Solid solution-strengthened copper alloys have the advantages of a simple composition and manufacturing process,high mechanical and electrical comprehensive performances,and low cost;thus,they are widely used in high-...Solid solution-strengthened copper alloys have the advantages of a simple composition and manufacturing process,high mechanical and electrical comprehensive performances,and low cost;thus,they are widely used in high-speed rail contact wires,electronic component connectors,and other devices.Overcoming the contradiction between low alloying and high performance is an important challenge in the development of solid solution-strengthened copper alloys.Taking the typical solid solution-strengthened alloy Cu-4Zn-1Sn as the research object,we proposed using the element In to replace Zn and Sn to achieve low alloying in this work.Two new alloys,Cu-1.5Zn-1Sn-0.4In and Cu-1.5Zn-0.9Sn-0.6In,were designed and prepared.The total weight percentage content of alloying elements decreased by 43%and 41%,respectively,while the product of ultimate tensile strength(UTS)and electrical conductivity(EC)of the annealed state increased by 14%and 15%.After cold rolling with a 90%reduction,the UTS of the two new alloys reached 576 and 627MPa,respectively,the EC was 44.9%IACS and 42.0%IACS,and the product of UTS and EC(UTS×EC)was 97%and 99%higher than that of the annealed state alloy.The dislocations proliferated greatly in cold-rolled alloys,and the strengthening effects of dislocations reached 332 and 356 MPa,respectively,which is the main reason for the considerable improvement in mechanical properties.展开更多
The fatigue performance and fracture mechanism of laser welded twinning induced plasticity(TWIP)steel joint were investigated experimentally based on the evolution of microstructure and micromechanical properties.Th...The fatigue performance and fracture mechanism of laser welded twinning induced plasticity(TWIP)steel joint were investigated experimentally based on the evolution of microstructure and micromechanical properties.The optical microscopy was used to analyze the evolution of microstructure.The variation of composition and phase structure of fusion zone were detected by energy dispersive X-ray and X-ray diffraction spectrometers.The micromechanical behaviors of the various zones were characterized using nanoindentation.The static tensile test and high cycle fatigue test were performed to evaluate the mechanical properties of welded joint and base metal.The microstructures,tensile properties and fatigue strength of base metal as well as welded metal were analyzed.The fatigue fracture surfaces of base metal and welded joint were observed by means of scanning electron microscopy,in order to identify fatigue crack initiation sites and propagation mechanisms.Moreover,the fatigue fracture characteristics and mechanisms for the laser welded TWIP steel joints were analyzed.展开更多
In order to study the effect of electromagnetic compound treatment on the mechanical property, cutting performance and microstructure of cemented carbide, the samples were treated by a self-made electromagnetic compou...In order to study the effect of electromagnetic compound treatment on the mechanical property, cutting performance and microstructure of cemented carbide, the samples were treated by a self-made electromagnetic compound treatment device with different magnetic field strength(H=1, 1.25 and 1.5 T). The electromagnetic compound treatment method was proposed to couple pulsed magnetic field and pulsed current. The results show that after the pulsed magnetic field treatment, the values of the transverse rupture strength of the samples were respectively reduced by 21%, 20.6% and 20.1%;the cutting performance was decreased by about 4.5%, which means the tool life was decreased. After the electromagnetic compound treatment, the values of the transverse rupture strength of the rectangular samples were respectively increased by 8%, 8.6% and 9.5%, and the tool life was increased by 4.2%, 7% and 10.3%. After the electromagnetic compound treatment, the pulse current provided the driving force for dislocation motion. A strong pulse current driving force is more likely to make the dislocation multiply and slip. A high density dislocation cell is formed within the material, so the mechanical properties were significantly increased.展开更多
Fe-2Cu-2Ni-1Mo-0.8C (wt pct) elemental mixed powders were rapidly sintered within 6 min by spark plasma sintering, and the effects of sintering parameters on the densification degree and performance of the assintere...Fe-2Cu-2Ni-1Mo-0.8C (wt pct) elemental mixed powders were rapidly sintered within 6 min by spark plasma sintering, and the effects of sintering parameters on the densification degree and performance of the assintered materials were investigated. Results showed that when a proper combination of pulse electric current and constant electric current was employed for sintering, the density and bend strength of the as-sintered material reached the maxima, being 7.61×10^3 kg/m^3 and 1540 MPa, respectively. Its corresponding fracture morphology was characterized as the mix of ductile, intergranular and cleavage fractures.展开更多
In the present study, Cu-modified pipeline steels were fabricated to mitigate MIC by the antimicrobial ability of Cu element. The microstructure, mechanical properties and the antimircobial performance of the Cu-modif...In the present study, Cu-modified pipeline steels were fabricated to mitigate MIC by the antimicrobial ability of Cu element. The microstructure, mechanical properties and the antimircobial performance of the Cu-modified steel were systematically investigated. The Cu-modified steels showed good antimicrobial performance with remarkable strength enhancement by nanoscale Cu-rich precipitates and good impact toughness without changing the original base microstructures after the optimal aging treatment of 500 °C/1 h.展开更多
基金financially supported by the National Key Research and Development Program of China(No.2021YFB3803101)the National Natural Science Foundation of China(Nos.52022011,51974028,and 52090041)+1 种基金the Xiaomi Young Scholars ProgramChina National Postdoctoral Program for Innovative Talents(No.BX20230042)。
文摘Solid solution-strengthened copper alloys have the advantages of a simple composition and manufacturing process,high mechanical and electrical comprehensive performances,and low cost;thus,they are widely used in high-speed rail contact wires,electronic component connectors,and other devices.Overcoming the contradiction between low alloying and high performance is an important challenge in the development of solid solution-strengthened copper alloys.Taking the typical solid solution-strengthened alloy Cu-4Zn-1Sn as the research object,we proposed using the element In to replace Zn and Sn to achieve low alloying in this work.Two new alloys,Cu-1.5Zn-1Sn-0.4In and Cu-1.5Zn-0.9Sn-0.6In,were designed and prepared.The total weight percentage content of alloying elements decreased by 43%and 41%,respectively,while the product of ultimate tensile strength(UTS)and electrical conductivity(EC)of the annealed state increased by 14%and 15%.After cold rolling with a 90%reduction,the UTS of the two new alloys reached 576 and 627MPa,respectively,the EC was 44.9%IACS and 42.0%IACS,and the product of UTS and EC(UTS×EC)was 97%and 99%higher than that of the annealed state alloy.The dislocations proliferated greatly in cold-rolled alloys,and the strengthening effects of dislocations reached 332 and 356 MPa,respectively,which is the main reason for the considerable improvement in mechanical properties.
基金Item Sponsored by National Natural Science Foundation of China(51374151,21201129)Science and Technology Major Project of Shanxi Province of China(20111101053)Natural Science Foundation of Shanxi Province of China(2011011020-2)
文摘The fatigue performance and fracture mechanism of laser welded twinning induced plasticity(TWIP)steel joint were investigated experimentally based on the evolution of microstructure and micromechanical properties.The optical microscopy was used to analyze the evolution of microstructure.The variation of composition and phase structure of fusion zone were detected by energy dispersive X-ray and X-ray diffraction spectrometers.The micromechanical behaviors of the various zones were characterized using nanoindentation.The static tensile test and high cycle fatigue test were performed to evaluate the mechanical properties of welded joint and base metal.The microstructures,tensile properties and fatigue strength of base metal as well as welded metal were analyzed.The fatigue fracture surfaces of base metal and welded joint were observed by means of scanning electron microscopy,in order to identify fatigue crack initiation sites and propagation mechanisms.Moreover,the fatigue fracture characteristics and mechanisms for the laser welded TWIP steel joints were analyzed.
基金Funded by the National Natural Science Foundation of China(Nos.51575369&51675357)
文摘In order to study the effect of electromagnetic compound treatment on the mechanical property, cutting performance and microstructure of cemented carbide, the samples were treated by a self-made electromagnetic compound treatment device with different magnetic field strength(H=1, 1.25 and 1.5 T). The electromagnetic compound treatment method was proposed to couple pulsed magnetic field and pulsed current. The results show that after the pulsed magnetic field treatment, the values of the transverse rupture strength of the samples were respectively reduced by 21%, 20.6% and 20.1%;the cutting performance was decreased by about 4.5%, which means the tool life was decreased. After the electromagnetic compound treatment, the values of the transverse rupture strength of the rectangular samples were respectively increased by 8%, 8.6% and 9.5%, and the tool life was increased by 4.2%, 7% and 10.3%. After the electromagnetic compound treatment, the pulse current provided the driving force for dislocation motion. A strong pulse current driving force is more likely to make the dislocation multiply and slip. A high density dislocation cell is formed within the material, so the mechanical properties were significantly increased.
文摘Fe-2Cu-2Ni-1Mo-0.8C (wt pct) elemental mixed powders were rapidly sintered within 6 min by spark plasma sintering, and the effects of sintering parameters on the densification degree and performance of the assintered materials were investigated. Results showed that when a proper combination of pulse electric current and constant electric current was employed for sintering, the density and bend strength of the as-sintered material reached the maxima, being 7.61×10^3 kg/m^3 and 1540 MPa, respectively. Its corresponding fracture morphology was characterized as the mix of ductile, intergranular and cleavage fractures.
基金financial support by the National Key Technologies R&D Program of China (No. 2011BAE25B03)
文摘In the present study, Cu-modified pipeline steels were fabricated to mitigate MIC by the antimicrobial ability of Cu element. The microstructure, mechanical properties and the antimircobial performance of the Cu-modified steel were systematically investigated. The Cu-modified steels showed good antimicrobial performance with remarkable strength enhancement by nanoscale Cu-rich precipitates and good impact toughness without changing the original base microstructures after the optimal aging treatment of 500 °C/1 h.