期刊文献+
共找到137,958篇文章
< 1 2 250 >
每页显示 20 50 100
Electron Microscopy and Spectroscopy Investigation of Atomic, Electronic, and Phonon Structures of NdNiO_(2)/SrTiO_(3) Interface
1
作者 Yuan Yin Mei Wu +9 位作者 Xiang Ding Peiyi He Qize Li Xiaowen Zhang Ruixue Zhu Ruilin Mao Xiaoyue Gao Ruochen Shi Liang Qiao Peng Gao 《Chinese Physics Letters》 2025年第4期130-141,共12页
The infinite-layer nickelates,proposed as analogs to superconducting cuprates,provide a promising platform for exploring the mechanisms of unconventional superconductivity.However,the superconductivity has been exclus... The infinite-layer nickelates,proposed as analogs to superconducting cuprates,provide a promising platform for exploring the mechanisms of unconventional superconductivity.However,the superconductivity has been exclusively observed in thin films under atmospheric pressure,underscoring the critical role of the heterointerface. 展开更多
关键词 atomic structure phonon structure electron microscopy electronic structure SPECTROSCOPY NdNiO SrTiO interface thin films superconducting cupratesprovide
原文传递
Unveiling nano-scale chemical inhomogeneity in surface oxide films formed on V-and N-containing martensite stainless steel by synchrotron X-ray photoelectron emission spectroscopy/microscopy and microscopic X-ray absorption spectroscopy
2
作者 Xiaoqi Yue Dihao Chen +11 位作者 Anantha Krishnan Isac Lazar Yuran Niu Evangelos Golias Carsten Wiemann Andrei Gloskovskii Christoph Schlueter Arno Jeromin Thomas F.Keller Haijie Tong Sebastian Ejnermark Jinshan Pan 《Journal of Materials Science & Technology》 2025年第2期191-203,共13页
Nano-scale chemical inhomogeneity in surface oxide films formed on a V-and N-containing martensite stainless steel and tempering heating induced changes are investigated by a combination of synchrotron-based hard X-ra... Nano-scale chemical inhomogeneity in surface oxide films formed on a V-and N-containing martensite stainless steel and tempering heating induced changes are investigated by a combination of synchrotron-based hard X-ray Photoelectron emission spectroscopy(HAXPES)and microscopy(HAXPEEM)as well as microscopic X-ray absorption spectroscopy(μ-XAS)techniques.The results reveal the inhomogeneity in the oxide films on the micron-sized Cr_(2)N-and VN-type particles,while the inhomogeneity on the martensite matrix phase exists due to localised formation of nano-sized tempering nitride particles at 600℃.The oxide film formed on Cr_(2)N-type particles is rich in Cr_(2)O_(3) compared with that on the martensite matrix and VN-type particles.With the increase of tempering temperature,Cr_(2)O_(3) formation is faster for the oxidation of Cr in the martensite matrix than the oxidation of Cr nitride-rich particles. 展开更多
关键词 Synchrotron X-ray photoelectron emission microscopy Hard X-ray photoelectron emission spectroscopy Synchrotron microscopic X-ray absorption spectroscopy Martensite stainless steel Surface oxide film
原文传递
Combining machine learning algorithms with traditional methods for resolving the atomic-scale dynamic structure of monolayer MoS_(2) in high-resolution transmission electron microscopy 被引量:1
3
作者 Yu Meng Shuya Wang +5 位作者 Xibiao Ren Han Xue Xuejun Yue Chuanhong Jin Shanggang Lin Fang Lin 《Chinese Physics B》 2025年第1期162-170,共9页
High-resolution transmission electron microscopy(HRTEM)promises rapid atomic-scale dynamic structure imaging.Yet,the precision limitations of aberration parameters and the challenge of eliminating aberrations in Cs-co... High-resolution transmission electron microscopy(HRTEM)promises rapid atomic-scale dynamic structure imaging.Yet,the precision limitations of aberration parameters and the challenge of eliminating aberrations in Cs-corrected transmission electron microscopy constrain resolution.A machine learning algorithm is developed to determine the aberration parameters with higher precision from small,lattice-periodic crystal images.The proposed algorithm is then validated with simulated HRTEM images of graphene and applied to the experimental images of a molybdenum disulfide(MoS_(2))monolayer with 25 variables(14 aberrations)resolved in wide ranges.Using these measured parameters,the phases of the exit-wave functions are reconstructed for each image in a focal series of MoS_(2)monolayers.The images were acquired due to the unexpected movement of the specimen holder.Four-dimensional data extraction reveals time-varying atomic structures and ripple.In particular,the atomic evolution of the sulfur-vacancy point and line defects,as well as the edge structure near the amorphous,is visualized as the resolution has been improved from about 1.75?to 0.9 A.This method can help salvage important transmission electron microscope images and is beneficial for the images obtained from electron microscopes with average stability. 展开更多
关键词 aberration measurement high-resolution transmission electron microscopy feature-extraction networks exit-wave reconstruction monolayer MoS_(2)
原文传递
Progress and Prospect of Cryogenic Micro-and Nanomechanical In-Situ Characterization Techniques Based on Electron Microscopy
4
作者 Langlang Feng Keqiang Li Guangjian Peng 《Acta Mechanica Solida Sinica》 2025年第2期229-239,共11页
The advancement of electron microscopy technology has driven the development of electron microscopes that can apply mechanical loading while observing samples,providing a valuable tool for In-Situ mechanical character... The advancement of electron microscopy technology has driven the development of electron microscopes that can apply mechanical loading while observing samples,providing a valuable tool for In-Situ mechanical characterization of materials.In response to the need to characterize the evolution of the mechanical behavior of structural materials,such as aerospace materials,in real cryogenic service environments,and to provide an experimental basis for improving their macroscopic cryogenic mechanical properties,the advancement of In-Situ characterization techniques capable of offering both cryogenic environments and mechanical loading has become imperative.There have been scholars using this technique to carry out cryogenic mechanical In-Situ studies of related materials,with experimental studies dominating in general,and a few reviews of mechanical characterization techniques mentioning cryogenic temperatures.In order to make it easier to conduct research using such characterization techniques and to further promote the development of related characterization techniques,this review compiles the previous work and summarizes the electron microscope-based In-Situ characterization techniques for cryogenic micro-and nanomechanics.These techniques primarily include transmission electron microscopy-based cryogenic tensile and indentation methods,as well as scanning electron microscopy-based cryogenic tensile,indentation,compression,and bending methods.Furthermore,the review outlines the prospective future development of In-Situ characterization techniques for cryogenic micro-and nanomechanics. 展开更多
关键词 electron microscopy Micro-and nanomechanics Cryomechanical characterization In-Situ characterization
原文传递
Probing Interfacial Nanostructures of Electrochemical Energy Storage Systems by In-Situ Transmission Electron Microscopy
5
作者 Guisheng Liang Chang Zhang +10 位作者 Liting Yang Yihao Liu Minmin Liu Xuhui Xiong Chendi Yang Xiaowei Lv Wenbin You Ke Pei Chuan-Jian Zhong Han-Wen Cheng Renchao Che 《Nano-Micro Letters》 2025年第10期388-416,共29页
The ability to control the electrode interfaces in an electrochemical energy storage system is essential for achieving the desired electrochemical performance.However,achieving this ability requires an in-depth unders... The ability to control the electrode interfaces in an electrochemical energy storage system is essential for achieving the desired electrochemical performance.However,achieving this ability requires an in-depth understanding of the detailed interfacial nanostructures of the electrode under electrochemical operating conditions.In-situ transmission electron microscopy(TEM)is one of the most powerful techniques for revealing electrochemical energy storage mechanisms with high spatiotemporal resolution and high sensitivity in complex electrochemical environments.These attributes play a unique role in understanding how ion transport inside electrode nanomaterials and across interfaces under the dynamic conditions within working batteries.This review aims to gain an in-depth insight into the latest developments of in-situ TEM imaging techniques for probing the interfacial nanostructures of electrochemical energy storage systems,including atomic-scale structural imaging,strain field imaging,electron holography,and integrated differential phase contrast imaging.Significant examples will be described to highlight the fundamental understanding of atomic-scale and nanoscale mechanisms from employing state-of-the-art imaging techniques to visualize structural evolution,ionic valence state changes,and strain mapping,ion transport dynamics.The review concludes by providing a perspective discussion of future directions of the development and application of in-situ TEM techniques in the field of electrochemical energy storage systems. 展开更多
关键词 In-situ transmission electron microscopy Electrochemical energy storage Interfacial nanostructures Batteries ELECTRODES NANOMATERIALS
在线阅读 下载PDF
Influence of Radio-Frequency Voltage on Electron Spin Resonance Spectroscopy in Scanning Tunneling Microscopy
6
作者 Jiaan Cao Lyuzhou Ye +1 位作者 Rui-Xue Xu Xiao Zheng 《Chinese Journal of Chemical Physics》 2025年第4期375-381,I0104,共8页
Over the last decade,the integra-tion of scanning tunneling mi-croscopy(STM)and electron spin resonance(ESR)spectroscopy has emerged as a powerful tool for measuring spin states of surface-adsorbed molecules.The radio... Over the last decade,the integra-tion of scanning tunneling mi-croscopy(STM)and electron spin resonance(ESR)spectroscopy has emerged as a powerful tool for measuring spin states of surface-adsorbed molecules.The radio-fre-quency voltage is a key physical quantity that influences STM-ESR spectra.However,the specific effect of radio-frequency voltage on the real-time electric current associated with STM-ESR sig-nal remains unclear.In this work,we employ the hierarchical equations of motion method to simulate the STM-ESR spectra of a single spin-1/2 surface-adsorbed molecule and track the temporal evolution of the electric current,thereby elucidating how the radio-frequency volt-age influences the features of STM-ESR spectra,the real-time electric current,and the char-acteristic frequencies conveyed by the electric current.These theoretical insights facilitate a deeper comprehension of experimental phenomena. 展开更多
关键词 electron spin resonance Scanning tunneling microscopy Radio-frequency volt-age Real-time electric current
在线阅读 下载PDF
Probing the Nucleation and Growth Kinetics of Bismuth Nanoparticles via In-situ Transmission Electron Microscopy
7
作者 王浪 李超凡 +3 位作者 RAN Maojin YUAN Manman 胡执一 LI Yu 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第4期877-887,共11页
The nucleation and growth mechanism of nanoparticles is an important theory,which can guide the preparation of nanomaterials.However,it is still lacking in direct observation on the details of the evolution of interme... The nucleation and growth mechanism of nanoparticles is an important theory,which can guide the preparation of nanomaterials.However,it is still lacking in direct observation on the details of the evolution of intermediate state structure during nucleation and growth.In this work,the evolution process of bismuth nanoparticles induced by electron beam was revealed by in-situ transmission electron microscopy(TEM)at atomic scale.The experimental results demonstrate that the size,stable surface and crystallographic defect have important influences on the growth of Bi nanoparticles.Two non-classical growth paths including single crystal growth and polycrystalline combined growth,as well as,corresponding layer-by-layer growth mechanism along{012}stable crystal plane of Bi nanoparticles with dodecahedron structure were revealed by in-situ TEM directly.These results provide important guidance and a new approach for in-depth understanding of the nucleation and growth kinetics of nanoparticles. 展开更多
关键词 bismuth nanoparticles crystal growth transmission electron microscopy in-situ electron microscopy
原文传递
In-situ Ultrafast Transmission Electron Microscopy:Advancing Ultrafast Dynamics Research under Multi-Field Coupling at the Nanoscale
8
作者 Shaozheng Ji Lenan Chen Xuewen Fu 《Chinese Physics Letters》 2025年第1期99-101,共3页
In recent years,the development of ultrafast transmission electron microscopy(UTEM)has created new opportunities for studying dynamic processes at the nanoscale with unprecedented temporal resolution.~([1–3])The sign... In recent years,the development of ultrafast transmission electron microscopy(UTEM)has created new opportunities for studying dynamic processes at the nanoscale with unprecedented temporal resolution.~([1–3])The significant advances in femtosecond and even attosecond temporal resolution are achieved through the integration of the pump-probe principle with transmission electron microscopy(TEM). 展开更多
关键词 resolution. electron COUPLING
原文传递
Dimensionality-Dependent Hot Electrons Diffusion in Gold Nanoplates Visualized by Transient Absorption Microscopy
9
作者 Danli Shi Jingyi Yang +4 位作者 Minjie Li Jianchang Lv Xi Liu Ao Liu Yan Wan 《Chinese Journal of Chemical Physics》 2025年第5期641-648,I0095-I0098,I0148,I0149,共14页
The gold nano-plates(Au NPLs)have been extensively studied for their high quality factor as mechanical resonators.But it remains still unclear how the thickness and morphology of Au NPLs affect the hot electron diffus... The gold nano-plates(Au NPLs)have been extensively studied for their high quality factor as mechanical resonators.But it remains still unclear how the thickness and morphology of Au NPLs affect the hot electron diffusion.Here we have employed transient absorption microscopy to gain spatiotemporal imaging of the hot electron diffusion in Au NPLs.Au NPLs of varying thickness over 200 nm were synthesized.It was found that the hot electron diffusion of Au NPL excited at the boundary is obviously faster than that excited at the internal surface.And thinner Au NPLs exhibit a faster hot electron diffusion rate compared to thicker Au NPLs.Because the time constant of hot electron cooling(electron-phonon coupling)is independent of the excited position and thickness of Au NPLs,the effect of electron-phonon coupling on hot electron diffusion should be ruled out.So the hot electron diffusion rate is highly dimensionality-dependent.The quasi-one-dimensional diffusion along the boundary of nanoplate has the fastest rate of 50 cm^(2)/s,and the three-dimensional diffusion has the slowest rate of 22 cm^(2)/s.The fundamental investigation on the hot electrons transport property of Au NPLs offers a new insight for designing metal-based optoelectronic devices. 展开更多
关键词 Metal nanomaterials Hot electron transport Transient absorption
在线阅读 下载PDF
Ultrafast photoemission electron microscopy:A multidimensional probe of nonequilibrium physics
10
作者 戴亚南 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期24-57,共34页
Exploring the realms of physics that extend beyond thermal equilibrium has emerged as a crucial branch of condensed matter physics research.It aims to unravel the intricate processes involving the excitations,interact... Exploring the realms of physics that extend beyond thermal equilibrium has emerged as a crucial branch of condensed matter physics research.It aims to unravel the intricate processes involving the excitations,interactions,and annihilations of quasi-and many-body particles,and ultimately to achieve the manipulation and engineering of exotic non-equilibrium quantum phases on the ultrasmall and ultrafast spatiotemporal scales.Given the inherent complexities arising from many-body dynamics,it therefore seeks a technique that has efficient and diverse detection degrees of freedom to study the underlying physics.By combining high-power femtosecond lasers with real-or momentum-space photoemission electron microscopy(PEEM),imaging excited state phenomena from multiple perspectives,including time,real space,energy,momentum,and spin,can be conveniently achieved,making it a unique technique in studying physics out of equilibrium.In this context,we overview the working principle and technical advances of the PEEM apparatus and the related laser systems,and survey key excited-state phenomena probed through this surface-sensitive methodology,including the ultrafast dynamics of electrons,excitons,plasmons,spins,etc.,in materials ranging from bulk and nano-structured metals and semiconductors to low-dimensional quantum materials.Through this review,one can further envision that time-resolved PEEM will open new avenues for investigating a variety of classical and quantum phenomena in a multidimensional parameter space,offering unprecedented and comprehensive insights into important questions in the field of condensed matter physics. 展开更多
关键词 ultrafast photoemission electron microscopy ultrafast momentum microscopy excited state physics
原文传递
Capturing the non-equilibrium state in light–matter–free-electron interactions through ultrafast transmission electron microscopy
11
作者 汪文韬 孙帅帅 +5 位作者 李俊 郑丁国 黄思远 田焕芳 杨槐馨 李建奇 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期88-101,共14页
Ultrafast transmission electron microscope(UTEM) with the multimodality of time-resolved diffraction, imaging,and spectroscopy provides a unique platform to reveal the fundamental features associated with the interact... Ultrafast transmission electron microscope(UTEM) with the multimodality of time-resolved diffraction, imaging,and spectroscopy provides a unique platform to reveal the fundamental features associated with the interaction between free electrons and matter. In this review, we summarize the principles, instrumentation, and recent developments of the UTEM and its applications in capturing dynamic processes and non-equilibrium transient states. The combination of the transmission electron microscope with a femtosecond laser via the pump–probe method guarantees the high spatiotemporal resolution, allowing the investigation of the transient process in real, reciprocal and energy spaces. Ultrafast structural dynamics can be studied by diffraction and imaging methods, revealing the coherent acoustic phonon generation and photoinduced phase transition process. In the energy dimension, time-resolved electron energy-loss spectroscopy enables the examination of the intrinsic electronic dynamics of materials, while the photon-induced near-field electron microscopy extends the application of the UTEM to the imaging of optical near fields with high real-space resolution. It is noted that light–free-electron interactions have the ability to shape electron wave packets in both longitudinal and transverse directions, showing the potential application in the generation of attosecond electron pulses and vortex electron beams. 展开更多
关键词 ultrafast transmission electron microscopy non-equilibrium structural dynamics photo-induced phase transition free-electron–photon interactions
原文传递
Characterization of local chemical ordering and deformation behavior in high entropy alloys by transmission electron microscopy 被引量:1
12
作者 Qiuhong Liu Qing Du +7 位作者 Xiaobin Zhang Yuan Wu Andrey A.Rempel Xiangyang Peng Xiongjun Liu Hui Wang Wenli Song Zhaoping Lü 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第5期877-886,共10页
Short-range ordering(SRO)is one of the most important structural features of high entropy alloys(HEAs).However,the chemical and structural analyses of SROs are very difficult due to their small size,complexed composit... Short-range ordering(SRO)is one of the most important structural features of high entropy alloys(HEAs).However,the chemical and structural analyses of SROs are very difficult due to their small size,complexed compositions,and varied locations.Transmission electron microscopy(TEM)as well as its aberration correction techniques are powerful for characterizing SROs in these compositionally complex alloys.In this short communication,we summarized recent progresses regarding characterization of SROs using TEM in the field of HEAs.By using advanced TEM techniques,not only the existence of SROs was confirmed,but also the effect of SROs on the deformation mechanism was clarified.Moreover,the perspective related to application of TEM techniques in HEAs are also discussed. 展开更多
关键词 high entropy alloys transmission electron microscopy short-range ordering deformation mechanisms
在线阅读 下载PDF
Revealing the microstructures of metal halide perovskite thin films via advancedtransmission electron microscopy
13
作者 Yeming Xian Xiaoming Wang Yanfa Yan 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第9期30-41,共12页
Metal halide perovskites (MHPs) are excellent semiconductors that have led to breakthroughs in applications in thinfilmsolar cells, detectors, and light-emitting diodes due to their remarkable optoelectronic propertie... Metal halide perovskites (MHPs) are excellent semiconductors that have led to breakthroughs in applications in thinfilmsolar cells, detectors, and light-emitting diodes due to their remarkable optoelectronic properties and defect tolerance.However, the performance and stability of MHP-based devices are significantly influenced by their microstructures includingthe formation of defects, composition fluctuations, structural inhomogeneity, etc. Transmission electron microscopy(TEM) is a powerful tool for direct observation of microstructure at the atomic-scale resolution and has been used to correlatethe microstructure and performance of MHP-based devices. In this review, we highlight the application of TEMtechniques in revealing the microstructures of MHP thin films at the atomic scale. The results provide critical understandingof the performance of MHP devices and guide the design of strategies for improving the performance and stability ofMHP devices. 展开更多
关键词 PEROVSKITE DEFECT INHOMOGENEITY transmission electron microscopy
原文传递
Recent progress about transmission electron microscopy characterizations on lithium-ion batteries
14
作者 Yihang Liu Qiuyun Li Ziqiang Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期39-56,I0002,共19页
With the rapid development of portable electronics,new energy vehicles,and smart grids,ion batteries are becoming one of the most widely used energy storage devices,while the safety concern of ion batteries has always... With the rapid development of portable electronics,new energy vehicles,and smart grids,ion batteries are becoming one of the most widely used energy storage devices,while the safety concern of ion batteries has always been an urgent problem to be solved.To develop a safety-guaranteed battery,the characterization of the internal structure is indispensable,where electron microscopy plays a crucial role.Based on this,this paper summarizes the application of transmission electron microscopy(TEM)in battery safety,further concludes and analyzes the aspects of dendrite growth and solid electrolyte interface(SEI)formation that affect the safety of ion batteries,and emphasizes the importance of electron microscopy in battery safety research and the potential of these techniques to promote the future development of this field.These advanced electron microscopy techniques and their prospects are also discussed. 展开更多
关键词 electron microscopy characterizations Lithium-ion batteries DENDRITES SEI
在线阅读 下载PDF
Combining electron microscopy with atomic-scale calculations——A personal perspective
15
作者 Sokrates T.Pantelides 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第12期3-12,共10页
I had the privilege and the pleasure to work closely with Stephen J. Pennycook for about twenty years, having a group of post-docs and Vanderbilt-University graduate students embedded in his electron microscopy group ... I had the privilege and the pleasure to work closely with Stephen J. Pennycook for about twenty years, having a group of post-docs and Vanderbilt-University graduate students embedded in his electron microscopy group at Oak Ridge National Laboratory, spending on average a day per week there. We combined atomic-resolution imaging of materials,electron-energy-loss spectroscopy, and density-functional-theory calculations to explore and elucidate diverse materials phenomena, often resolving long-standing issues. This paper is a personal perspective of that journey, highlighting a few examples to illustrate the power of combining theory and microscopy and closing with an assessment of future prospects. 展开更多
关键词 electron microscopy EELS density-functional-theory calculations
原文传递
Recent progress on advanced transmission electron microscopy characterization for halide perovskite semiconductors 被引量:1
16
作者 Xiaomei Wu Xiaoxing Ke Manling Sui 《Journal of Semiconductors》 EI CAS CSCD 2022年第4期67-81,共15页
Halide perovskites are strategically important in the field of energy materials. Along with the rapid development of the materials and related devices, there is an urgent need to understand the structure–property rel... Halide perovskites are strategically important in the field of energy materials. Along with the rapid development of the materials and related devices, there is an urgent need to understand the structure–property relationship from nanoscale to atomic scale. Much effort has been made in the past few years to overcome the difficulty of imaging limited by electron dose,and to further extend the investigation towards operando conditions. This review is dedicated to recent studies of advanced transmission electron microscopy(TEM) characterizations for halide perovskites. The irradiation damage caused by the interaction of electron beams and perovskites under conventional imaging conditions are first summarized and discussed. Low-dose TEM is then discussed, including electron diffraction and emerging techniques for high-resolution TEM(HRTEM) imaging. Atomic-resolution imaging, defects identification and chemical mapping on halide perovskites are reviewed. Cryo-TEM for halide perovskites is discussed, since it can readily suppress irradiation damage and has been rapidly developed in the past few years. Finally, the applications of in-situ TEM in the degradation study of perovskites under environmental conditions such as heating,biasing, light illumination and humidity are reviewed. More applications of emerging TEM characterizations are foreseen in the coming future, unveiling the structural origin of halide perovskite’s unique properties and degradation mechanism under operando conditions, so to assist the design of a more efficient and robust energy material. 展开更多
关键词 organic–inorganic hybrid perovskite solar cell materials energy materials scanning electron microscopy transmission electron microscopy irradiation damage
在线阅读 下载PDF
Mssbauer and electron microscopy study of martensitic transformations in an Fe-Mn-Mo alloy
17
作者 T.Kirindi U.Sari M.Kurt 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2010年第4期448-452,共5页
The kinetic,morphological,crystallographic,and magnetic characteristics of thermally induced martensites in Fe-13.4wt% Mn-5.2wt%Mo alloy were investigated by scanning electron microscopy(SEM),transmission electron m... The kinetic,morphological,crystallographic,and magnetic characteristics of thermally induced martensites in Fe-13.4wt% Mn-5.2wt%Mo alloy were investigated by scanning electron microscopy(SEM),transmission electron microscopy(TEM),and M(o|¨)ssbauer spectroscopy.The experimental results reveal that two types of thermal-induced martensites,e(hcp) andα'(bcc) martensites,are formed in the as-quenched condition,and these transformations have athermal characters.Mo addition to the Fe-Mn alloy does not change the coexistence ofεandα' martensites with the Mn content between 10wt%and 15wt%.Besides,M(o|¨)ssbauer spectra reveal a paramagnetic character with a singlet for theγ(fcc) austenite andεmartensite phases and a ferromagnetic character with a broad sextet for theα' martensite phase. The volume fraction ofα' martensite forming in the quenched alloy is much more than that of theεmartensite. 展开更多
关键词 Fe-Mn alloy MOLYBDENUM martensitic transformation scanning electron microscopy(SEM) transmission electron microscopy(TEM) Mossbauer spectroscopy
在线阅读 下载PDF
Scanning Electron Microscopy of Antennae of Aphidoletes aphidimyza (Diptera: Cecidomyiidae) 被引量:6
18
作者 张洁 杨茂发 《Zoological Research》 CAS CSCD 北大核心 2008年第1期108-112,共5页
The morphology of antennae of Aphidoletes aphidimyza was observed with a scanning electron microscope. The results showed that both male and female were fourteen segmented, the male was approximately 2000 μm and the ... The morphology of antennae of Aphidoletes aphidimyza was observed with a scanning electron microscope. The results showed that both male and female were fourteen segmented, the male was approximately 2000 μm and the female was 1050μm. Six types of sensillae on the antenna were observed, viz. chaetica (Ch), trichoidea (Tr), basiconica (Ba), cavity (Ca), styloid (St) and circumfila (Ci) on the antennae of A. aphidimyza. Sensillae Ch had a long external-process, with a base surrounded by membranous sockets and a length of about 67.5 μm. Sensillae Tr were distally curved and inserted into a depression, 61.0μm long. Sensillae Ba were peg-like and 4.7μm long on the antennae. Sensillae Ca were pit-like in appearance and the diameter of the pit was 1.2μm. Sensilla St was found on the second sub-segment flagellum of the male antennae. The length of the sensilla was about 21 μm and the diameter was 1.5μm. The circurnfila, which are a unique type of sensilla found only on cecidomyiid antennae, formed loops around each of the antennal sub-segments, and were attached to the surface by a series of stalks. Sensilla St was only present on male antenna. The number of Ba and Tr was almost the same in both sexes. There were more Sensilla Ca on the male antenna than on the female, while there was more Ch on the female. 展开更多
关键词 Aphidoletes aphidimyza Scanning electron microscopy ANTENNA Sensillae ULTRASTRUCTURE
在线阅读 下载PDF
Application of electron microscopy in gastroenterology
19
作者 Masaya Iwamuro Haruo Urata +1 位作者 Takehiro Tanaka Hiroyuki Okada 《World Journal of Gastrointestinal Pathophysiology》 2022年第2期41-49,共9页
Electron microscopy has long been used in research in the fields of life sciences and materials sciences.Transmission and scanning electron microscopy and energy-dispersive X-ray spectroscopy(EDX)analyses have also be... Electron microscopy has long been used in research in the fields of life sciences and materials sciences.Transmission and scanning electron microscopy and energy-dispersive X-ray spectroscopy(EDX)analyses have also been performed in the field of gastroenterology.Electron microscopy and EDX enable(1)Observation of ultrastructural differences in esophageal epithelial cells in patients with gastroesophageal reflux and eosinophilic esophagitis;(2)Detection of lanthanum deposition in the stomach and duodenum;(3)Ultrastructural and elemental analyses of enteroliths and bezoars;(4)Detection and characterization of microorganisms in the gastrointestinal tract;(5)Diagnosis of gastrointestinal tumors with neuroendocrine differentiation;and(6)Analysis of gold nanoparticles potentially used in endoscopic photodynamic therapy.This review aims to foster a better understanding of electron microscopy applications by reviewing relevant clinical studies,basic research findings,and the state of current research carried out in gastroenterology science. 展开更多
关键词 Transmission electron microscopy Scanning electron microscopy Energydispersive X-ray spectrometry Gastrointestinal disease gastroesophageal reflux disease PATHOGENS
暂未订购
Femtosecond Time-Resolved Spectroscopic Photoemission Electron Microscopy for Probing Ultrafast Carrier Dynamics in Heterojunctions 被引量:2
20
作者 Bo-han Li Guan-hua Zhang +6 位作者 Yu Liang Qun-qing Hao Ju-long Sun Chuan-yao Zhou You-tian Tao Xue-ming Yang Ze-feng Ren 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2019年第4期399-405,I0002,共8页
The fast developing semiconductor industry is pushing to shrink and speed up transistors. This trend requires us to understand carrier dynamics in semiconductor heterojunctions with both high spatial and temporal reso... The fast developing semiconductor industry is pushing to shrink and speed up transistors. This trend requires us to understand carrier dynamics in semiconductor heterojunctions with both high spatial and temporal resolutions. Recently, we have successfully set up a timeresolved photoemission electron microscopy (TR-PEEM), which integrates the spectroscopic technique to measure electron densities at specific energy levels in space. This instrument provides us an unprecedented access to the evolution of electrons in terms of spatial location, time resolution, and energy, representing a new type of 4D spectro-microscopy. Here in this work, we present measurements of semiconductor performance with a time resolution of 184 fs, electron kinetic energy resolution of 150 meV, and spatial resolution of about 150 nm or better. We obtained time-resolved micro-area photoelectron spectra and energy-resolved TR-PEEM images on the Pb island on Si(111). These experimental results suggest that this instrument has the potential to be a powerful tool for investigating the carrier dynamics in various heterojunctions, which will deepen our understanding of semiconductor properties in the submicron/nanometer spatial scales and ultrafast time scales. 展开更多
关键词 Time resolution Photoemission electron microscopy Ultrafast carrier dynamics Photoelectron spectroscopy
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部