Electromagnetic wave(EMW)absorbers with anti-corrosion property are highly desired to enhance the durability of military targets in harsh condition.Herein,cross-link NiAl-layered double hydroxide(NiAl-LDH)nanosheets o...Electromagnetic wave(EMW)absorbers with anti-corrosion property are highly desired to enhance the durability of military targets in harsh condition.Herein,cross-link NiAl-layered double hydroxide(NiAl-LDH)nanosheets on the inner/outer surfaces of carbon microtubes(CMTs)are ingeniously constructed through the combination of atomic layer deposition technique and a hydrothermal method.The obtained NiAl-LDH/CMT composite exhibits excellent EMW absorption and corrosion resistance performance.The large internal cavity of CMT significantly enhances impedance matching.The uniform distribution of NiAl-LDH nanosheets on both the inner and outer surfaces of CMT generates numerous heterogeneous inter-faces that induce substantial polarization loss.Consequently,at a filler rate of only 5 wt.%,the NiAl-LDH/CMT composite exhibits a minimum reflection loss of−60.2 dB and a maximum effective absorp-tion bandwidth of 5.9 GHz.In addition,the combined high impermeability of CMT and the effective Cl^(-)-trapping ability of NiAl-LDH endows NiAl-LDH/CMT composite with outstanding corrosion protection property in simulated seawater environment.Furthermore,the PO_(4)^(3-)anions are effectively incorporated into the NiAl-LDH interlayer via anion exchange,which can further enhance corrosion protection capac-ity through surface inactivation from slow-release PO_(4)^(3-)anions without reducing their EMW absorption performance.In summary,this work can give guidance for the development of efficient anti-corrosion EMW absorption materials.展开更多
A newly natural fine template, kapok fiber, for microtube preparation was reported. Large scale microtubes with high length/diameter ratio and controllable wall thickness and morphology have been successfully fabricat...A newly natural fine template, kapok fiber, for microtube preparation was reported. Large scale microtubes with high length/diameter ratio and controllable wall thickness and morphology have been successfully fabricated with this template. It is a wildly available, low-cost, environmental friendly and fine structured natural template for microtubes. Its thin wall thickness is only about 1-2 um that means the whole template material is tiny and easy for removing. Even there is any residue the amount can be ignored. When the template is covered with a shell component, hollow structured microtube could be obtained by removing the thin inner template, and its shape could be the same as that of the original template (positive copy of the template's shape). The products have high length/diameter ratio and uniform tubular structure. By further modifying the fabricating methods, facile fabrication not only exists for polypyrrole (PPy) in electrochemical deposition, but also for many other organic and inorganic materials. The surface morphology and wall thickness of the resultant microtubes can be easily modulated by controlling the processing conditions. This natural fiber is predicted to be a fine template for fabricating large scale microtubes with large cavity and high length/diameter ratio.展开更多
This paper reports that pure hexagonal aluminium nitride microtubes and nanowires growing along the [0001] direction have been successfully synthesized by directly reacting AlCl3 with NaN3 at low temperature (450℃)...This paper reports that pure hexagonal aluminium nitride microtubes and nanowires growing along the [0001] direction have been successfully synthesized by directly reacting AlCl3 with NaN3 at low temperature (450℃) under condition of non-solvent system. The grey-white powder of reacting product was characterized by high-resolution transmission electron microscope (HRTEM), which shows that the powder is long straight-wire morphology with outer diameter from 40nm to 300 nm and length up to several micrometres. The results of both electron diffraction (ED) and x-ray diffraction (XRD) indicate that the AlN microtubes have a pure hexagonal monocrystal tubular structure with the combination of the curled AlN nanobelts. Room-temperature photoluminescence spectrum of the synthesized sample showed an emission peak, which is closely related to the small size of the microtubes.展开更多
Doping of foreign atoms and construction of unique structures are considered as effective approaches to design high-activity and strongdurability electrocatalysts.Herein,we report Fe-doped nickel hydroxide carbonate h...Doping of foreign atoms and construction of unique structures are considered as effective approaches to design high-activity and strongdurability electrocatalysts.Herein,we report Fe-doped nickel hydroxide carbonate hierarchical microtubes with Ag nanoparticles(denoted Ag/NiFeHC HMTs)through hydrolysis precipitation process.Experimental tests and density functional theory calculations reveal that Fe doping can tune the electron configuration to enhance the conductivity,markedly improve the electrochemical surface area to expose more active sites,and act as reactive centers to lower the free energy of the rate determination step.In addition,the unique hierarchical structure can also offer active sites and excellent cycling stability.Benefitting from these advantages,the as-obtained Ag/NiFeHC HMTs show excellent oxygen evolution reaction activity,with an overpotential of 208 mV at 10 mA cm^(−2)in 1.0M KOH.Also,it could achieve long-term stability at a current density of 20 mA cm^(−2)for 24 h.展开更多
The deviation of flow characteristics from the predictions of the conventional theory for microtubes was attrib- uted to the change of fluid viscosity resulted from the interactions between the molecules on solid wall...The deviation of flow characteristics from the predictions of the conventional theory for microtubes was attrib- uted to the change of fluid viscosity resulted from the interactions between the molecules on solid wall and in fluid. The degree of this departure is dependent on the microtubes materials. A concept of equivalent thickness with which conventional theory can be used to predict the flow in microtubes without modifying the fluid viscosity was put forward. The values of equivalent thickness for fused silica and stainless steel materials were determined as 1.8 μm and 1.5 μm, respectively, by repeated numeri- cal simulation.展开更多
Magnesium(Mg)alloys are promising materials for cardiovascular stent applications due to their good biocompatibility and biodegradability.However,in vitro and in vivo corrosion tests reveal that Mg alloy stents suffer...Magnesium(Mg)alloys are promising materials for cardiovascular stent applications due to their good biocompatibility and biodegradability.However,in vitro and in vivo corrosion tests reveal that Mg alloy stents suffer from a rapid corrosion rate and severe localized corrosion,which is limiting their widespread application.To solve the problem of uneven degradation of stents,a HTHE(long-time and high-temperature heat treatment,large-reduction-ratio hot extrusion)process is used to manufacture Mg-Zn-Y-Nd alloy microtubes in this study.The heat treatment is to dissolve alloying elements and reduce the size of SPPs,and the hot extrusion is to acquire fine-grained and strongly textured microtubes.The microstructural characterization shows that coarse second phases in as-cast alloy are refined and uniformly distributed in matrix of microtubes.After hot extrusion,microtubes show strong texture with basal plain oriented parallel to the longitudinal section(LS).The corrosion testing indicates that severe localized corrosion occurs on the cross section(CS)while localized corrosion is alleviated on the LS.Based on the different corrosion properties of the LS and CS,HTHEed microtubes are promising for solving the problems of rapid corrosion rate and severe localized corrosion of Mg alloy stents.展开更多
For efficient solar energy conversion,the morphology engineering of hollow graphitic carbon nitride(gC3 N4)is one of the promising approachs benefiting from abundant exposed active sites and short photocarrier transpo...For efficient solar energy conversion,the morphology engineering of hollow graphitic carbon nitride(gC3 N4)is one of the promising approachs benefiting from abundant exposed active sites and short photocarrier transport distances,but is difficult to control on account of easy structural collapse.Herein,a facile supramolecular electrostatic self-assembly strategy has been developed for the first time to fabricate mesoporous thin-walled g-C3N4 microtubes(mtw-CNT)with shell thickness of ca.13 nm.The morphological control of g-C3N4 enhances specific surface area by 12 times,induces stronger optical absorption,widens bandgap by 0.18 e V,improves photocurrent density by 2.5 times,and prolongs lifetimes of charge carriers from bulk to surface,compared with those of bulk g-C3N4.As a consequence,the transformed g-C3N4 exhibits the optimum photocatalytic H2-production rate of 3.99 mmol·h^-1·g^-1(λ>420 nm)with remarkable apparent quantum efficiency of 8.7%(λ=420±15 nm)and long-term stability.Moreover,mtw-CNT also achieves high photocatalytic CO2-to-CO selectivity of 96%(λ>420 nm),much better than those on the most previously reported porous g-C3N4 photocatalysts prepared by the conventional hard-templating and soft-templating methods.展开更多
To fully exploit the superiority of tubular structures,in this study,we systematically explore the optimal preparation conditions for Ni/Co_(3)O_(4),including cation species and content,additive species and content,an...To fully exploit the superiority of tubular structures,in this study,we systematically explore the optimal preparation conditions for Ni/Co_(3)O_(4),including cation species and content,additive species and content,and anion species.Our results reveal that the formation of an initial cobalt nickel acetate hydroxide prism is the key factor and directly affects the final microtubular structure.Moreover,P is subsequently doped into the Ni/Co_(3)O_(4)lattice to increase the M^(3+)/M^(2+)molar ratio(M=Co and Ni),promote reaction kinetics,and optimize electronic structure.Consequently,the oxygen evolution reaction performance of P-doped tubular Ni/Co_(3)O_(4)is significantly higher than that of undoped Ni/Co_(3)O_(4)and the state-of-the-art RuO_(2)electrocatalyst.展开更多
It is obvious that the pressure gradient along the axial direction in a pipe flow keeps constant according to the Hagen-Poiseuille equation. However, recent experiments indicated that the distribution of the pressure ...It is obvious that the pressure gradient along the axial direction in a pipe flow keeps constant according to the Hagen-Poiseuille equation. However, recent experiments indicated that the distribution of the pressure seemed no longer linear for liquid flows in microtubes driven by high pressure (1-30MPa). Based on H-P equation with slip boundary condition and Bridgman's relation of viscosity vs. static pressure, the nonlinear distribution of pressure along the axial direction is analyzed in this paper. The revised standard Poiseuille number with the effect of pressure-dependent viscosity taken into account agrees well with the experimental results. Therefore, the dependence of the viscosity on the pressure is one of the dominating factors under high driven pressure, and is represented by an important property coefficient α of the liquid.展开更多
The fabrication of superhydrophobic surfaces and the studies on water flow characteristics therein are of great significance to many industrial areas as well as to science and technology development. Experiments were ...The fabrication of superhydrophobic surfaces and the studies on water flow characteristics therein are of great significance to many industrial areas as well as to science and technology development. Experiments were car- ried out to investigate slip characteristics of water flowing in circular superhydrophobic microtubes within lam- inar flow region. The superhydrophobic microtubes of stainless steel were fabricated with chemical etching- fluorination treatment. An experimental setup was designed to measure the pressure drop as function of water flow rate. For comparison, superhydrophilic tubes were also tested. Poiseuille number Po was found to be smaller for the superhydrophobic microtubes than that for superhydrophilic ones. The pressure drop reduc- tion ranges from 8% to 31%. It decreases with increasing Reynolds number when Re 〈 900, owing to the transition from Cassie state to Wenze] state. However, it is almost unchanged with further increasing Re after Re 〉 900. The slip length in superhydrophobic microtubes also exhibits a Reynolds number dependence similarly to the pressure drop reduction. The relation between slip length and Darcy friction factor is theoretically analyzed with consideration of surface roughness effect, which was testified with the experimental results.展开更多
Compared with noble metals, improving the sensitivity of semiconducting surface-enhanced Raman scattering(SERS) substrates is of great significance to their fundamental research and practical application of Raman spec...Compared with noble metals, improving the sensitivity of semiconducting surface-enhanced Raman scattering(SERS) substrates is of great significance to their fundamental research and practical application of Raman spectroscopy. Herein, a simple chemical method is developed to synthesize a rhenium trioxide(ReO_(3)) microtubes assembled with highly crystalline nanoparticles. The ReO_(3) microtubes show a strong and well-defined surface plasmon resonance(SPR) behavior in visible region, which is rare for non-noble metals. As a low-cost SERS substrate, the plasmonic ReO_(3) microtubes exhibit a Raman enhancement factor of 8.9×10^(5) and a lowest detection limit of 1.0×10^(-9) mol/L for phenolic pollutants. Moreover, these ReO_(3) microtubule SERS substrates show excellent chemical stability and can resist the corrosion of strong acids and bases.展开更多
Non-enzymatic electrochemical sensors for the determination of hydrogen peroxide(H_(2)O_(2))have attracted more and more concerns.A series of nickel and cobalt double oxides(Ni_(x)Co_(y)-DO)with the different ratios o...Non-enzymatic electrochemical sensors for the determination of hydrogen peroxide(H_(2)O_(2))have attracted more and more concerns.A series of nickel and cobalt double oxides(Ni_(x)Co_(y)-DO)with the different ratios of Ni/Co have been prepared by a polyol-mediated solvothermal method for H_(2)O_(2)detection.The obtained products exhibit honeycomb-like open porous microtubes constituted with the low-dimensional nanostructured Ni_(x)Co_(y)-DO blocks after the calcination treatment.Compared with nickel oxides,the introduced Co ions in Ni_(x)Co_(y)-DO can induce the production of surficial oxygen vacancies,and further enhance the electrode surface activity.In particular,the NiCo-DO sample(with an atomic ratio of Ni/Co=4:3)shows the richest surficial oxygen vacancies and presents the highest H_(2)O_(2)detection activity among all the as-prepared samples,demonstrating an excellent sensitivity of698.60μAL mmol^(-1)cm^(-2)(0~0.4 mmol/L),low detection limit(0.28μmol/L,S/N=3),as well as long stability,high selectivity and good reproducibility.This work lends a new impetus to the potential application of double metal oxides for the next generation of non-enzymatic sensors.展开更多
The degradation of Mg alloys relates to the service performance of Mg alloy biodegradable implants.In order to investigate the degradation behavior of Mg alloys as vascular stent materials in the near service environm...The degradation of Mg alloys relates to the service performance of Mg alloy biodegradable implants.In order to investigate the degradation behavior of Mg alloys as vascular stent materials in the near service environment,the hot-extruded fine-grained Mg-Zn-Y-Nd alloy microtubes,which are employed to manufacture vascular stents,were tested under radial compressive stress in the dynamic Hanks'Balanced Salt Solution(HBSS).The results revealed that the high flow rate accelerates the degradation of Mg alloy microtubes and its degradation is sensitive to radial compressive stress.These results contribute to understanding the service performance of Mg alloys as vascular stent materials.展开更多
Biodegradable Zn alloys are a hot topic in the biodegradable vascular stent materials,the study on preparing Zn alloys microtubes for vascular stent is still insufficient and none of the tubes could well meet the mech...Biodegradable Zn alloys are a hot topic in the biodegradable vascular stent materials,the study on preparing Zn alloys microtubes for vascular stent is still insufficient and none of the tubes could well meet the mechanical requirement by present.In this study,we fabricate Zn-0.5Mn-0.05 Mg microtube with outer diameter of 3.5 mm and wall thickness of 0.2 mm by five passes three-roller rolling.The mechanical properties of the microtube are 277±2.9 MPa,330±3.3 MPa and 39.8±5.25%for the yield tensile strength(YTS),ultimate tensile strength(UTS)and break elongation,respectively,which well satisfies the requirements of the vascular stent.The leading factors to the variations of the mechanical property are texture evolution,grain size refinement and microstructure uniformity during the rolling process,and the main deformation mechanisms are twinning and dislocation movement.As a result of the dynamic recrystallization,the grain size decreases obviously and the microstructure gets more uniform as the rolling pass increases.The texture gradually changes from a basal texture<0110>‖ED(extrusion direction)for the as-extruded tube blank to deformation texture<0001>‖RD(rolling direction)and non-basal texture<0221>‖RD for the 5-pass rolled microtube.展开更多
基金financially supported by the National Natu-ral Science Foundation of China(Nos.U24A20204,22168016,and 22278101)the Innovation Project for Scientific and Technological Talents in Hainan Province(No.KJRC2023C08)the Innovation Research Team in Hainan Province(No.525CXTD607).
文摘Electromagnetic wave(EMW)absorbers with anti-corrosion property are highly desired to enhance the durability of military targets in harsh condition.Herein,cross-link NiAl-layered double hydroxide(NiAl-LDH)nanosheets on the inner/outer surfaces of carbon microtubes(CMTs)are ingeniously constructed through the combination of atomic layer deposition technique and a hydrothermal method.The obtained NiAl-LDH/CMT composite exhibits excellent EMW absorption and corrosion resistance performance.The large internal cavity of CMT significantly enhances impedance matching.The uniform distribution of NiAl-LDH nanosheets on both the inner and outer surfaces of CMT generates numerous heterogeneous inter-faces that induce substantial polarization loss.Consequently,at a filler rate of only 5 wt.%,the NiAl-LDH/CMT composite exhibits a minimum reflection loss of−60.2 dB and a maximum effective absorp-tion bandwidth of 5.9 GHz.In addition,the combined high impermeability of CMT and the effective Cl^(-)-trapping ability of NiAl-LDH endows NiAl-LDH/CMT composite with outstanding corrosion protection property in simulated seawater environment.Furthermore,the PO_(4)^(3-)anions are effectively incorporated into the NiAl-LDH interlayer via anion exchange,which can further enhance corrosion protection capac-ity through surface inactivation from slow-release PO_(4)^(3-)anions without reducing their EMW absorption performance.In summary,this work can give guidance for the development of efficient anti-corrosion EMW absorption materials.
基金supported by the National Natural Science Foundation of China(No.50821062)the National 973 Project(No.2005CCA00800).
文摘A newly natural fine template, kapok fiber, for microtube preparation was reported. Large scale microtubes with high length/diameter ratio and controllable wall thickness and morphology have been successfully fabricated with this template. It is a wildly available, low-cost, environmental friendly and fine structured natural template for microtubes. Its thin wall thickness is only about 1-2 um that means the whole template material is tiny and easy for removing. Even there is any residue the amount can be ignored. When the template is covered with a shell component, hollow structured microtube could be obtained by removing the thin inner template, and its shape could be the same as that of the original template (positive copy of the template's shape). The products have high length/diameter ratio and uniform tubular structure. By further modifying the fabricating methods, facile fabrication not only exists for polypyrrole (PPy) in electrochemical deposition, but also for many other organic and inorganic materials. The surface morphology and wall thickness of the resultant microtubes can be easily modulated by controlling the processing conditions. This natural fiber is predicted to be a fine template for fabricating large scale microtubes with large cavity and high length/diameter ratio.
基金Project supported by the National Natural Science Foundation of China (Grant No 10474078) and the Science Foundation of the Education 0ffice of Shanxi Province, China.
文摘This paper reports that pure hexagonal aluminium nitride microtubes and nanowires growing along the [0001] direction have been successfully synthesized by directly reacting AlCl3 with NaN3 at low temperature (450℃) under condition of non-solvent system. The grey-white powder of reacting product was characterized by high-resolution transmission electron microscope (HRTEM), which shows that the powder is long straight-wire morphology with outer diameter from 40nm to 300 nm and length up to several micrometres. The results of both electron diffraction (ED) and x-ray diffraction (XRD) indicate that the AlN microtubes have a pure hexagonal monocrystal tubular structure with the combination of the curled AlN nanobelts. Room-temperature photoluminescence spectrum of the synthesized sample showed an emission peak, which is closely related to the small size of the microtubes.
基金Zhejiang Provincial Natural Science Foundation of China,Grant/Award Number:LQ20B010002。
文摘Doping of foreign atoms and construction of unique structures are considered as effective approaches to design high-activity and strongdurability electrocatalysts.Herein,we report Fe-doped nickel hydroxide carbonate hierarchical microtubes with Ag nanoparticles(denoted Ag/NiFeHC HMTs)through hydrolysis precipitation process.Experimental tests and density functional theory calculations reveal that Fe doping can tune the electron configuration to enhance the conductivity,markedly improve the electrochemical surface area to expose more active sites,and act as reactive centers to lower the free energy of the rate determination step.In addition,the unique hierarchical structure can also offer active sites and excellent cycling stability.Benefitting from these advantages,the as-obtained Ag/NiFeHC HMTs show excellent oxygen evolution reaction activity,with an overpotential of 208 mV at 10 mA cm^(−2)in 1.0M KOH.Also,it could achieve long-term stability at a current density of 20 mA cm^(−2)for 24 h.
基金Project (No. 20299030) supported by the National Natural ScienceFoundation of China
文摘The deviation of flow characteristics from the predictions of the conventional theory for microtubes was attrib- uted to the change of fluid viscosity resulted from the interactions between the molecules on solid wall and in fluid. The degree of this departure is dependent on the microtubes materials. A concept of equivalent thickness with which conventional theory can be used to predict the flow in microtubes without modifying the fluid viscosity was put forward. The values of equivalent thickness for fused silica and stainless steel materials were determined as 1.8 μm and 1.5 μm, respectively, by repeated numeri- cal simulation.
基金financial support of Key Projects of the Joint Fund of the National Natural Science Foundation of China(Grant No:U1804251)the National Key Research and Development Program of China(2016YFC1102403,2018YFC1106703 and 2017YFB0702504)+1 种基金China Scholarship Council for the award of fellowship and funding(No.201707040058)China Scholarship Council for the award of fellowship and funding(No.201607040051)。
文摘Magnesium(Mg)alloys are promising materials for cardiovascular stent applications due to their good biocompatibility and biodegradability.However,in vitro and in vivo corrosion tests reveal that Mg alloy stents suffer from a rapid corrosion rate and severe localized corrosion,which is limiting their widespread application.To solve the problem of uneven degradation of stents,a HTHE(long-time and high-temperature heat treatment,large-reduction-ratio hot extrusion)process is used to manufacture Mg-Zn-Y-Nd alloy microtubes in this study.The heat treatment is to dissolve alloying elements and reduce the size of SPPs,and the hot extrusion is to acquire fine-grained and strongly textured microtubes.The microstructural characterization shows that coarse second phases in as-cast alloy are refined and uniformly distributed in matrix of microtubes.After hot extrusion,microtubes show strong texture with basal plain oriented parallel to the longitudinal section(LS).The corrosion testing indicates that severe localized corrosion occurs on the cross section(CS)while localized corrosion is alleviated on the LS.Based on the different corrosion properties of the LS and CS,HTHEed microtubes are promising for solving the problems of rapid corrosion rate and severe localized corrosion of Mg alloy stents.
基金financially supported by the National Natural Science Foundation of China(21902051)the Natural Science Foundation of Fujian Province(2017J01014 and 2019J05090)the Graphene Power and Composite Research Center of Fujian Province(2017H2001)。
文摘For efficient solar energy conversion,the morphology engineering of hollow graphitic carbon nitride(gC3 N4)is one of the promising approachs benefiting from abundant exposed active sites and short photocarrier transport distances,but is difficult to control on account of easy structural collapse.Herein,a facile supramolecular electrostatic self-assembly strategy has been developed for the first time to fabricate mesoporous thin-walled g-C3N4 microtubes(mtw-CNT)with shell thickness of ca.13 nm.The morphological control of g-C3N4 enhances specific surface area by 12 times,induces stronger optical absorption,widens bandgap by 0.18 e V,improves photocurrent density by 2.5 times,and prolongs lifetimes of charge carriers from bulk to surface,compared with those of bulk g-C3N4.As a consequence,the transformed g-C3N4 exhibits the optimum photocatalytic H2-production rate of 3.99 mmol·h^-1·g^-1(λ>420 nm)with remarkable apparent quantum efficiency of 8.7%(λ=420±15 nm)and long-term stability.Moreover,mtw-CNT also achieves high photocatalytic CO2-to-CO selectivity of 96%(λ>420 nm),much better than those on the most previously reported porous g-C3N4 photocatalysts prepared by the conventional hard-templating and soft-templating methods.
文摘To fully exploit the superiority of tubular structures,in this study,we systematically explore the optimal preparation conditions for Ni/Co_(3)O_(4),including cation species and content,additive species and content,and anion species.Our results reveal that the formation of an initial cobalt nickel acetate hydroxide prism is the key factor and directly affects the final microtubular structure.Moreover,P is subsequently doped into the Ni/Co_(3)O_(4)lattice to increase the M^(3+)/M^(2+)molar ratio(M=Co and Ni),promote reaction kinetics,and optimize electronic structure.Consequently,the oxygen evolution reaction performance of P-doped tubular Ni/Co_(3)O_(4)is significantly higher than that of undoped Ni/Co_(3)O_(4)and the state-of-the-art RuO_(2)electrocatalyst.
基金The project supported by the Chinese Academy of Sciences Major Innovation Project (KJCX2-SW-L2)the National Natural Science Foundation of China (10272107)The English text was polished by Yunming Chen
文摘It is obvious that the pressure gradient along the axial direction in a pipe flow keeps constant according to the Hagen-Poiseuille equation. However, recent experiments indicated that the distribution of the pressure seemed no longer linear for liquid flows in microtubes driven by high pressure (1-30MPa). Based on H-P equation with slip boundary condition and Bridgman's relation of viscosity vs. static pressure, the nonlinear distribution of pressure along the axial direction is analyzed in this paper. The revised standard Poiseuille number with the effect of pressure-dependent viscosity taken into account agrees well with the experimental results. Therefore, the dependence of the viscosity on the pressure is one of the dominating factors under high driven pressure, and is represented by an important property coefficient α of the liquid.
基金the National Natural Science Foundation of China(20476014,51376030)
文摘The fabrication of superhydrophobic surfaces and the studies on water flow characteristics therein are of great significance to many industrial areas as well as to science and technology development. Experiments were car- ried out to investigate slip characteristics of water flowing in circular superhydrophobic microtubes within lam- inar flow region. The superhydrophobic microtubes of stainless steel were fabricated with chemical etching- fluorination treatment. An experimental setup was designed to measure the pressure drop as function of water flow rate. For comparison, superhydrophilic tubes were also tested. Poiseuille number Po was found to be smaller for the superhydrophobic microtubes than that for superhydrophilic ones. The pressure drop reduc- tion ranges from 8% to 31%. It decreases with increasing Reynolds number when Re 〈 900, owing to the transition from Cassie state to Wenze] state. However, it is almost unchanged with further increasing Re after Re 〉 900. The slip length in superhydrophobic microtubes also exhibits a Reynolds number dependence similarly to the pressure drop reduction. The relation between slip length and Darcy friction factor is theoretically analyzed with consideration of surface roughness effect, which was testified with the experimental results.
基金financial support from the National Natural Science Foundation of China(No.51771175)the Science Foundation of State Administration of market supervision(No.2021MK164)。
文摘Compared with noble metals, improving the sensitivity of semiconducting surface-enhanced Raman scattering(SERS) substrates is of great significance to their fundamental research and practical application of Raman spectroscopy. Herein, a simple chemical method is developed to synthesize a rhenium trioxide(ReO_(3)) microtubes assembled with highly crystalline nanoparticles. The ReO_(3) microtubes show a strong and well-defined surface plasmon resonance(SPR) behavior in visible region, which is rare for non-noble metals. As a low-cost SERS substrate, the plasmonic ReO_(3) microtubes exhibit a Raman enhancement factor of 8.9×10^(5) and a lowest detection limit of 1.0×10^(-9) mol/L for phenolic pollutants. Moreover, these ReO_(3) microtubule SERS substrates show excellent chemical stability and can resist the corrosion of strong acids and bases.
基金supported by the National Natural Science Foundation of China(Nos.51432003,51802011 and 51125007)the Start-Up Fund for Talent Introduction of Beijing University of Chemical Technology(No.buctrc201806)the Fundamental Research Funds for the Central Universities(No.JD2010)。
文摘Non-enzymatic electrochemical sensors for the determination of hydrogen peroxide(H_(2)O_(2))have attracted more and more concerns.A series of nickel and cobalt double oxides(Ni_(x)Co_(y)-DO)with the different ratios of Ni/Co have been prepared by a polyol-mediated solvothermal method for H_(2)O_(2)detection.The obtained products exhibit honeycomb-like open porous microtubes constituted with the low-dimensional nanostructured Ni_(x)Co_(y)-DO blocks after the calcination treatment.Compared with nickel oxides,the introduced Co ions in Ni_(x)Co_(y)-DO can induce the production of surficial oxygen vacancies,and further enhance the electrode surface activity.In particular,the NiCo-DO sample(with an atomic ratio of Ni/Co=4:3)shows the richest surficial oxygen vacancies and presents the highest H_(2)O_(2)detection activity among all the as-prepared samples,demonstrating an excellent sensitivity of698.60μAL mmol^(-1)cm^(-2)(0~0.4 mmol/L),low detection limit(0.28μmol/L,S/N=3),as well as long stability,high selectivity and good reproducibility.This work lends a new impetus to the potential application of double metal oxides for the next generation of non-enzymatic sensors.
基金the financial support of the National Key Research and Development Program of China(2018YFC1106703)the Key Projects of the Joint Fund of the National Natural Science Foundation of China(U1804251)。
文摘The degradation of Mg alloys relates to the service performance of Mg alloy biodegradable implants.In order to investigate the degradation behavior of Mg alloys as vascular stent materials in the near service environment,the hot-extruded fine-grained Mg-Zn-Y-Nd alloy microtubes,which are employed to manufacture vascular stents,were tested under radial compressive stress in the dynamic Hanks'Balanced Salt Solution(HBSS).The results revealed that the high flow rate accelerates the degradation of Mg alloy microtubes and its degradation is sensitive to radial compressive stress.These results contribute to understanding the service performance of Mg alloys as vascular stent materials.
基金supported by the National Key Research and Development Program of China(2023YFB3812902)the Fundamental Research Funds for the Central Universities of China(N2302020).
文摘Biodegradable Zn alloys are a hot topic in the biodegradable vascular stent materials,the study on preparing Zn alloys microtubes for vascular stent is still insufficient and none of the tubes could well meet the mechanical requirement by present.In this study,we fabricate Zn-0.5Mn-0.05 Mg microtube with outer diameter of 3.5 mm and wall thickness of 0.2 mm by five passes three-roller rolling.The mechanical properties of the microtube are 277±2.9 MPa,330±3.3 MPa and 39.8±5.25%for the yield tensile strength(YTS),ultimate tensile strength(UTS)and break elongation,respectively,which well satisfies the requirements of the vascular stent.The leading factors to the variations of the mechanical property are texture evolution,grain size refinement and microstructure uniformity during the rolling process,and the main deformation mechanisms are twinning and dislocation movement.As a result of the dynamic recrystallization,the grain size decreases obviously and the microstructure gets more uniform as the rolling pass increases.The texture gradually changes from a basal texture<0110>‖ED(extrusion direction)for the as-extruded tube blank to deformation texture<0001>‖RD(rolling direction)and non-basal texture<0221>‖RD for the 5-pass rolled microtube.