提高收敛速度,使用第三代非支配排序遗传算法挑选种群下一代个体以保留种群多样性。局部搜索策略针对优质和次优个体进行优化,以提高得到更优解的概率,对种群中后1/12个体打乱用户顺序,提高种群质量。使用开放标准数据集将本文算法与基准算法对比,结果表明本文算法在种群质量、多样性上均更优,能够为车辆位置路由问题提供有效的解决方案。 展开更多
关键词 计算机应用 车辆位置路由问题 第三代非支配排序遗传算法 粒子群算法 遗传算法
原文传递
基于三种群粒子群优化策略的移动机器人路径规划 被引量:1
9
作者 王珂 姜春艳 +1 位作者 黄黎 张新海 《深圳大学学报(理工版)》 北大核心 2025年第4期447-454,I0006-I0008,共11页
针对移动机器人在复杂环境路径规划中存在的全局搜索能力不足、易陷入局部最优及路径质量欠佳等问题,提出一种基于三种群粒子群优化(three-population particle swarm optimization,TPPSO)策略的移动机器人路径规划算法.该算法通过探索... 针对移动机器人在复杂环境路径规划中存在的全局搜索能力不足、易陷入局部最优及路径质量欠佳等问题,提出一种基于三种群粒子群优化(three-population particle swarm optimization,TPPSO)策略的移动机器人路径规划算法.该算法通过探索群、开发群和增强群的协同进化机制,增强了全局搜索与局部开发能力.探索群利用粒子质量评估和随机选择策略更新速度;开发群采用线性认知系数动态调整机制;增强群引入较大随机分量以减少局部最优影响.算法引入随机扰动策略,当搜索性能停滞时对粒子群施加扰动,以增强多样性.在单峰函数(F_(1))、带噪声单峰函数(F_(4))和多峰函数(F_(9))3类基准函数测试中,TPPSO算法的平均值和标准差均优于传统PSO算法、SAVPSO算法和RRT*算法,验证了其优异的优化性能和稳定性.在4个10 m×10 m的二维标准环境中生成的路径能有效规避障碍物并减少不必要的迂回,路径质量最优.复杂环境验证实验进一步发现,在动态多障碍物环境中的规划成功率达91.5%;三维环境中的平均爬升率为10.7%.TPPSO算法能有效解决移动机器人在复杂环境下的路径规划问题. 展开更多
关键词 计算机应用 路径规划 粒子群优化 进化算法 线性认知系数 随机扰动
在线阅读 下载PDF
求解连续Minimax问题的粒子群优化方法 被引量:1
10
作者 柯晶 钱积新 乔谊正 《仪器仪表学报》 EI CAS CSCD 北大核心 2005年第3期267-271,282,共6页
Minimax问题是一类十分重要同时也是比较困难的优化问题。提出了一种基于粒子群优化的连续minimax问题求解 方法。方法的基本思想是维持两个在不同搜索空间中不对称共同进化的群体并采用粒子群优化算法获得原minimax问题的 一个解。仿... Minimax问题是一类十分重要同时也是比较困难的优化问题。提出了一种基于粒子群优化的连续minimax问题求解 方法。方法的基本思想是维持两个在不同搜索空间中不对称共同进化的群体并采用粒子群优化算法获得原minimax问题的 一个解。仿真结果显示此方法可以有效求解对称和非对称连续minimax问题。 展开更多
关键词 minimax问题 连续 求解方法 优化问题 搜索空间 粒子群优化算法 共同进化 仿真结果 显示 非对称
在线阅读 下载PDF
基于环境识别策略的多目标自适应粒子群 算法及应用
11
作者 武保同 舒若琦 陈志祥 《计算机应用研究》 北大核心 2025年第10期2980-2988,共9页
针对标准的多目标粒子群算法在寻优过程中易出现局部最优、收敛速度过快和精度较低等问题,提出了一种基于环境识别的多目标自适应粒子群算法。利用佳点集策略生成初始种群,使个体均匀分布在解空间内;采用非线性惯性权重机制和交叉变异策... 针对标准的多目标粒子群算法在寻优过程中易出现局部最优、收敛速度过快和精度较低等问题,提出了一种基于环境识别的多目标自适应粒子群算法。利用佳点集策略生成初始种群,使个体均匀分布在解空间内;采用非线性惯性权重机制和交叉变异策略,避免算法在搜索过程中过快收敛;提出基于环境识别的自适应学习算子和自适应跳跃协作算子,分别通过自识别解空间内种群多样性程度和粒子小生境内拥挤度信息实现粒子间信息的交互和学习。通过多组基准函数的仿真实验进行比较,结果表明算法的搜索能力和优化精度都得到明显改善。最后,通过一个带有NP-hard性质的实际多阶段生产案例验证了算法的实用性。 展开更多
关键词 粒子群算法 进化计算 自适应学习 多目标优化 多阶段生产问题
在线阅读 下载PDF
基于协同进化微粒群的云计算模型任务调度策略研究
12
作者 陈懋 《延边大学学报(自然科学版)》 2025年第2期140-146,共7页
为了提升云计算模型的任务调度效率和资源利用率,提出了一种基于协同进化微粒群的云计算模型任务调度策略.首先,将云计算模型的任务调度抽象成最优解问题;然后,将一个逻辑完整的任务分解成多个子任务;最后,通过协同进化机制引导粒子变异... 为了提升云计算模型的任务调度效率和资源利用率,提出了一种基于协同进化微粒群的云计算模型任务调度策略.首先,将云计算模型的任务调度抽象成最优解问题;然后,将一个逻辑完整的任务分解成多个子任务;最后,通过协同进化机制引导粒子变异,使其逐步趋向最优解.利用Cloudsim平台对该策略进行仿真实验表明,该策略能够有效降低云计算模型的任务处理时间和任务调度成本,并能有效平衡系统负载,且该策略在这些性能方面显著优于传统微粒群算法和优化后的微粒群算法.研究结果可为云计算环境中的大规模任务调度场景的构建和分析提供参考. 展开更多
关键词 云计算 微粒群算法 协同进化算法 任务调度
在线阅读 下载PDF
Evolutionary Computation for Expensive Optimization:A Survey 被引量:12
13
作者 Jian-Yu Li Zhi-Hui Zhan Jun Zhang 《Machine Intelligence Research》 EI CSCD 2022年第1期3-23,共21页
Expensive optimization problem(EOP) widely exists in various significant real-world applications. However, EOP requires expensive or even unaffordable costs for evaluating candidate solutions, which is expensive for t... Expensive optimization problem(EOP) widely exists in various significant real-world applications. However, EOP requires expensive or even unaffordable costs for evaluating candidate solutions, which is expensive for the algorithm to find a satisfactory solution. Moreover, due to the fast-growing application demands in the economy and society, such as the emergence of the smart cities, the internet of things, and the big data era, solving EOP more efficiently has become increasingly essential in various fields, which poses great challenges on the problem-solving ability of optimization approach for EOP. Among various optimization approaches, evolutionary computation(EC) is a promising global optimization tool widely used for solving EOP efficiently in the past decades. Given the fruitful advancements of EC for EOP, it is essential to review these advancements in order to synthesize and give previous research experiences and references to aid the development of relevant research fields and real-world applications. Motivated by this, this paper aims to provide a comprehensive survey to show why and how EC can solve EOP efficiently. For this aim, this paper firstly analyzes the total optimization cost of EC in solving EOP. Then, based on the analysis, three promising research directions are pointed out for solving EOP, which are problem approximation and substitution, algorithm design and enhancement, and parallel and distributed computation. Note that, to the best of our knowledge, this paper is the first that outlines the possible directions for efficiently solving EOP by analyzing the total expensive cost. Based on this, existing works are reviewed comprehensively via a taxonomy with four parts, including the above three research directions and the real-world application part. Moreover, some future research directions are also discussed in this paper. It is believed that such a survey can attract attention, encourage discussions, and stimulate new EC research ideas for solving EOP and related real-world applications more efficiently. 展开更多
关键词 Expensive optimization problem evolutionary computation evolutionary algorithm swarm intelligence particle swarm optimization differential evolution
原文传递
概率驱动的动态多目标多智能体协同调度进化优化
14
作者 刘晓芳 张军 《计算机应用》 CSCD 北大核心 2024年第5期1372-1377,共6页
在多智能体系统中,协作任务往往动态变化,且存在多个冲突的优化目标,因此动态多目标多智能体协同调度问题已经成为亟须解决的关键问题之一。针对动态环境下多智能体协同调度需求,提出了概率驱动的动态预测策略,旨在有效利用历史环境概... 在多智能体系统中,协作任务往往动态变化,且存在多个冲突的优化目标,因此动态多目标多智能体协同调度问题已经成为亟须解决的关键问题之一。针对动态环境下多智能体协同调度需求,提出了概率驱动的动态预测策略,旨在有效利用历史环境概率分布,预测决策解在新环境的概率分布,从而生成新的多智能体调度方案,实现调度算法在动态环境下的快速响应。具体来讲,设计了基于元素的概率分布表达,以表示解的构成元素在动态环境的适应性,并根据优化算法迭代最优解逐步更新概率分布以趋近实际分布;构建了基于融合的概率分布预测机制,考虑到环境变化的连续性和相关性,当环境变化时,通过融合历史概率分布预测新环境的概率分布,为新环境优化提供先验知识;提出了基于启发式的新解采样机制,结合概率分布和启发式信息,生成解方案以更新过时种群。将概率驱动的动态预测策略嵌入新型的多目标进化算法,获得概率驱动的动态多目标进化算法。在10个动态多目标多智能体协同调度问题实例上,实验结果表明,所提算法在解最优性和多样性上显著优于已有多目标进化算法,所提的概率驱动的动态预测策略能够提高多目标进化算法对动态环境的适应能力。 展开更多
关键词 动态多目标优化 粒子群优化 进化计算 多智能体协同调度 概率驱动
在线阅读 下载PDF
多目标优化问题的进化计算方法
15
作者 卢佳明 《计算机应用文摘》 2024年第15期147-149,共3页
多目标优化问题在实际应用中广泛存在,涵盖了工程设计、资源分配、机器学习等领域。由于其具有问题空间复杂、决策变量众多及目标之间存在相互矛盾的特性,传统优化方法难以在解空间中找到全局的、非支配的解集。为解决多目标优化问题,... 多目标优化问题在实际应用中广泛存在,涵盖了工程设计、资源分配、机器学习等领域。由于其具有问题空间复杂、决策变量众多及目标之间存在相互矛盾的特性,传统优化方法难以在解空间中找到全局的、非支配的解集。为解决多目标优化问题,文章探究了基于进化计算的方法。 展开更多
关键词 多目标优化问题 进化计算 遗传算法 粒子群算法 差分进化算法
在线阅读 下载PDF
粒子群优化算法 被引量:317
16
作者 李爱国 覃征 +1 位作者 鲍复民 贺升平 《计算机工程与应用》 CSCD 北大核心 2002年第21期1-3,17,共4页
粒子群优化(PSO)算法是一类随机全局优化技术,PSO算法通过粒子间的相互作用发现复杂搜索空间中的最优区域。PSO的优势在于简单容易实现而又功能强大。PSO已成为国际演化计算界研究的热点。该文介绍了基本的PSO算法、若干类改进的PSO算... 粒子群优化(PSO)算法是一类随机全局优化技术,PSO算法通过粒子间的相互作用发现复杂搜索空间中的最优区域。PSO的优势在于简单容易实现而又功能强大。PSO已成为国际演化计算界研究的热点。该文介绍了基本的PSO算法、若干类改进的PSO算法及其应用,并讨论将来可能的研究内容。 展开更多
关键词 粒子群优化算法 演化计算 群智能 随机全局优化技术
在线阅读 下载PDF
改进的基本粒子群优化算法 被引量:43
17
作者 王存睿 段晓东 +1 位作者 刘向东 周福才 《计算机工程》 CAS CSCD 北大核心 2004年第21期35-37,共3页
提出一种基本粒子群算法(BPSO)改进方案,将基本粒子群算法粒子行为基于个体极值点和全局极值点变化为基于个体极值中心点和全局极值点,使得粒子能够获得更多的信息量来调整自身的状态。用3个基准函数对新算法进行了实验,结果表明,新算... 提出一种基本粒子群算法(BPSO)改进方案,将基本粒子群算法粒子行为基于个体极值点和全局极值点变化为基于个体极值中心点和全局极值点,使得粒子能够获得更多的信息量来调整自身的状态。用3个基准函数对新算法进行了实验,结果表明,新算法在解的收敛性和稳定性等方面优于基本粒子群算法. 展开更多
关键词 粒子群 优化 进化计算 群智能 BPSO 基准函数
在线阅读 下载PDF
离散粒子群优化算法研究现状综述 被引量:57
18
作者 沈林成 霍霄华 牛轶峰 《系统工程与电子技术》 EI CSCD 北大核心 2008年第10期1986-1990,1994,共6页
粒子群优化算法(PSO)是一类基于群体智能的新型全局优化方法,近年来其离散化形式和方法受到广泛关注。介绍了PSO的基本原理和更新机制,论述了离散PSO算法的研究进展和应用情况,详细介绍了两种离散化策略的机理、更新方法、计算模式和特... 粒子群优化算法(PSO)是一类基于群体智能的新型全局优化方法,近年来其离散化形式和方法受到广泛关注。介绍了PSO的基本原理和更新机制,论述了离散PSO算法的研究进展和应用情况,详细介绍了两种离散化策略的机理、更新方法、计算模式和特点,讨论了离散PSO的发展趋势和进一步研究方向。 展开更多
关键词 离散粒子群算法 组合优化问题 演化计算 群体智能 人工生命
在线阅读 下载PDF
改进的粒子群算法 被引量:34
19
作者 张建科 刘三阳 张晓清 《计算机工程与设计》 CSCD 北大核心 2007年第17期4215-4216,4219,共3页
为改善基本粒子群算法的搜索性能,针对粒子群算法随机性较强、收敛较慢的问题,利用数学中的外推技巧给出了两个新的粒子位置更新公式,由此构造出一种新的算法——强引导型粒子群算法。新算法对粒子位置更新加以引导,试图减少算法的随机... 为改善基本粒子群算法的搜索性能,针对粒子群算法随机性较强、收敛较慢的问题,利用数学中的外推技巧给出了两个新的粒子位置更新公式,由此构造出一种新的算法——强引导型粒子群算法。新算法对粒子位置更新加以引导,试图减少算法的随机性以提高搜索效率。用4个基准函数对新算法进行试验,结果表明,新算法在稳定性和收敛性上优于基本粒子群算法。 展开更多
关键词 粒子群算法 进化算法 强引导 优化 群体智能
在线阅读 下载PDF
一种新的量子群进化算法研究 被引量:13
20
作者 王岩 路春一 +3 位作者 丰小月 黄艳新 邹淑雪 周春光 《小型微型计算机系统》 CSCD 北大核心 2006年第8期1478-1482,共5页
提出了一种基于量子进化的量子群进化算法,使用量子角表示量子比特的状态,并引入改进的粒子群优化策略,对量子群中各量子的量子角进行自适应动态调整.在对0-1背包问题的求解中,表现出很好的性能.
关键词 量子进化 粒子群优化 背包问题 量子群进化 量子角
在线阅读 下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部