A microscopic phase-field model was used to investigate a directional coarsening mechanism caused by the anisotropic growth of long period stacking and different effects of phases on precipitation in Ni-Al-V alloy.The...A microscopic phase-field model was used to investigate a directional coarsening mechanism caused by the anisotropic growth of long period stacking and different effects of phases on precipitation in Ni-Al-V alloy.The results show that DO22 mainly coarsens along its short axis,which may press the neighboring L12,leading to the interaction among atoms.Diffusion channels of Al are formed in the direction where the mismatch between γ' and γ reduces;the occupation probabilities are anisotropic in space;and direction coarsening of L12 occurs finally.With a rise of ageing temperature,phases appear later and DO22 is much later at a higher temperature,the average occupation probabilities of Al and V reduce,and Al changes more than V.展开更多
The early precipitation process of Ni(75)Al(14)Mo(11) alloy was simulated by microscopic phase-field model at different temperatures.The microstructure of the alloy,the precipitation time of Llo structure and oc...The early precipitation process of Ni(75)Al(14)Mo(11) alloy was simulated by microscopic phase-field model at different temperatures.The microstructure of the alloy,the precipitation time of Llo structure and occupation probability of the three kinds of atoms were investigated.It is indicated that the non-stoichiometric Ll0(Ⅰ/Ⅱ) phases are found in the precipitation process.With the temperature increasing,the appearance time of Ll0 is brought forward.The Ll0(Ⅱ) structure always precipitates earlier than the Ll0(Ⅰ) structure.Compared with lower temperature,higher temperature brings the formation time of Ll0 phase forward and makes Ll0 phase have a higher order degree.But lower temperature shortens the process time of the Ll0 phase to the Ll2 phase.Al and Mo atoms tend to occupy γ site,Ni atom tends to occupy a and β sites.At the same temperature,Al atom has stronger occupation ability than Mo atom in the same site.Ni,Al and Mo collectively form the composited Ll2 structure.展开更多
Microscopic phase-field method was used to simulate the site occupation of a series of alloys with a stoichiometric composition of Ni75Al25?xFex (x=0, 5?10) aged at 1273 K. With the change of Fe content, quantitative ...Microscopic phase-field method was used to simulate the site occupation of a series of alloys with a stoichiometric composition of Ni75Al25?xFex (x=0, 5?10) aged at 1273 K. With the change of Fe content, quantitative calculations were made on each atomic site occupation probability (SOP) in L12-Ni3 (Al1?xFex), so as to find out the dynamic response law. The result of the study shows that, with the increase of Fe content, the Fe atom preferentially occupies the B sites (corner sites of FCC) with its SOP value being increased gradually, and the SOP of the Al atom on the B sites is greatly decreased. Meanwhile, AlNi and FeNi anti-sites form in the precipitation of L12 phase. Moreover, with the increase of Fe content, the formation of AlNi and FeNi anti-sites becomes much easier. In addition, it has been found that the instantaneous dynamic evolution of the atomic SOP is completed at the early stage of the growth of L12 phases.展开更多
Abstract The process of γ' phase precipitating from Ni75Al14MO11 is studied by a computational simulation technique based on microscopic phase-field kinetics model. We studied the phase transformation with the purpo...Abstract The process of γ' phase precipitating from Ni75Al14MO11 is studied by a computational simulation technique based on microscopic phase-field kinetics model. We studied the phase transformation with the purpose of clarifying the influence of the nearest interatomic potential V Ni-Al (the nearest interatomic potential) on the precipitation process of γ' phase. The result demonstrates that there are two kinds of ordered phases, respective Llo and L12 in the early stage, and Llo phase transforms into L12 phase subsequently. For L12 phase, Ni atoms mainly occupy α site (face center positions), while Al and Mo atoms occupy fl sites (the vertex positions). When VNi-Al is increased by 10 MeV, the occupation probability of Ni atoms on α sites and Al atoms on β sites are enhanced. Enhanced VNi-Al facilitates clustering and ordering of Al atom, which promotes the formation of the γ' phase. At last, the simulation result was discussed by employing the thermodynamic stability.展开更多
On the basis of the microscopic phase-field dynamic model and the microelasticity theory, the characteristics of the coarsening behavior of γ' phase in Ni-Al alloys have been systematically studied in a certain volu...On the basis of the microscopic phase-field dynamic model and the microelasticity theory, the characteristics of the coarsening behavior of γ' phase in Ni-Al alloys have been systematically studied in a certain volume fraction of the precipitates. It was found that the initial irregular shape, randomly distributed γ' phase, gradually transformed into cuboidal shape, regularly aligned along the [100] and [010] directions, and a highly preferential selected microstructure was formed during the later stage of precipitation. The volume fraction of the precipitates produced some effects on the precipitate morphology but did not produce an obvious effect on the regularities of precipitate distribution. The coarsening rate constant from the cubic growth law decreased as a function of volume fraction for small volume fractions, remained constant for intermediate volume fractions, and increased as a function of volume fraction for large volume fractions. During the coherent coarsening process, four "splitting" patterns between γ' phases, which belonged to different antiphase domains, were produced via particle aggregation, such as an L-shaped pattern, a doublet, a triplet, and a quartet.展开更多
With the microscopic phase-field dynamic model, the effects of temperature and concentration on the nucleation incubation time of Ni75AlxV25-x alloy were studied and the relation between the incubation time and precip...With the microscopic phase-field dynamic model, the effects of temperature and concentration on the nucleation incubation time of Ni75AlxV25-x alloy were studied and the relation between the incubation time and precipitation mechanism was investigated by using the atomic occupation probability picture and average order parameter curve. The simulation results demonstrate that there exists the incubation time for different precipitation mechanisms~ such as non-classical nucleation, the mixed style of non-classical nucleation and spinodal decomposition, and spinodal ordering; and the incubation time shortens in turn for the three kinds of mechanisms. With the increase of Al content of Ni75AlxV25-x alloy, the incubation time of Llz phases shortens continuously and that of DOzz phases is prolonged. The effects of temperature on the incubation time of Llz and DOzz phases are accordant, i.e. the incuba- tion time is greatly prolonged with the temperature rising.展开更多
This article, by means of the ternary microscopic phase-field model, investigates the effects of re-ageing temperature on the precipitation of Ni75Al10Cr15 alloy with the help of atomic pictures, order parameters, par...This article, by means of the ternary microscopic phase-field model, investigates the effects of re-ageing temperature on the precipitation of Ni75Al10Cr15 alloy with the help of atomic pictures, order parameters, particle density, averaged radii, and volume fractions. During pre-ageing at 873 K, DO22 phases first appear through spinodal decomposition mechanism, and then L12 phases begin to form on the DO22 phase-boundaries through non-classical nucleation mechanism. In either of them, ordering process is obviously faster than atom clustering. At the late stage of re-ageing at 923 K, the elastic strain energy seems to exert stronger effects on microstructure, and DO22 and L12 phases exhibit directional alignment along 〈100〉 direction to a certain extent. When the temperature increases to 1 023 K, the influence of elastic strain energy begins to weaken, and the precipitated phases become randomly distributed in the matrix. The volume fraction of DO22 phase decreases to zero, whereas that of L12 phase first increases and then decreases with the temperature rising from 923 K to 1 123 K. On the whole, the effects of elastic strain energy make the coarsening behavior of both phases deviate from the time-law predictions by LSW diffusion-controlled growth theory.展开更多
The effects of temperature on atomic anti-site behaviors in L12-Ni3(AlFe) phases were studied using microscopic phase-field dynamic model in precipitation progress of Ni75Al20Fe5 alloy.The results show that with the i...The effects of temperature on atomic anti-site behaviors in L12-Ni3(AlFe) phases were studied using microscopic phase-field dynamic model in precipitation progress of Ni75Al20Fe5 alloy.The results show that with the increase of temperature,the formation of NiAl and AlNi anti-sites is much easier in Ni3(AlFe),and Ni and Al anti-site atoms show clearly stronger temperature-dependent than Fe anti-site atoms.The evolution progress of anti-site atoms is completed at the initial growth stage of L12-Ni3(AlFe) phases.The site occupation probabilities of Ni atoms on the sublattice A(NiNi,face centers sites of FCC),and Al and Fe atoms on the sublattice B(AlAl and FeAl,corners sites of FCC) all present the degressive tendency with the temperature increasing.Fe atoms mainly prefer to occupy the Al sublattice at the whole temperature range.展开更多
The precipitating kinetics of Ni75Al17Zn8 alloy was studied at both 873K and 973K by microscopic phase-field model.The calculation results show that the order-disorder transformation experiences the matrix→lowly-orde...The precipitating kinetics of Ni75Al17Zn8 alloy was studied at both 873K and 973K by microscopic phase-field model.The calculation results show that the order-disorder transformation experiences the matrix→lowly-ordered L10 phase→L12 phase at 973 K.And the nucleation of L12 particles belongs to the spinodal decomposition mechanism.As temperature increases,orderings of Al and Zn atoms are resisted,but coarsening of L12 particles is promoted.The value of coarsening kinetic exponents approaches to 1/2.In addition,the discussions about Ni-Al anti-site defect and Zn substitutions for Ni site and Al site exhibit that the higher the temperature,the more distinctive the Ni-Al anti-site defect,but the less the Zn substitution.展开更多
Simulations are performed on temporal evolution of atom morphology and ordering parameters of Ni-14.5 Cr-16.5 Al alloy during early precipitation process at different temperatures based on microscopic phase-field theo...Simulations are performed on temporal evolution of atom morphology and ordering parameters of Ni-14.5 Cr-16.5 Al alloy during early precipitation process at different temperatures based on microscopic phase-field theory; the relationship between precipitation sequence and mechanism of L12 and D022 structure and precipitation temperature are illuminated. The nonstoichiometric ordered L12 phases appear first with congruent ordering+spinodal decomposition mechanism which is then followed by precipitation of D022 phases at ordering domain boundaries of L12 phases by spinodal decomposition mechanism at 1073 K and 1223 K. The nonstoichiometric L12 phases transform to stoichiometric ordering phases gradually. The incubation period of L12 and D022 phases is shorter at 1073 K than that 1223 K, and growth speed is higher at 1073 K. At 1373 K, L12 and D022 phases appear simultaneously by non-classical nucleation and growth mechanism. After that the particles of D022 phases diminish and disappear gradually; L12 phases grow and single L12 phases are remained at last.展开更多
Based on the microscopic phase-field dynamic model and the microelasticity theory,the coarsening behavior of L12 and DO22 phases in Ni75CrxAl25-x alloy was simulated.The results show that the initial irregular shaped,...Based on the microscopic phase-field dynamic model and the microelasticity theory,the coarsening behavior of L12 and DO22 phases in Ni75CrxAl25-x alloy was simulated.The results show that the initial irregular shaped,randomly distributed L12 and DO22 phases are gradually transformed into cuboidal shape with round corner,regularly aligned along directions[100]and[001],and highly preferential selected microstructure is formed during the later stage of precipitation.The elastic field produced by the lattice mismatch between the coherent precipitates and the matrix has a strong influence on the coarsening kinetics,and there is no linear relationship between the cube of the average size of precipitates and the aging time,which does not agree with the results predicted by the classical Lifshitz-Slyozov-Wagner.The coarsening processes of L12 and DO22 phases are retarded in elastically constrained system.In the concurrent system of L12 and DO22 phases,there are two types of coarsening modes:the migration of antiphase domain boundaries and the interphase Ostwald ripening.展开更多
The influence of temperature on the precipitation mechanism and sequence of L 12 and D022 phases during the early precipitation process of a Ni-15.Sat%Cr-14at%Al alloy was simulated based on the microscopic phase-fiel...The influence of temperature on the precipitation mechanism and sequence of L 12 and D022 phases during the early precipitation process of a Ni-15.Sat%Cr-14at%Al alloy was simulated based on the microscopic phase-field model. In the range from 873 to 1373 K, the precipitation mechanism transformed from spinodal decomposition to non-classic nucleation and growth; the incubation period prolonged gradually with increasing temperature. The volume fraction of L12 phases increased and that of D022 phases decreased. D022 phases disappeared at 1373 K, and finally single-phase L12 phases were formed.展开更多
The simulations of Cr atom substitution character during the formation of L12 and DO22 phases in Ni-Cr-Al alloy were performed at 873 K based on microscopic phase-field model. It is found that the substitution of Cr i...The simulations of Cr atom substitution character during the formation of L12 and DO22 phases in Ni-Cr-Al alloy were performed at 873 K based on microscopic phase-field model. It is found that the substitution of Cr is affected by Cr and Al contents and limits of occupation probabilities of Cr atom in L12 phase are present. The precipitate is single L12 phase when the component is less than the limit, Cr atoms substitute the Al sublattices in Ll2 phase, and both of atoms Al and Cr occupy the β-sites and complex phases Ni3(Al1-xCrx) are formed; Cr atoms enter Ni sites when Al and Cr contents exceed the limit, and substitute β-sites or both of α- and β-sites. The DO22 phase is formed at the boundary of Ll2 phase.展开更多
Ordered domain interfaces formed between DO22 (Ni3V) phases along [100] direction during the precipitation process of Ni75AlxV25-x alloys were simulated by using the microscopic phase-field model. The atomic structure...Ordered domain interfaces formed between DO22 (Ni3V) phases along [100] direction during the precipitation process of Ni75AlxV25-x alloys were simulated by using the microscopic phase-field model. The atomic structure, migration process, and compositions of interfaces were investigated. It is found that there are four kinds of stable ordered domain interfaces formed between DO22 phases along [100] direction and all of them can migrate. During the migration of interfaces, the jump of atoms shows site selectivity behaviors and each stable interface forms a distinctive transition interface. The atom jump selects the optimist way to induce the migration of interface, and the atomic structures of interfaces retain the same before and after the migration. The alloy elements have different preferences of segregation or depletion at different interfaces. At all the four kinds of interfaces, Ni and Al segregate but V depletes. The degrees of segregation and depletion are also different at different interfaces.展开更多
The process of γ(fcc)→γ(fcc)+γ'(L12)phase transformation was simulated by using microscopic phase-field method for the low supersaturation NiAl9Fe6 alloy.It is found that in the γ' phase,the ordering degr...The process of γ(fcc)→γ(fcc)+γ'(L12)phase transformation was simulated by using microscopic phase-field method for the low supersaturation NiAl9Fe6 alloy.It is found that in the γ' phase,the ordering degree of Al atoms is obviously higher than that of Fe atoms,and the ordering of Al atoms precedes their clustering,while the case of Fe atoms is opposite.The α site is mainly occupied by Ni atoms,while the β site is occupied in common by Al,Fe and Ni atoms.At order-disorder interphase boundary,the ordering degree of Al atoms is higher than that of Fe atoms,and at the β site,the Fe atomic site occupation probabilities vary from high to low during ordering;the Al atomic site occupation probabilities are similar to those of Fe atoms,but their values are much higher than those of Fe atoms;Ni atoms are opposite to both of them.Meanwhile,during the ordering transformation,γ' phase is always a complex Ni3(AlFeNi)single-phase,and it is precipitated by the non-classical nucleation and growth style.Finally,in the alloy system,the volume of γ' ordered phase is less than that of γ phase,and the volume ratio of order to disorder is about 77%.展开更多
The precipitation process of Ni-Cr-Al alloy with low Al content was studied at atomic scale based on the microscopicphase-field kinetic model coupled with elastic strain energy.The aim is to investigate the effect of ...The precipitation process of Ni-Cr-Al alloy with low Al content was studied at atomic scale based on the microscopicphase-field kinetic model coupled with elastic strain energy.The aim is to investigate the effect of elastic strain energy onprecipitation mechanism and morphological evolution of the alloy.The simulation results show that in the early stage of precipitation,D022 phase and L12 phase present irregular shape,and they randomly distribute in the matrix.With the progress of aging,L12 phaseand D022 phase change into the quadrate shape and their orientations become more obvious.In the later stage,L12 phase and D022phase present quadrate shape with round corner and align along the[100]and[010]directions,and highly preferential selectedmicrostructure is formed.The mechanism of early precipitation of L12 phase in Ni-17%Cr-7.5%Al(mole fraction)alloy is the mixedstyle of non-classical nucleation growth and spinodal decomposition and the D022 phase is the spinodal decomposition.Themechanisms of early precipitation of L12 phase and D022 phase in Ni-12.5%Cr-7.5%Al alloy are both the non-classical nucleationand growth.The coarsening process follows the rule of preferential selected coarsening.展开更多
The precipitation processes of γ′ and θ phases in Ni75Al6.5V18.5 alloy were simulated at different temperatures and the precipitation sequence of two phases and morphological evolution were investigated. The simula...The precipitation processes of γ′ and θ phases in Ni75Al6.5V18.5 alloy were simulated at different temperatures and the precipitation sequence of two phases and morphological evolution were investigated. The simulation demonstrates that the two phases precipitate simultaneously at high temperature and γ′ phase precipitates earlier than θ phase at 1 000 K and 1 120 K. With the temperature decreasing, the velocity of precipitation quickens, the quantity of θ phase increases and the size reduces; but the volume fraction increases, the quantity of phase increases and the size reduces as well. The two phases nucleate and grow independently at high temperature and the θ phase precipitates from the boundaries of γ′ phase at 1 000 K and 1 120 K. We also find that there are many kinds of domain boundaries between the same and different phases. The results of average deviation of composition and average absolute long range order parameter show that the ordering and compositional clustering of γ′ phase happen simultaneously at high temperature, the congruent ordering occurs prior to spinodal decomposition at 1 000 K and 1 120 K and the ordering advances and quickens as the temperature decreases. Ordering and compositional clustering of θ phase occur simultaneously at each temperature and are quickened with temperature decreasing.展开更多
The evolution of ordered interphase boundary (IPB) of Ni75AlxV25-x alloys was simulated using the microscopic phase-field method. Based on the atomic occupation probability figure on 2D and order parameters, it was fo...The evolution of ordered interphase boundary (IPB) of Ni75AlxV25-x alloys was simulated using the microscopic phase-field method. Based on the atomic occupation probability figure on 2D and order parameters, it was found that the IPB formed by different directions ofθ phase has great effect on the precipitation of γ ′ phase. The γ ′ phase precipitated at the IPB that is formed by [1 00]θ direction where the ( 001)θ plane is opposite, and then grows up and the shape is strap at final. The IPB structure between γ ′phase andθ phase is the same. There is no γ ′ phase precipitate at the IPB where the ( 002)θ and ( 001)θ planes are opposite, the ordered IPB is dissolved into disordered area. There is γ ′ phase precipitation at the IPB formed by the [ 001]θ and [1 00]θ directions, and the IPB structure is different between γ ′ phase and the different directions ofθ phase. The IPB where ( 001)γ′ and (1 00)θ plane opposite does not migrate during the γ ′ phase growth, and γ ′ phase grows along [1 00]θdirection.展开更多
Based on the microscopic phase-field model, the pre-aging temperature effects on the precipitation mechanism and microstructure evolution during two-step aging for Ni75Al9Cr16 alloy were simulated. The results show th...Based on the microscopic phase-field model, the pre-aging temperature effects on the precipitation mechanism and microstructure evolution during two-step aging for Ni75Al9Cr16 alloy were simulated. The results show that the early precipitation mechanism of L12 phase is the mixed mechanism of spinodal decomposition and non-classical nucleation growth, whereas the early precipitation mechanism of DO22 phase is spinodal decomposition when the pre-aging temperature is 873 K. The early precipitation mechanism of L12 phase is non-classical nucleation growth, whereas the early precipitation mechanism of DO22 phase is spinodal decomposition when the pre-aging temperature is 973 K. Under the effects of elastic strain energy, the cubic particles exhibit directional alignment along [100] and [010] directions during the late precipitation, which is more obvious at lower pre-temperature. DO22 phases appear earlier than L12 phases under these two kinds of precipitation processes; and the nucleation incubation time becomes long with the increase of pre-temperature.展开更多
In this paper,a microscopic phase-field model was used to investigate the effect of the oriented diffusion channel and the phases' effect mechanism for the Ni75Al6.0V19.0 alloy during a phase transformation proces...In this paper,a microscopic phase-field model was used to investigate the effect of the oriented diffusion channel and the phases' effect mechanism for the Ni75Al6.0V19.0 alloy during a phase transformation process.A diffusion channel of V was formed in the [100] direction.The oriented growth of DO22 in this direction,when an elastic misfit stress field existed,forced Al to form a diffusion channel next to DO22,resulting in L12-oriented growth.With an increase in stress,the oriented growth increased initially and then decreased.At a higher stress,the average values of the occupation probability for V atoms became constant later while Al atoms earlier.展开更多
基金Projects(51075335,10902086,50875217) supported by the National Natural Science Foundation of ChinaProject(JC201005) supported by the Northwestern Polytechnical University Foundation for Fundamental Research,ChinaProject(CX201007) supported by the Doctorate Foundation of Northwestern Polytechnical University,China
文摘A microscopic phase-field model was used to investigate a directional coarsening mechanism caused by the anisotropic growth of long period stacking and different effects of phases on precipitation in Ni-Al-V alloy.The results show that DO22 mainly coarsens along its short axis,which may press the neighboring L12,leading to the interaction among atoms.Diffusion channels of Al are formed in the direction where the mismatch between γ' and γ reduces;the occupation probabilities are anisotropic in space;and direction coarsening of L12 occurs finally.With a rise of ageing temperature,phases appear later and DO22 is much later at a higher temperature,the average occupation probabilities of Al and V reduce,and Al changes more than V.
基金Project(51275486)supported by the National Natural Science Foundation of China
文摘The early precipitation process of Ni(75)Al(14)Mo(11) alloy was simulated by microscopic phase-field model at different temperatures.The microstructure of the alloy,the precipitation time of Llo structure and occupation probability of the three kinds of atoms were investigated.It is indicated that the non-stoichiometric Ll0(Ⅰ/Ⅱ) phases are found in the precipitation process.With the temperature increasing,the appearance time of Ll0 is brought forward.The Ll0(Ⅱ) structure always precipitates earlier than the Ll0(Ⅰ) structure.Compared with lower temperature,higher temperature brings the formation time of Ll0 phase forward and makes Ll0 phase have a higher order degree.But lower temperature shortens the process time of the Ll0 phase to the Ll2 phase.Al and Mo atoms tend to occupy γ site,Ni atom tends to occupy a and β sites.At the same temperature,Al atom has stronger occupation ability than Mo atom in the same site.Ni,Al and Mo collectively form the composited Ll2 structure.
基金Project(2013011014-1)supported by the Natural Science Funds of Shanxi Province,ChinaProject(2009021028)supported by Science and Technique Foundation for Young Scholars of Shanxi Province,China
文摘Microscopic phase-field method was used to simulate the site occupation of a series of alloys with a stoichiometric composition of Ni75Al25?xFex (x=0, 5?10) aged at 1273 K. With the change of Fe content, quantitative calculations were made on each atomic site occupation probability (SOP) in L12-Ni3 (Al1?xFex), so as to find out the dynamic response law. The result of the study shows that, with the increase of Fe content, the Fe atom preferentially occupies the B sites (corner sites of FCC) with its SOP value being increased gradually, and the SOP of the Al atom on the B sites is greatly decreased. Meanwhile, AlNi and FeNi anti-sites form in the precipitation of L12 phase. Moreover, with the increase of Fe content, the formation of AlNi and FeNi anti-sites becomes much easier. In addition, it has been found that the instantaneous dynamic evolution of the atomic SOP is completed at the early stage of the growth of L12 phases.
基金financially supported by the National Natural Science Foundation of China (Nos. 51,204,147 and 51274175)International Cooperation Project Supported by Ministry of Science and Technology of China (No. 2014DFA50320)International Science and Technology Cooperation Project of Shanxi Province (Nos. 2013081017 and 2012081013)
文摘Abstract The process of γ' phase precipitating from Ni75Al14MO11 is studied by a computational simulation technique based on microscopic phase-field kinetics model. We studied the phase transformation with the purpose of clarifying the influence of the nearest interatomic potential V Ni-Al (the nearest interatomic potential) on the precipitation process of γ' phase. The result demonstrates that there are two kinds of ordered phases, respective Llo and L12 in the early stage, and Llo phase transforms into L12 phase subsequently. For L12 phase, Ni atoms mainly occupy α site (face center positions), while Al and Mo atoms occupy fl sites (the vertex positions). When VNi-Al is increased by 10 MeV, the occupation probability of Ni atoms on α sites and Al atoms on β sites are enhanced. Enhanced VNi-Al facilitates clustering and ordering of Al atom, which promotes the formation of the γ' phase. At last, the simulation result was discussed by employing the thermodynamic stability.
基金This work was financially supported by the National Natural Science Foundation of China (No.50671084)China Postdoctoral Science Foundation (No.20070420218).
文摘On the basis of the microscopic phase-field dynamic model and the microelasticity theory, the characteristics of the coarsening behavior of γ' phase in Ni-Al alloys have been systematically studied in a certain volume fraction of the precipitates. It was found that the initial irregular shape, randomly distributed γ' phase, gradually transformed into cuboidal shape, regularly aligned along the [100] and [010] directions, and a highly preferential selected microstructure was formed during the later stage of precipitation. The volume fraction of the precipitates produced some effects on the precipitate morphology but did not produce an obvious effect on the regularities of precipitate distribution. The coarsening rate constant from the cubic growth law decreased as a function of volume fraction for small volume fractions, remained constant for intermediate volume fractions, and increased as a function of volume fraction for large volume fractions. During the coherent coarsening process, four "splitting" patterns between γ' phases, which belonged to different antiphase domains, were produced via particle aggregation, such as an L-shaped pattern, a doublet, a triplet, and a quartet.
文摘With the microscopic phase-field dynamic model, the effects of temperature and concentration on the nucleation incubation time of Ni75AlxV25-x alloy were studied and the relation between the incubation time and precipitation mechanism was investigated by using the atomic occupation probability picture and average order parameter curve. The simulation results demonstrate that there exists the incubation time for different precipitation mechanisms~ such as non-classical nucleation, the mixed style of non-classical nucleation and spinodal decomposition, and spinodal ordering; and the incubation time shortens in turn for the three kinds of mechanisms. With the increase of Al content of Ni75AlxV25-x alloy, the incubation time of Llz phases shortens continuously and that of DOzz phases is prolonged. The effects of temperature on the incubation time of Llz and DOzz phases are accordant, i.e. the incuba- tion time is greatly prolonged with the temperature rising.
基金Foundation items: National Natural Science Foundation of China (50671084) China Postdoctoral Science Foundation Funded Project (20070420218)
文摘This article, by means of the ternary microscopic phase-field model, investigates the effects of re-ageing temperature on the precipitation of Ni75Al10Cr15 alloy with the help of atomic pictures, order parameters, particle density, averaged radii, and volume fractions. During pre-ageing at 873 K, DO22 phases first appear through spinodal decomposition mechanism, and then L12 phases begin to form on the DO22 phase-boundaries through non-classical nucleation mechanism. In either of them, ordering process is obviously faster than atom clustering. At the late stage of re-ageing at 923 K, the elastic strain energy seems to exert stronger effects on microstructure, and DO22 and L12 phases exhibit directional alignment along 〈100〉 direction to a certain extent. When the temperature increases to 1 023 K, the influence of elastic strain energy begins to weaken, and the precipitated phases become randomly distributed in the matrix. The volume fraction of DO22 phase decreases to zero, whereas that of L12 phase first increases and then decreases with the temperature rising from 923 K to 1 123 K. On the whole, the effects of elastic strain energy make the coarsening behavior of both phases deviate from the time-law predictions by LSW diffusion-controlled growth theory.
基金Project(50671084) supported by the National Natural Science Foundation of ChinaProject(2009021028) supported by Science and Technique Foundation for Young Scholars of Shanxi Province, ChinaProject(20100470125) supported by National Science Foundation for Post-doctoral Scientists of China
文摘The effects of temperature on atomic anti-site behaviors in L12-Ni3(AlFe) phases were studied using microscopic phase-field dynamic model in precipitation progress of Ni75Al20Fe5 alloy.The results show that with the increase of temperature,the formation of NiAl and AlNi anti-sites is much easier in Ni3(AlFe),and Ni and Al anti-site atoms show clearly stronger temperature-dependent than Fe anti-site atoms.The evolution progress of anti-site atoms is completed at the initial growth stage of L12-Ni3(AlFe) phases.The site occupation probabilities of Ni atoms on the sublattice A(NiNi,face centers sites of FCC),and Al and Fe atoms on the sublattice B(AlAl and FeAl,corners sites of FCC) all present the degressive tendency with the temperature increasing.Fe atoms mainly prefer to occupy the Al sublattice at the whole temperature range.
基金Projects(50941020,10902086)supported by the National Natural Science Foundation of China
文摘The precipitating kinetics of Ni75Al17Zn8 alloy was studied at both 873K and 973K by microscopic phase-field model.The calculation results show that the order-disorder transformation experiences the matrix→lowly-ordered L10 phase→L12 phase at 973 K.And the nucleation of L12 particles belongs to the spinodal decomposition mechanism.As temperature increases,orderings of Al and Zn atoms are resisted,but coarsening of L12 particles is promoted.The value of coarsening kinetic exponents approaches to 1/2.In addition,the discussions about Ni-Al anti-site defect and Zn substitutions for Ni site and Al site exhibit that the higher the temperature,the more distinctive the Ni-Al anti-site defect,but the less the Zn substitution.
基金This work was supported by the National Natural Science Foundation of China (Grant No. 50071046) the National High-Tech Research and Development Program of China (863 Program, No. 2002AA331051).
文摘Simulations are performed on temporal evolution of atom morphology and ordering parameters of Ni-14.5 Cr-16.5 Al alloy during early precipitation process at different temperatures based on microscopic phase-field theory; the relationship between precipitation sequence and mechanism of L12 and D022 structure and precipitation temperature are illuminated. The nonstoichiometric ordered L12 phases appear first with congruent ordering+spinodal decomposition mechanism which is then followed by precipitation of D022 phases at ordering domain boundaries of L12 phases by spinodal decomposition mechanism at 1073 K and 1223 K. The nonstoichiometric L12 phases transform to stoichiometric ordering phases gradually. The incubation period of L12 and D022 phases is shorter at 1073 K than that 1223 K, and growth speed is higher at 1073 K. At 1373 K, L12 and D022 phases appear simultaneously by non-classical nucleation and growth mechanism. After that the particles of D022 phases diminish and disappear gradually; L12 phases grow and single L12 phases are remained at last.
基金Project(50671084)supported by the National Natural Science Foundation of ChinaProject(20070420218)supported by ChinaPostdoctoral Science Foundation
文摘Based on the microscopic phase-field dynamic model and the microelasticity theory,the coarsening behavior of L12 and DO22 phases in Ni75CrxAl25-x alloy was simulated.The results show that the initial irregular shaped,randomly distributed L12 and DO22 phases are gradually transformed into cuboidal shape with round corner,regularly aligned along directions[100]and[001],and highly preferential selected microstructure is formed during the later stage of precipitation.The elastic field produced by the lattice mismatch between the coherent precipitates and the matrix has a strong influence on the coarsening kinetics,and there is no linear relationship between the cube of the average size of precipitates and the aging time,which does not agree with the results predicted by the classical Lifshitz-Slyozov-Wagner.The coarsening processes of L12 and DO22 phases are retarded in elastically constrained system.In the concurrent system of L12 and DO22 phases,there are two types of coarsening modes:the migration of antiphase domain boundaries and the interphase Ostwald ripening.
基金This work was financially supported by the National Natural Science Foundation of China (No.50071046) and the National High-Tech Research and Development Program of China (No.2002AA331051).
文摘The influence of temperature on the precipitation mechanism and sequence of L 12 and D022 phases during the early precipitation process of a Ni-15.Sat%Cr-14at%Al alloy was simulated based on the microscopic phase-field model. In the range from 873 to 1373 K, the precipitation mechanism transformed from spinodal decomposition to non-classic nucleation and growth; the incubation period prolonged gradually with increasing temperature. The volume fraction of L12 phases increased and that of D022 phases decreased. D022 phases disappeared at 1373 K, and finally single-phase L12 phases were formed.
基金Project(50071046) supported by the National Natural Science Foundation of China
文摘The simulations of Cr atom substitution character during the formation of L12 and DO22 phases in Ni-Cr-Al alloy were performed at 873 K based on microscopic phase-field model. It is found that the substitution of Cr is affected by Cr and Al contents and limits of occupation probabilities of Cr atom in L12 phase are present. The precipitate is single L12 phase when the component is less than the limit, Cr atoms substitute the Al sublattices in Ll2 phase, and both of atoms Al and Cr occupy the β-sites and complex phases Ni3(Al1-xCrx) are formed; Cr atoms enter Ni sites when Al and Cr contents exceed the limit, and substitute β-sites or both of α- and β-sites. The DO22 phase is formed at the boundary of Ll2 phase.
基金Projects(50671084, 50875217) supported by the National Natural Science Foundation of ChinaProjects(2003E106, SJ08-ZT05) supported by the Natural Science Foundation of Shaanxi Province, ChinaProject(20070420218) supported by China Postdoctoral Science Foundation
文摘Ordered domain interfaces formed between DO22 (Ni3V) phases along [100] direction during the precipitation process of Ni75AlxV25-x alloys were simulated by using the microscopic phase-field model. The atomic structure, migration process, and compositions of interfaces were investigated. It is found that there are four kinds of stable ordered domain interfaces formed between DO22 phases along [100] direction and all of them can migrate. During the migration of interfaces, the jump of atoms shows site selectivity behaviors and each stable interface forms a distinctive transition interface. The atom jump selects the optimist way to induce the migration of interface, and the atomic structures of interfaces retain the same before and after the migration. The alloy elements have different preferences of segregation or depletion at different interfaces. At all the four kinds of interfaces, Ni and Al segregate but V depletes. The degrees of segregation and depletion are also different at different interfaces.
基金Project(50671084)supported by the National Natural Science Foundation of ChinaProject(Z200714)supported by Graduate Starting Seed Fund of Northwestern Polythechnical University,China
文摘The process of γ(fcc)→γ(fcc)+γ'(L12)phase transformation was simulated by using microscopic phase-field method for the low supersaturation NiAl9Fe6 alloy.It is found that in the γ' phase,the ordering degree of Al atoms is obviously higher than that of Fe atoms,and the ordering of Al atoms precedes their clustering,while the case of Fe atoms is opposite.The α site is mainly occupied by Ni atoms,while the β site is occupied in common by Al,Fe and Ni atoms.At order-disorder interphase boundary,the ordering degree of Al atoms is higher than that of Fe atoms,and at the β site,the Fe atomic site occupation probabilities vary from high to low during ordering;the Al atomic site occupation probabilities are similar to those of Fe atoms,but their values are much higher than those of Fe atoms;Ni atoms are opposite to both of them.Meanwhile,during the ordering transformation,γ' phase is always a complex Ni3(AlFeNi)single-phase,and it is precipitated by the non-classical nucleation and growth style.Finally,in the alloy system,the volume of γ' ordered phase is less than that of γ phase,and the volume ratio of order to disorder is about 77%.
基金Projects(50671084,50071046)supported by the National Natural Science Foundation of ChinaProject(2002AA331051)supported by the National Hi-Tech Research Development Program of China
文摘The precipitation process of Ni-Cr-Al alloy with low Al content was studied at atomic scale based on the microscopicphase-field kinetic model coupled with elastic strain energy.The aim is to investigate the effect of elastic strain energy onprecipitation mechanism and morphological evolution of the alloy.The simulation results show that in the early stage of precipitation,D022 phase and L12 phase present irregular shape,and they randomly distribute in the matrix.With the progress of aging,L12 phaseand D022 phase change into the quadrate shape and their orientations become more obvious.In the later stage,L12 phase and D022phase present quadrate shape with round corner and align along the[100]and[010]directions,and highly preferential selectedmicrostructure is formed.The mechanism of early precipitation of L12 phase in Ni-17%Cr-7.5%Al(mole fraction)alloy is the mixedstyle of non-classical nucleation growth and spinodal decomposition and the D022 phase is the spinodal decomposition.Themechanisms of early precipitation of L12 phase and D022 phase in Ni-12.5%Cr-7.5%Al alloy are both the non-classical nucleationand growth.The coarsening process follows the rule of preferential selected coarsening.
基金Project(50071046) supported by the National Natural Science Foundation of China Project(2002AA331051)supportedby Hi tech Research and Development Program of China
文摘The precipitation processes of γ′ and θ phases in Ni75Al6.5V18.5 alloy were simulated at different temperatures and the precipitation sequence of two phases and morphological evolution were investigated. The simulation demonstrates that the two phases precipitate simultaneously at high temperature and γ′ phase precipitates earlier than θ phase at 1 000 K and 1 120 K. With the temperature decreasing, the velocity of precipitation quickens, the quantity of θ phase increases and the size reduces; but the volume fraction increases, the quantity of phase increases and the size reduces as well. The two phases nucleate and grow independently at high temperature and the θ phase precipitates from the boundaries of γ′ phase at 1 000 K and 1 120 K. We also find that there are many kinds of domain boundaries between the same and different phases. The results of average deviation of composition and average absolute long range order parameter show that the ordering and compositional clustering of γ′ phase happen simultaneously at high temperature, the congruent ordering occurs prior to spinodal decomposition at 1 000 K and 1 120 K and the ordering advances and quickens as the temperature decreases. Ordering and compositional clustering of θ phase occur simultaneously at each temperature and are quickened with temperature decreasing.
基金Project (50071046) supported by the National Natural Science Foundation of China Project (2002AA331051)supported by the National Hi-Tech Research and Development Program of China
文摘The evolution of ordered interphase boundary (IPB) of Ni75AlxV25-x alloys was simulated using the microscopic phase-field method. Based on the atomic occupation probability figure on 2D and order parameters, it was found that the IPB formed by different directions ofθ phase has great effect on the precipitation of γ ′ phase. The γ ′ phase precipitated at the IPB that is formed by [1 00]θ direction where the ( 001)θ plane is opposite, and then grows up and the shape is strap at final. The IPB structure between γ ′phase andθ phase is the same. There is no γ ′ phase precipitate at the IPB where the ( 002)θ and ( 001)θ planes are opposite, the ordered IPB is dissolved into disordered area. There is γ ′ phase precipitation at the IPB formed by the [ 001]θ and [1 00]θ directions, and the IPB structure is different between γ ′ phase and the different directions ofθ phase. The IPB where ( 001)γ′ and (1 00)θ plane opposite does not migrate during the γ ′ phase growth, and γ ′ phase grows along [1 00]θdirection.
基金Project(50671084) supported by the National Natural Science Foundation of ChinaProject(Z200714) supported by the Postgraduate Foundation of Northwestern Polytechnical University, China
文摘Based on the microscopic phase-field model, the pre-aging temperature effects on the precipitation mechanism and microstructure evolution during two-step aging for Ni75Al9Cr16 alloy were simulated. The results show that the early precipitation mechanism of L12 phase is the mixed mechanism of spinodal decomposition and non-classical nucleation growth, whereas the early precipitation mechanism of DO22 phase is spinodal decomposition when the pre-aging temperature is 873 K. The early precipitation mechanism of L12 phase is non-classical nucleation growth, whereas the early precipitation mechanism of DO22 phase is spinodal decomposition when the pre-aging temperature is 973 K. Under the effects of elastic strain energy, the cubic particles exhibit directional alignment along [100] and [010] directions during the late precipitation, which is more obvious at lower pre-temperature. DO22 phases appear earlier than L12 phases under these two kinds of precipitation processes; and the nucleation incubation time becomes long with the increase of pre-temperature.
基金supported by the National Natural Science Foundation of China (Grant Nos. 51075335, 10902086, 50875217)the NPU Foundation for Fundamental Research (Grant No. JC201005)the Doctorate Foundation of Northwestern Polytechnical University (Grant No.CX201007)
文摘In this paper,a microscopic phase-field model was used to investigate the effect of the oriented diffusion channel and the phases' effect mechanism for the Ni75Al6.0V19.0 alloy during a phase transformation process.A diffusion channel of V was formed in the [100] direction.The oriented growth of DO22 in this direction,when an elastic misfit stress field existed,forced Al to form a diffusion channel next to DO22,resulting in L12-oriented growth.With an increase in stress,the oriented growth increased initially and then decreased.At a higher stress,the average values of the occupation probability for V atoms became constant later while Al atoms earlier.