Ten years of SABER/TIMED temperature data are used to analyze the global structure and seasonal variations of the migrating 6-h tide from the stratosphere to the lower thermosphere. The amplitudes of the migrating 6-h...Ten years of SABER/TIMED temperature data are used to analyze the global structure and seasonal variations of the migrating 6-h tide from the stratosphere to the lower thermosphere. The amplitudes of the migrating 6-h tide increase with altitudes. In the stratosphere, the migrating 6-h tide peaks around 35°N/S. The climatologically annual mean of the migrating 6-h tide clearly shows the manifestation of the(4, 6) Hough mode between 70 and 90 km that peaks at the equator and near 35°N/S. Above 90 km, the 6-h tide shows more than one Hough mode with the(4, 6) mode being the dominant one. The migrating 6-h tide is stronger in the southern hemisphere. Annual, semiannual, 4-, and 3-month oscillations are the four dominant seasonal variations of the tidal amplitude. In the stratosphere and stratopause, the spring enhancement of the 6-h tide at middle latitudes is the most conspicuous feature. From the mesosphere to the lower thermosphere, the tidal amplitude at low latitudes is gradually in the scale of that at middle latitudes and exhibits different temporal variations at different altitudes and latitudes. Both ozone heating in the stratosphere and the background atmosphere probably affect the generation and the seasonal variations of the migrating 6-h tide. In addition, the non-linear interaction between different tidal harmonics is another possible mechanism.展开更多
Temperature data from SABER/TIMED and Empirical Orthogonal Function (EOF) analysis are taken to examine possible modulations of the temperature migrating diurnal tide (DW1) by latitudinal gradients of zonal mean z...Temperature data from SABER/TIMED and Empirical Orthogonal Function (EOF) analysis are taken to examine possible modulations of the temperature migrating diurnal tide (DW1) by latitudinal gradients of zonal mean zonal wind ( ζ ). The result shows that ζ increases with altitudes and displays clearly seasonal and interannual variability. In the upper meso- sphere and lower thermosphere (MLT), at the latitudes between 20°N and 20°S, when ζ strengthens (weakens) at equinoxes (solstices) the DW1 amplitude increases (decreases) simultaneously. Stronger maximum in March-April equinox occurs in both ζ and the DW1 amplitude. Besides, a quasi-biennial oscillation of DW1 is also found to be synchronous with ζ. The resembling spatial-temporal features suggest that ζ in the upper tropic MLT probably plays an important role in modulating semiannual, annual, and quasi-biennial oscillations in DW1 at the same latitude and altitude. In addition, ζ in the meso- sphere possibly affects the propagation of DW1 and produces SAO of DW1 in the lower thermosphere. Thus, SAO of DW1 in the upper MLT may be a combined effect of ζ both in the mesosphere and in the upper MLT, which models studies should determine in the future.展开更多
By using a three-dimensional fully nonlinear numerical model in spherical coordinates and taking the linear steady solutions of the migrating diurnal and semidi-urnal tides in January from the Global-Scale Wave Model(...By using a three-dimensional fully nonlinear numerical model in spherical coordinates and taking the linear steady solutions of the migrating diurnal and semidi-urnal tides in January from the Global-Scale Wave Model(GSWM)as the initial values,we simulate the linear and nonlinear propagations of the migrating diurnal and semidi-urnal tides in the atmosphere from the ground to the lower thermosphere.A comparison of our simulations with the results of GSWM is also presented.The simulation results show that affected by the nonlinearity,the migrating diurnal and semidiurnal tides propagating in the middle and upper atmosphere exhibit evident short-term variability.The nonlinear interactions between the migrating tides and the background atmosphere can obviously alter the background wind and temperature fields,which suggests that the nonlin-ear propagations of the migrating diurnal and semidiurnal tides impact significantly on the transient dynamical and thermal structures of the background middle and upper at-mosphere and the nonlinear effect is an important cause of the difference between the results of GSWM and observa-tions.展开更多
基金supported by the Chinese Academy of Sciences(Grant No.KZZD-EW-01-2)the National Natural Science Foundation of China(Grant Nos.41331069,41274153)+2 种基金the National Basic Research Program of China(Grant No.2011CB811405)the Specialized Research Fund for State Key Laboratories of Chinaperformed by Numerical Forecast Modelling R&D and VR System of State Key Lab.of Space Weather and Special HPC workstand of Chinese Meridian Project
文摘Ten years of SABER/TIMED temperature data are used to analyze the global structure and seasonal variations of the migrating 6-h tide from the stratosphere to the lower thermosphere. The amplitudes of the migrating 6-h tide increase with altitudes. In the stratosphere, the migrating 6-h tide peaks around 35°N/S. The climatologically annual mean of the migrating 6-h tide clearly shows the manifestation of the(4, 6) Hough mode between 70 and 90 km that peaks at the equator and near 35°N/S. Above 90 km, the 6-h tide shows more than one Hough mode with the(4, 6) mode being the dominant one. The migrating 6-h tide is stronger in the southern hemisphere. Annual, semiannual, 4-, and 3-month oscillations are the four dominant seasonal variations of the tidal amplitude. In the stratosphere and stratopause, the spring enhancement of the 6-h tide at middle latitudes is the most conspicuous feature. From the mesosphere to the lower thermosphere, the tidal amplitude at low latitudes is gradually in the scale of that at middle latitudes and exhibits different temporal variations at different altitudes and latitudes. Both ozone heating in the stratosphere and the background atmosphere probably affect the generation and the seasonal variations of the migrating 6-h tide. In addition, the non-linear interaction between different tidal harmonics is another possible mechanism.
基金supported by the National Natural Science Foundation of China(Grant Nos.41274153&41331069)the National Important Basic Research Project of China(Grant No.2011CB811405)+2 种基金the Chinese Academy of Sciences(Grant No.KZZD-EW-01-2)supported by the Specialized Research Fund for State Key Laboratoriesperformed by Numerical Forecast Modelling R&D and VR System of State Key Lab.of Space Weather and Special HPC work stand of Chinese Meridian Project
文摘Temperature data from SABER/TIMED and Empirical Orthogonal Function (EOF) analysis are taken to examine possible modulations of the temperature migrating diurnal tide (DW1) by latitudinal gradients of zonal mean zonal wind ( ζ ). The result shows that ζ increases with altitudes and displays clearly seasonal and interannual variability. In the upper meso- sphere and lower thermosphere (MLT), at the latitudes between 20°N and 20°S, when ζ strengthens (weakens) at equinoxes (solstices) the DW1 amplitude increases (decreases) simultaneously. Stronger maximum in March-April equinox occurs in both ζ and the DW1 amplitude. Besides, a quasi-biennial oscillation of DW1 is also found to be synchronous with ζ. The resembling spatial-temporal features suggest that ζ in the upper tropic MLT probably plays an important role in modulating semiannual, annual, and quasi-biennial oscillations in DW1 at the same latitude and altitude. In addition, ζ in the meso- sphere possibly affects the propagation of DW1 and produces SAO of DW1 in the lower thermosphere. Thus, SAO of DW1 in the upper MLT may be a combined effect of ζ both in the mesosphere and in the upper MLT, which models studies should determine in the future.
基金supported by the National Natural Science Foundation of China(Grant Nos.40336054 and 40274051)the Program for New Century Excellent Talents in University of Chinathe Opening Foundation of Education Ministry Key Labo-ratory of Geospace Environment and Geodesy in Wuhan University of China.
文摘By using a three-dimensional fully nonlinear numerical model in spherical coordinates and taking the linear steady solutions of the migrating diurnal and semidi-urnal tides in January from the Global-Scale Wave Model(GSWM)as the initial values,we simulate the linear and nonlinear propagations of the migrating diurnal and semidi-urnal tides in the atmosphere from the ground to the lower thermosphere.A comparison of our simulations with the results of GSWM is also presented.The simulation results show that affected by the nonlinearity,the migrating diurnal and semidiurnal tides propagating in the middle and upper atmosphere exhibit evident short-term variability.The nonlinear interactions between the migrating tides and the background atmosphere can obviously alter the background wind and temperature fields,which suggests that the nonlin-ear propagations of the migrating diurnal and semidiurnal tides impact significantly on the transient dynamical and thermal structures of the background middle and upper at-mosphere and the nonlinear effect is an important cause of the difference between the results of GSWM and observa-tions.