AIMTo develop a simplified bioartificial liver (BAL) device prototype, suitable to use freshly and preserved liver Microorgans (LMOs) as biological component. METHODSThe system consists of 140 capillary fibers through...AIMTo develop a simplified bioartificial liver (BAL) device prototype, suitable to use freshly and preserved liver Microorgans (LMOs) as biological component. METHODSThe system consists of 140 capillary fibers through which goat blood is pumped. The evolution of hematocrit, plasma and extra-fiber fluid osmolality was evaluated without any biological component, to characterize the prototype. LMOs were cut and cold stored 48 h in BG35 and ViaSpan<sup>®</sup> solutions. Fresh LMOs were used as controls. After preservation, LMOs were loaded into the BAL and an ammonia overload was added. To assess LMOs viability and functionality, samples were taken to determine lactate dehydrogenase (LDH) release and ammonia detoxification capacity. RESULTSThe concentrations of ammonia and glucose, and the fluids osmolalities were matched after the first hour of perfusion, showing a proper exchange between blood and the biological compartment in the minibioreactor. After 120 min of perfusion, LMOs cold preserved in BG35 and ViaSpan<sup>®</sup> were able to detoxify 52.9% ± 6.5% and 53.6% ± 6.0%, respectively, of the initial ammonia overload. No significant differences were found with Controls (49.3% ± 8.8%, P ®</sup> cold preserved LMOs, respectively (n = 6, P CONCLUSIONThis prototype relied on a simple design and excellent performance. It’s a practical tool to evaluate the detoxification ability of LMOs subjected to different preservation protocols.展开更多
Whilst phosphorus(P)in soil is considered to be abundant,the portion available for plant uptake constitutes less than 1%of the overall P present.To enhance crop productivity,the utilization of mineral P fertilizers ha...Whilst phosphorus(P)in soil is considered to be abundant,the portion available for plant uptake constitutes less than 1%of the overall P present.To enhance crop productivity,the utilization of mineral P fertilizers has become pervasive in agriculture.Nonetheless,the escalating prices of chemical fertilizers,coupled with new European regulations prohibiting the use of P fertilizers containing cadmium,have highlighted the urgency to identify environmentally friendly products and practices for P fertilization in agricultural soils.This comprehensive review delves into the current landscape of P fertilization from agricultural,political,and economic standpoints.We recognize the potential of microbes in mobilizing P,but emphasize the necessity for more robust research to establish their effectiveness in promoting plant P uptake under real-world conditions.Additionally,we explore the role of agricultural conservation practices,such as optimal tillage,diversified cropping systems,and increased organic carbon input,in conserving P.Furthermore,this review contemplates forthcoming innovations in research.These innovations encompass the development of enhanced formulations for biofertilizers and the undertaking of more comprehensive studies within the realm of conservation agriculture.All these endeavors collectively hold the potential to augment P accessibility to plants in a sustainable manner,thereby advancing agricultural sustainability and productivity.展开更多
Antimony smelting activities damage the soil and vegetation surroundings while generating economic value.However,no standardizedmethods are available to diagnose the extent of soil degradation at antimony smelting sit...Antimony smelting activities damage the soil and vegetation surroundings while generating economic value.However,no standardizedmethods are available to diagnose the extent of soil degradation at antimony smelting sites.This study developed a standardized framework for assessing soil quality by consideringmicrobial-induced resilience and heavymetal contamination at Xikuangshan antimony smelting site.The soil resilience index(SRI)and soil contamination index(SCI)were calculated byMinimum Data Set and geo-accumulation model,respectively.After standardized by a multi-criteria quantitative procedure of modified Nemerow’s pollution index(NPI),the integrated assessment of soil quality index(SQI),which is the minimumof SRINPI and SCINPI,was achieved.The results showed that Sb and As were the prominent metal(loid)pollutants,and significant correlations between SQI and SRI indicated that the poor soil quality was mainly caused by the low level of soil resilience.The primary limiting factors of SRI were Fungi in high andmiddle contaminated areas,and Skermanella in low contaminated area,suggesting that the weak soil resilience was caused by low specific microbial abundances.Microbial regulation and phytoremediation are greatly required to improve the soil quality at antimony smelting sites from the perspectives of pollution control and resilience improvement.This study improves our understanding of ecological effects of antimony smelting sites and provides a theoretical basis for ecological restoration and sustainable development of mining areas.展开更多
In a recent case report in the World Journal of Clinical Cases,emphasized the crucial role of rapidly and accurately identifying pathogens to optimize patient treatment outcomes.Laboratory-on-a-chip(LOC)technology has...In a recent case report in the World Journal of Clinical Cases,emphasized the crucial role of rapidly and accurately identifying pathogens to optimize patient treatment outcomes.Laboratory-on-a-chip(LOC)technology has emerged as a transformative tool in health care,offering rapid,sensitive,and specific identification of microorganisms.This editorial provides a comprehensive overview of LOC technology,highlighting its principles,advantages,applications,challenges,and future directions.Success studies from the field have demonstrated the practical benefits of LOC devices in clinical diagnostics,epidemiology,and food safety.Comparative studies have underscored the superiority of LOC technology over traditional methods,showcasing improvements in speed,accuracy,and portability.The future integration of LOC with biosensors,artificial intelligence,and data analytics promises further innovation and expansion.This call to action emphasizes the importance of continued research,investment,and adoption to realize the full potential of LOC technology in improving healthcare outcomes worldwide.展开更多
BACKGROUND In the absence of effective antimicrobials,transplant surgery is not viable,and antirejection immunosuppressants cannot be administered,as resistant infections compromise the life-saving goal of organ trans...BACKGROUND In the absence of effective antimicrobials,transplant surgery is not viable,and antirejection immunosuppressants cannot be administered,as resistant infections compromise the life-saving goal of organ transplantation.AIM To evaluate the efficacy of antimicrobials in preventing resistance in solid organ transplant recipients.METHODS A systematic review was conducted using a search methodology consistent with the preferred reporting items for systematic reviews and meta-analyses.This review included randomized clinical trials that evaluated the efficacy of antimicrobial agents(prophylactic or therapeutic)aimed at preventing antimicrobial resistance.The search strategy involved analyzing multiple databases,including PubMed/MEDLINE,Web of Science,Embase,Scopus,and SciELO,as well as examining gray literature sources on Google Scholar.A comprehensive electronic database search was conducted from the databases’inception until May 2024,with no language restrictions.RESULTS After the final phase of the eligibility assessment,this systematic review ultimate-ly included 7 articles.A total of 2318 patients were studied.The most studied microorganisms were cytomegalovirus,although vancomycinresistant enterococci,Clostridioides difficile,and multidrug-resistant Enterobacterales were also analyzed.The antimicrobials used in the interventions were mainly maribavir,valganciclovir,gancic-lovir,and colistin-neomycin.Of concern,all clinical trials showed significant proportions of resistant microorga-nisms after the interventions,with no statistically significant differences between the groups(mean resistance 13.47%vs 14.39%),except for two studies that demonstrated greater efficacy of maribavir and valganciclovir(mean resistance 22.2%vs 41.1%in the control group;P<0.05).The total reported deaths in three clinical trials were 75,and there were 24 graft rejections in two studies.CONCLUSION All clinical trials reported significant proportions of antimicrobial-resistant microorganisms following interventions.More high-quality randomized clinical trials are needed to corroborate these results.展开更多
[Objectives]To systematically investigate the microbial community composition of rhizosphere soil and endophytes associated with Pogostemon cablin,and to explore the relationships between endophytes and rhizosphere mi...[Objectives]To systematically investigate the microbial community composition of rhizosphere soil and endophytes associated with Pogostemon cablin,and to explore the relationships between endophytes and rhizosphere microorganisms as well as their potential applications.[Methods]Microbial isolates were obtained from rhizosphere soil,root tissues,and stem tissues using the serial dilution and spread plate method.These isolates were identified through morphological characterization,physiological and biochemical assays,and molecular biological techniques.[Results]A total of 18 microbial strains were isolated,including 7 bacterial and 11 fungal strains.Among the bacterial isolates,Pseudomonas spp.and Bacillus spp.were predominant,while the fungal isolates were mainly represented by Aspergillus spp.Certain bacterial strains,notably Pseudomonas spp.,exhibited potential abilities for indole-3-acetic acid(IAA)production,nitrogen fixation,and antagonistic activity against pathogenic microorganisms,suggesting their potential utility as biocontrol agents and promoters of plant growth.[Conclusions]This study establishes a foundational understanding of the microbial community characteristics in the rhizosphere and tissues of P.cablin,as well as their roles in plant growth and development.展开更多
The mathematical model for non-Newtonian magnetohydrodynamics flows across a vertically stretched surface with non-linear thermal radiation,mass and heat transfer rates,thermophoretic and Brownian movements,bio-convec...The mathematical model for non-Newtonian magnetohydrodynamics flows across a vertically stretched surface with non-linear thermal radiation,mass and heat transfer rates,thermophoretic and Brownian movements,bio-convection,and motile microbes considered in the present work.It is possible to regulate the nanomaterial suspension in the nanofluid using the growth of microbes.With the use of boundary layer approximation,highly nonlinear partial differential equations were derived for the present flow model.The nonlinear partial differential equations are converted into ordinary differential equations by utilizing similarity transmutations,which simplify them.Numerical elixirs for ordinary differential equations are found through bvp4c.This guarantees accurate results for profiles of temperature,concentration,velocity,and motile density.There is a good match between the numerical values shown graphically and the existing data.As the thermal radiation parameter rises,the flow temperature grows.Increasing Lewis number values is a sharp drop in the nanoparticle volume fraction.Bioconvection Lewis number reduces microorganism profiles.The research work focused on electrical systems,heat transfer,acoustics,chemical processing,rigid body dynamics,fluid mechanics,and solid mechanics,among others.展开更多
In Burkina Faso, as in other African countries, infertility has become a social burden for the population and a public health problem. Male infertility accounts for 30% to 40% of all infertility cases. The diagnosis o...In Burkina Faso, as in other African countries, infertility has become a social burden for the population and a public health problem. Male infertility accounts for 30% to 40% of all infertility cases. The diagnosis of male infertility or hypofertility is often made by a simple laboratory analysis of sperm to explore sperm parameters. In most African countries, such as Burkina Faso, microbiological analysis in the context of sperm analysis is still not developed, and is carried out solely based on microscopy and traditional culture, which does not allow the growth of fragile and demanding bacteria. Our study investigated the microorganisms of sperm that may be involved in male infertility, using conventional bacteriology techniques and real-time PCR. However, it did not intend to perform a multivariate statistical association analysis to estimate the association of microorganisms with abnormal semen parameters. This prospective cross-sectional pilot study was carried out on patients who visited the bacteriology laboratory of Centre MURAZ, a research Institute in Burkina Faso, for male infertility diagnosis between 2 August and 31 August 2021. Bacteria were isolated and identified using standard bacteriology techniques. In parallel, common pathogenic microorganisms known to be associated with male infertility were targeted and detected in the sperm using a multiplex real-time PCR assay. A total of 38 sperm samples were analyzed by bacteriological culture and bacteria isolated were Staphylococcus aureus (S. aureus) 5.55%, Klebsiella pneumoniae (K. pneumoniae), Enterococcus faecalis (E. faecalis), Streptococcus agalactiae (S. agalactiae) and Staphylococcus hoemalyticus (S. hoemalyticus) respectively 2.70%. Real-time PCR targeted and detected Chlamydia trachomatis (C. trachomatis) at 7.89%, Ureaplasma urealyticum (U. urealyticum) at 21.05%, Ureaplasma parvum (U. parvum) at 18.42%, Mycoplasma hominis (M. hominis) at 15.79%, Mycoplasma genitalium (M. genitalium) at 10.53% and Trichomonas vaginalis (T. vaginalis) at 2.63%. Neisseria gonorrhoeae (N. gonorrhoeae) was targeted by the real-time PCR assay and was not detected (0%) in the tested semen samples. Our study highlights critical limitations of culture performance (low sensitivity), particularly in Burkina Faso, which has a total inability to detect microorganisms (fragile and demanding microorganisms) detected by PCR-based assays. There is therefore an urgent need to at least optimize culture, procedures and algorithms for detection of microorganisms associated with male infertility in clinical laboratories of Burkina Faso. The most effective solution is the routine implementation of molecular diagnostic methods.展开更多
To improve crop yields,global food production needs sustainable agronomic tools like Plant Growth-Promoting Rhizobacteria(PGPR).Region-adapted PGPR strains are crucial to increasing peanut production.Argentina is the ...To improve crop yields,global food production needs sustainable agronomic tools like Plant Growth-Promoting Rhizobacteria(PGPR).Region-adapted PGPR strains are crucial to increasing peanut production.Argentina is the seventh-largest peanut producer,and Cordoba is the main region with 250,000 ha(75%of the total sowing area).This study aimed to isolate,identify,and characterize the biocontrol and growth promotion capacity of PGPR strains belonging to the Bacillus and Pseudomonas genera.The strains were tested against Sclerotinia minor,Sclerotium rolfsii,Fusarium verticillioides,and Aspergillus flavus for biocontrol assays.For growth promotion,pot trials used two peanut cultivars,ASEM 400 INTA and Granoleico,under 40%and 60%field capacity under two water regimes.The isolated strains were Bacillus velezensis,B.subtilis,B.tequilensis,B.safensis,B.altitudinis,and Pseudomonas psychrophila.These strains demonstrated in-vitro phosphorus solubilization,nitrogen fixation,ammonification,nitrification,enzyme releasing,phytohormones production,and high biocontrol capacity of over 75%.SC6 and RI3(both B.velezensis)and P10(P.psychrophila)exhibited outstanding performance.They significantly promoted peanut root biomass by more than 50%and leaf area by 30%,with increased chlorophyll content index and leaf relative water content,particularly under water stress conditions(40%field capacity).According to the results,RI3,SC6,and P10 could be classified as PGPR,which supports the results obtained in other field studies with these same microorganisms.Future investigations should prioritize the development of industrial formulations to assess their effectiveness in alternative crops and to incorporate them into other agricultural practices.展开更多
Electrochemiluminescence(ECL)technology has emerged as a pivotal tool in the field of pathogen detection due to its high sensitivity,strong specificity,operational convenience,and adaptability to complex biological sa...Electrochemiluminescence(ECL)technology has emerged as a pivotal tool in the field of pathogen detection due to its high sensitivity,strong specificity,operational convenience,and adaptability to complex biological samples.This paper systematically elucidates the fundamental mechanisms and classification characteristics of ECL technology,with a particular focus on its applications in detecting nucleic acids,proteins,metabolites,and drug-resistant mutants of pathogenic microorganisms.Through comparative analysis with traditional detection methods,the technological advantages and suitable scenarios of ECL are highlighted.Furthermore,this paper delves into the existing challenges of ECL technology in clinical applications,providing a theoretical basis for advancing its translational use in pathogen diagnostics.展开更多
Marine natural products have long been recognized as a vast and diverse source of bioactive compounds with potential therapeutic applications,particularly in oncology.This review provides an updated overview of the si...Marine natural products have long been recognized as a vast and diverse source of bioactive compounds with potential therapeutic applications,particularly in oncology.This review provides an updated overview of the significant advances made in the discovery and development of marine-derived anticancer drugs between 2019 and 2023.With a focus on recent research findings,the review explores the rich biodiversity of marine organisms,including sponges,corals,algae,and microorganisms,which have yielded numerous compounds exhibiting promising anticancer properties.Emphasizing the multifaceted mechanisms of action,the review discusses the molecular targets and pathways targeted by these compounds,such as cell cycle regulation,apoptosis induction,angiogenesis inhibition,and modulation of signaling pathways.Additionally,the review highlights the innovative strategies employed in the isolation,structural elucidation,and chemical modification of marine natural products to enhance their potency,selectivity,and pharmacological properties.Furthermore,it addresses the challenges and opportunities associated with the development of marine-derived anticancer drugs,including issues related to supply,sustainability,synthesis,and clinical translation.Finally,the review underscores the immense potential of marine natural products as a valuable reservoir of novel anticancer agents and advocates for continued exploration and exploitation of the marine environment to address the unmet medical needs in cancer therapy.展开更多
Objective:To determine the relationship between the color of vaginal discharge and the volume of vaginal discharge and the types of microorganisms in the genital organs.Methods:Cross-sectional study by conducting vagi...Objective:To determine the relationship between the color of vaginal discharge and the volume of vaginal discharge and the types of microorganisms in the genital organs.Methods:Cross-sectional study by conducting vaginal swab examinations on 56 women with complaints of vaginal discharge in Bareng Lor Village,Klaten,and Sewugalur,Kulon Progo,Indonesia.A vaginal swab was carried out with a Gram examination.Data were coded and analyzed using the chi-c test.Results:The color of vaginal discharge was divided into:non-vaginal discharge 16.1%(9/56),white/clear/mucoid 50%(28/56),greenish/white 14.3%(8/56),brownish white/brown 3.6%(2/56),powdery and white 3.6%(2/56),post coitus bleeding 7.1%(4/56),and other complaints(itching,odor,erosion)5.4%(3/56).The volume of vaginal discharge was divided into:normal 16.1%(9/56),a little 48.2%(27/56),and a lot 35.7%(20/56).The types of microorganisms obtained were:no microorganisms growing 8.9%(5/56),Gram positive cocci/bacilli 7.1%(4/56),Gram negative cocci/bacilli 19.6%(11/56),Gram positive/negative coccobacilli 7.1%(4/56),growth of>2 bacteria 42.9%(24/56),and fungus/yeast cells/clue cells 14.3%(8/56).There is a significant relationship between volume and type of microorganisms(P=0.011),while the relationship between color/type of vaginal discharge and microorganisms is not significantly related.Conclusions:The volume of vaginal discharge reflects the presence of risky microorganisms.展开更多
Mechanical activation (MA) is a significant pretreatment technique for enhancing the dissolution of mineral;however, its promotion effect on the role of pyrite during chalcopyrite bioleaching has not been elucidated u...Mechanical activation (MA) is a significant pretreatment technique for enhancing the dissolution of mineral;however, its promotion effect on the role of pyrite during chalcopyrite bioleaching has not been elucidated up to now. In this study, the effect of MA on the role of pyrite on chalcopyrite bioleaching mediated by Acidithiobacillus ferroxidans was investigated by X-ray diffraction, scanning electron microscopy, particle size distribution analysis, and electrochemical measurement. The results showed MA could significantly reduce the minerals particle size, and increase the specific surface area and surface energy of minerals. For example, the d50 of chalcopyrite reduced from 13.40 to 0.31 μm after MA. The copper extraction of mixed MA-chalcopyrite and MA-pyrite system was 63.4%, which exhibited a 51.8% enhancement compared to the non-activated mixed system. Electrochemical experiments identified that the strengthening effect of pyrite on chalcopyrite dissolution was negligible before MA. After MA, the dissolution mechanism of chalcopyrite was not changed, and pyrite could not only provide additional oxidants (acids and iron) but also act as the cathode in the galvanic couple. In this case, the bioleaching of chalcopyrite was accelerated. Therefore, a model of the promotion effect of mechanical activation on the role of pyrite on chalcopyrite bioleaching was proposed.展开更多
A halophilic bacterium,named Halomonas sp.NEC-1 was isolated from the Nyer Co Salt Lake on the Xizang Plateau,SW China.The strain exhibited a broad pH tolerance range of 5-11,distinguishing it from Halomonas alkaliphi...A halophilic bacterium,named Halomonas sp.NEC-1 was isolated from the Nyer Co Salt Lake on the Xizang Plateau,SW China.The strain exhibited a broad pH tolerance range of 5-11,distinguishing it from Halomonas alkaliphila despite a 99% genetic similarity.Optimal growth conditions,determined through orthogonal experiments,were found to be 37℃,100-g/L salinity,and an initial pH of 6,resulting in a maximum OD_(600) of 7.98±0.06.Halomonas sp.NEC-1 produced 545.43±25.10 mg/L of ectoine under optimal conditions of 75-g/L salinity,40-g/L sodium glutamate,and an initial pH of 6.This production increased to 1388.81±3.69 mg/L after five rounds of hypo-osmotic shocks.During the shocks,ectoine productivity remained stable at approximately 16.29±0.04 to 17.28±0.48 mg/(L·h),representing a 43.40%-52.11% increase compared to the rate without any shock(11.36±1.05 mg/(L·h)).Additionally,the expression of the ectABC gene cluster,related to ectoine synthesis,significantly increased following the shocks,enhancing ectoine production.The ectoine extract demonstrated notable protective effects on Escherichia coli and plasmid DNA.After 10 min of exposure at 60℃,the colony count of E.coli treated with ectoine extract increased by 342% compared to treatment with distilled water.Furthermore,the ectoine extract protected plasmid DNA from 2,2′-Azobis(2-methylpropionamidine)dihydrochloride-induced damage.This study highlights Halomonas sp.NEC-1 is a promising strain for ectoine production and underscores the potential of microbial resources in salt lakes from Xizang region.展开更多
Viruses, notably airborne viruses, are difficult to collect and detect because of the low concentrations of environmental microorganisms. Bacteriophages are frequently used in air experiments as suitable surrogates fo...Viruses, notably airborne viruses, are difficult to collect and detect because of the low concentrations of environmental microorganisms. Bacteriophages are frequently used in air experiments as suitable surrogates for human and animal viruses^([1]). Bacteriophages are non-pathogenic, so they are safe for laboratory workers and do not require specialized biological protection measures.Bacteriophages can be prepared at high titers using simple and low-cost methods.展开更多
Sharp eyespot(Rhizoctonia cerealis)is a widespread soil-borne fungal disease that poses a severe threat to wheat health,and it is one of the main obstacles to achieving stable and high-quality wheat yields in China.Ou...Sharp eyespot(Rhizoctonia cerealis)is a widespread soil-borne fungal disease that poses a severe threat to wheat health,and it is one of the main obstacles to achieving stable and high-quality wheat yields in China.Our collaborative team has developed a novel,efficient,and low-toxicity fungicide named Y17991(N-(2-(2,4-bis-(trifluoromethyl)phenoxy)phenyl)-3-(difluoromethyl)-1-methyl-1H-pyrazole-4-carboxamide).Preliminary laboratory tests confirmed the significant inhibitory effect of this agent on R.cerealis.Large-area field trials also demonstrated its efficacy,with a disease prevention index of 83.52%,which is 1.97%greater than that of the widely used thifluzamide,and it significantly increased the wheat yield.Moreover,this study explored the impacts of Y17991 on the structure and function of the microbial community in wheat rhizosphere soil.Bacterial communities were more strongly affected than fungal communities.Y17991 significantly modulated key amino acid metabolic pathways and certain biosynthetic processes in diseased wheat rhizospheres,and it also enhanced certain biosynthetic pathways and metabolic activities in healthy wheat rhizospheres.Additionally,the application of Y17991 regulated rhizosphere metabolites,thus exerting significant control over the microbial community.We identified 15 microbial strains potentially involved in the prevention and treatment of R.cerealis,and Y17991 treatment promoted the growth of Pedobacter and Bacillus strains.These strains not only aid in plant growth but they also have the potential for disease prevention.In summary,Y17991 application at a reasonable dose does not cause significant disruption to nontarget rhizosphere microbial communities.In future studies,we will continue to investigate the impacts of Y17991 on nonmicrobial components in soil ecosystems,such as protozoa and nematodes.Our research provides a theoretical basis for the scientific application and promotion of new fungicides and offers a significant reference for establishing a comprehensive system for assessing the ecological impact of pesticides on the environment.展开更多
Airborne microorganisms(AM)have significant environmental and health implications.Extensive studies have been conducted to investigate the factors influencing the composition and diversity of AM.However,the knowledge ...Airborne microorganisms(AM)have significant environmental and health implications.Extensive studies have been conducted to investigate the factors influencing the composition and diversity of AM.However,the knowledge of AM with anthropogenic activities has not reach a consensus.In this study,we took advantage of the dramatic decline of outdoor anthropogenic activities resulting from COVID-19 lockdown to reveal their associations.We collected airborne particulate matter before and during the lockdown period in two cities.The results showed that it was fungal diversity and communities but not bacteria obviously different between pre-lockdownand lockdown samples,suggesting that airborne fungiwere more susceptible to anthropogenic activities than bacteria.However,after the implementation of lockdown,the co-occurrence networks of both bacterial and fungal community became more complex,whichmight be due to the variation of microbial sources.Furthermore,Mantel test and correlation analysis showed that air pollutants also partly contributed to microbial alterations.Airborne fungal community was more affected by air pollutants than bacterial community.Notably,some human pathogens like Nigrospora and Arthrinium were negatively correlated with air pollutants.Overall,our study highlighted the more impacts of anthropogenic activities on airborne fungal community than bacterial community and advanced the understanding of associations between anthropogenic activities and AM.展开更多
Sediment properties have a crucial effect on the growth and recovery of aquatic plants in lakes.Addition of various chemical substances has been proposed to reinforce the recovery of plants after a nutrient loading re...Sediment properties have a crucial effect on the growth and recovery of aquatic plants in lakes.Addition of various chemical substances has been proposed to reinforce the recovery of plants after a nutrient loading reduction.However,the effects of such sediment amendments on plant growth,especially those from rhizosphere microorganisms,is limited.We added Kaolin clay to sediments in different concentrations to explore its impact on the growth of Vallisneria natans and Ottelia acuminate and the concurrent shift in rhizosphere microorganisms using high-throughput sequencing technology.We found that the addition of low doses(10%and 20%in mass ratio)of Kaolin significantly modified sediment conditions(oxidation reduction potential and pH),with implications also for the composition,diversity,and stability of rhizosphere microorganisms.LEfSe analysis revealed that low-dose addition of Kaolin increased the abundances of functional microbial groups that benefit plant nutrient absorption and enhance plant stress resistance,such as Spirillaceae,Rhodocyclaceae,and Burkholderiales.Moreover,low doses of Kaolin significantly promoted the photosynthesis and nutrient absorption of submerged macrophytes,thereby facilitating plant growth.A structural equation model(SEM)indicated that the direct impact of Kaolin on the growth of submerged plants was relatively minor,while the indirect effect through modulation of rhizosphere microorganisms was important.Our study suggests that low doses of Kaolin may be used to promote the growth of submerged macrophytes when lakes with a high organic content in the sediment are recovering after nutrient loading reduction.展开更多
In-situ enhanced bioreduction by functional materials is a cost-effective technology to remove chlorinated hydrocarbons in groundwater.Herein,a novel polydopamine(PDA)-modified biochar(BC)-based composite containing n...In-situ enhanced bioreduction by functional materials is a cost-effective technology to remove chlorinated hydrocarbons in groundwater.Herein,a novel polydopamine(PDA)-modified biochar(BC)-based composite containing nanoscale zero-valent iron(n ZVI)and poly-l-lactic acid(PLLA)(PB-PDA-Fe)was synthesized to enhance the removal of 1,1,1-trichloroethane(1,1,1-TCA)in simulated groundwater with actual site sediments.Its impact on functional microbial community structure in system was also investigated.The typical characterizations revealed uniform dispersion of PLA and n ZVI particles on the BC surface,being smoother after PDA coating.The composite exhibited a significantly higher performance on 1,1,1-TCA removal(82.38%,initial concentration 100 mg/L)than Fe-PDA and PB-PDA treatments.The diversity and richness of the microbial community in the composite treatment consistently decreased during incubation due to a synergistic effect between PLLA-BC and n ZVI.Desulfitobaterium,Pedobacter,Sphaerochaeta,Shewanella,and Clostridium were identified as enriched genera by the composite through DNA-stable isotope probing(DNA-SIP),playing a crucial role in the bioreductive dechlorination process.All the above results demonstrate that this novel composite selectively enhances the activity of microorganisms with extracellular respiration functions to efficiently dechlorinate 1,1,1-TCA.These findings could contribute to understanding the responsive microbial community by carbon-iron composites and expedite the application of in-situ enhanced bioreduction for effective remediation of chlorinated hydrocarbon-contaminated groundwater.展开更多
[Objectives]To investigate optimal storage methods and shelf life determination for several representative bagged traditional Chinese medicine(TCM)decoctions under centralized preparation conditions in intelligent TCM...[Objectives]To investigate optimal storage methods and shelf life determination for several representative bagged traditional Chinese medicine(TCM)decoctions under centralized preparation conditions in intelligent TCM pharmacies.[Methods]First,the nourishing formula was prepared and packaged in bags.Under the three storage conditions of 37℃before cold storage(including full high temperature),cold storage before 37℃(including full cold storage),and alternating 37℃and cold storage,the 30 d cycle was investigated to determine the total microbial colony count,so as to determine a reasonable storage method of traditional Chinese medicine decoction.Secondly,five representative prescriptions were prepared and packaged in bags,stored under 37℃,room temperature and cold conditions.The investigation period was 30 d.The pH,total bacterial count and soluble solid content were measured,and the changes of each index were analyzed to obtain the shelf life of the bagged Chinese medicine decoction.[Results]First,the nourishing formula was investigated for 30 d.The microbial results of refrigeration after 1-2 d of 37℃,complete refrigeration and 37℃cooling with an alternate interval of 2 d or less met the requirements,while the microbial results of refrigeration after 3 d or above of 37℃,refrigeration after 1-5 d and then 37℃,complete 37℃,37℃and cooling with an alternate interval of 3 d or above excessive microorganism.Second,under the condition of 37℃storage,the pH of the five prescriptions decreased significantly,the total microbial colonies exceeded the standard,and the solid content decreased significantly.However,under the condition of room temperature and cold storage,the pH,total microbial colonies,and solid content of the five prescriptions remained stable.[Conclusions]The first is to refrigerate the decoction after 1-2 d of 37℃,completely refrigerate it,and refrigerate the decoction with an alternate interval of 2 d or less at 37℃.The shelf life can last for 30 d.Several storage conditions are conducive to guiding the development of the storage mode of the decoction.Second,under the conditions of cold storage,all the indexes were stable,and the shelf life of the five representative formulas was 30 d.展开更多
文摘AIMTo develop a simplified bioartificial liver (BAL) device prototype, suitable to use freshly and preserved liver Microorgans (LMOs) as biological component. METHODSThe system consists of 140 capillary fibers through which goat blood is pumped. The evolution of hematocrit, plasma and extra-fiber fluid osmolality was evaluated without any biological component, to characterize the prototype. LMOs were cut and cold stored 48 h in BG35 and ViaSpan<sup>®</sup> solutions. Fresh LMOs were used as controls. After preservation, LMOs were loaded into the BAL and an ammonia overload was added. To assess LMOs viability and functionality, samples were taken to determine lactate dehydrogenase (LDH) release and ammonia detoxification capacity. RESULTSThe concentrations of ammonia and glucose, and the fluids osmolalities were matched after the first hour of perfusion, showing a proper exchange between blood and the biological compartment in the minibioreactor. After 120 min of perfusion, LMOs cold preserved in BG35 and ViaSpan<sup>®</sup> were able to detoxify 52.9% ± 6.5% and 53.6% ± 6.0%, respectively, of the initial ammonia overload. No significant differences were found with Controls (49.3% ± 8.8%, P ®</sup> cold preserved LMOs, respectively (n = 6, P CONCLUSIONThis prototype relied on a simple design and excellent performance. It’s a practical tool to evaluate the detoxification ability of LMOs subjected to different preservation protocols.
基金financed by the Spanish Ministry of Science and Innovation and the European Regional Development Fund(ERDF)(No.PID20211234690BI00)the European Joint Program EJP_Soil(TRACE-Soils)(No.862695)+1 种基金the Spanish Ministry of Science and Innovation(RED2018-102624TMCIN/AEI/10.13039/501100011033)the Project PREPSOIL European Union(No.101070045,HORIZON CSA)。
文摘Whilst phosphorus(P)in soil is considered to be abundant,the portion available for plant uptake constitutes less than 1%of the overall P present.To enhance crop productivity,the utilization of mineral P fertilizers has become pervasive in agriculture.Nonetheless,the escalating prices of chemical fertilizers,coupled with new European regulations prohibiting the use of P fertilizers containing cadmium,have highlighted the urgency to identify environmentally friendly products and practices for P fertilization in agricultural soils.This comprehensive review delves into the current landscape of P fertilization from agricultural,political,and economic standpoints.We recognize the potential of microbes in mobilizing P,but emphasize the necessity for more robust research to establish their effectiveness in promoting plant P uptake under real-world conditions.Additionally,we explore the role of agricultural conservation practices,such as optimal tillage,diversified cropping systems,and increased organic carbon input,in conserving P.Furthermore,this review contemplates forthcoming innovations in research.These innovations encompass the development of enhanced formulations for biofertilizers and the undertaking of more comprehensive studies within the realm of conservation agriculture.All these endeavors collectively hold the potential to augment P accessibility to plants in a sustainable manner,thereby advancing agricultural sustainability and productivity.
基金supported by the National Key Research and Development Program of China (No.2019YFC1803604)the National Natural Science Foundation of China (Nos.42007306 and 42277193).
文摘Antimony smelting activities damage the soil and vegetation surroundings while generating economic value.However,no standardizedmethods are available to diagnose the extent of soil degradation at antimony smelting sites.This study developed a standardized framework for assessing soil quality by consideringmicrobial-induced resilience and heavymetal contamination at Xikuangshan antimony smelting site.The soil resilience index(SRI)and soil contamination index(SCI)were calculated byMinimum Data Set and geo-accumulation model,respectively.After standardized by a multi-criteria quantitative procedure of modified Nemerow’s pollution index(NPI),the integrated assessment of soil quality index(SQI),which is the minimumof SRINPI and SCINPI,was achieved.The results showed that Sb and As were the prominent metal(loid)pollutants,and significant correlations between SQI and SRI indicated that the poor soil quality was mainly caused by the low level of soil resilience.The primary limiting factors of SRI were Fungi in high andmiddle contaminated areas,and Skermanella in low contaminated area,suggesting that the weak soil resilience was caused by low specific microbial abundances.Microbial regulation and phytoremediation are greatly required to improve the soil quality at antimony smelting sites from the perspectives of pollution control and resilience improvement.This study improves our understanding of ecological effects of antimony smelting sites and provides a theoretical basis for ecological restoration and sustainable development of mining areas.
文摘In a recent case report in the World Journal of Clinical Cases,emphasized the crucial role of rapidly and accurately identifying pathogens to optimize patient treatment outcomes.Laboratory-on-a-chip(LOC)technology has emerged as a transformative tool in health care,offering rapid,sensitive,and specific identification of microorganisms.This editorial provides a comprehensive overview of LOC technology,highlighting its principles,advantages,applications,challenges,and future directions.Success studies from the field have demonstrated the practical benefits of LOC devices in clinical diagnostics,epidemiology,and food safety.Comparative studies have underscored the superiority of LOC technology over traditional methods,showcasing improvements in speed,accuracy,and portability.The future integration of LOC with biosensors,artificial intelligence,and data analytics promises further innovation and expansion.This call to action emphasizes the importance of continued research,investment,and adoption to realize the full potential of LOC technology in improving healthcare outcomes worldwide.
文摘BACKGROUND In the absence of effective antimicrobials,transplant surgery is not viable,and antirejection immunosuppressants cannot be administered,as resistant infections compromise the life-saving goal of organ transplantation.AIM To evaluate the efficacy of antimicrobials in preventing resistance in solid organ transplant recipients.METHODS A systematic review was conducted using a search methodology consistent with the preferred reporting items for systematic reviews and meta-analyses.This review included randomized clinical trials that evaluated the efficacy of antimicrobial agents(prophylactic or therapeutic)aimed at preventing antimicrobial resistance.The search strategy involved analyzing multiple databases,including PubMed/MEDLINE,Web of Science,Embase,Scopus,and SciELO,as well as examining gray literature sources on Google Scholar.A comprehensive electronic database search was conducted from the databases’inception until May 2024,with no language restrictions.RESULTS After the final phase of the eligibility assessment,this systematic review ultimate-ly included 7 articles.A total of 2318 patients were studied.The most studied microorganisms were cytomegalovirus,although vancomycinresistant enterococci,Clostridioides difficile,and multidrug-resistant Enterobacterales were also analyzed.The antimicrobials used in the interventions were mainly maribavir,valganciclovir,gancic-lovir,and colistin-neomycin.Of concern,all clinical trials showed significant proportions of resistant microorga-nisms after the interventions,with no statistically significant differences between the groups(mean resistance 13.47%vs 14.39%),except for two studies that demonstrated greater efficacy of maribavir and valganciclovir(mean resistance 22.2%vs 41.1%in the control group;P<0.05).The total reported deaths in three clinical trials were 75,and there were 24 graft rejections in two studies.CONCLUSION All clinical trials reported significant proportions of antimicrobial-resistant microorganisms following interventions.More high-quality randomized clinical trials are needed to corroborate these results.
基金Supported by Rural Science and Technology Commissioner Project of Guangdong Province(KTP20240806).
文摘[Objectives]To systematically investigate the microbial community composition of rhizosphere soil and endophytes associated with Pogostemon cablin,and to explore the relationships between endophytes and rhizosphere microorganisms as well as their potential applications.[Methods]Microbial isolates were obtained from rhizosphere soil,root tissues,and stem tissues using the serial dilution and spread plate method.These isolates were identified through morphological characterization,physiological and biochemical assays,and molecular biological techniques.[Results]A total of 18 microbial strains were isolated,including 7 bacterial and 11 fungal strains.Among the bacterial isolates,Pseudomonas spp.and Bacillus spp.were predominant,while the fungal isolates were mainly represented by Aspergillus spp.Certain bacterial strains,notably Pseudomonas spp.,exhibited potential abilities for indole-3-acetic acid(IAA)production,nitrogen fixation,and antagonistic activity against pathogenic microorganisms,suggesting their potential utility as biocontrol agents and promoters of plant growth.[Conclusions]This study establishes a foundational understanding of the microbial community characteristics in the rhizosphere and tissues of P.cablin,as well as their roles in plant growth and development.
基金U.F.-G.was supported by the Mobility Lab Foundation,a governmental organization of the Provincial Council of Araba,and the local council of Vitoria-Gasteiz.S.Noeiaghdam was supported by the Henan Academy of Sciences(Project No.241819246).
文摘The mathematical model for non-Newtonian magnetohydrodynamics flows across a vertically stretched surface with non-linear thermal radiation,mass and heat transfer rates,thermophoretic and Brownian movements,bio-convection,and motile microbes considered in the present work.It is possible to regulate the nanomaterial suspension in the nanofluid using the growth of microbes.With the use of boundary layer approximation,highly nonlinear partial differential equations were derived for the present flow model.The nonlinear partial differential equations are converted into ordinary differential equations by utilizing similarity transmutations,which simplify them.Numerical elixirs for ordinary differential equations are found through bvp4c.This guarantees accurate results for profiles of temperature,concentration,velocity,and motile density.There is a good match between the numerical values shown graphically and the existing data.As the thermal radiation parameter rises,the flow temperature grows.Increasing Lewis number values is a sharp drop in the nanoparticle volume fraction.Bioconvection Lewis number reduces microorganism profiles.The research work focused on electrical systems,heat transfer,acoustics,chemical processing,rigid body dynamics,fluid mechanics,and solid mechanics,among others.
文摘In Burkina Faso, as in other African countries, infertility has become a social burden for the population and a public health problem. Male infertility accounts for 30% to 40% of all infertility cases. The diagnosis of male infertility or hypofertility is often made by a simple laboratory analysis of sperm to explore sperm parameters. In most African countries, such as Burkina Faso, microbiological analysis in the context of sperm analysis is still not developed, and is carried out solely based on microscopy and traditional culture, which does not allow the growth of fragile and demanding bacteria. Our study investigated the microorganisms of sperm that may be involved in male infertility, using conventional bacteriology techniques and real-time PCR. However, it did not intend to perform a multivariate statistical association analysis to estimate the association of microorganisms with abnormal semen parameters. This prospective cross-sectional pilot study was carried out on patients who visited the bacteriology laboratory of Centre MURAZ, a research Institute in Burkina Faso, for male infertility diagnosis between 2 August and 31 August 2021. Bacteria were isolated and identified using standard bacteriology techniques. In parallel, common pathogenic microorganisms known to be associated with male infertility were targeted and detected in the sperm using a multiplex real-time PCR assay. A total of 38 sperm samples were analyzed by bacteriological culture and bacteria isolated were Staphylococcus aureus (S. aureus) 5.55%, Klebsiella pneumoniae (K. pneumoniae), Enterococcus faecalis (E. faecalis), Streptococcus agalactiae (S. agalactiae) and Staphylococcus hoemalyticus (S. hoemalyticus) respectively 2.70%. Real-time PCR targeted and detected Chlamydia trachomatis (C. trachomatis) at 7.89%, Ureaplasma urealyticum (U. urealyticum) at 21.05%, Ureaplasma parvum (U. parvum) at 18.42%, Mycoplasma hominis (M. hominis) at 15.79%, Mycoplasma genitalium (M. genitalium) at 10.53% and Trichomonas vaginalis (T. vaginalis) at 2.63%. Neisseria gonorrhoeae (N. gonorrhoeae) was targeted by the real-time PCR assay and was not detected (0%) in the tested semen samples. Our study highlights critical limitations of culture performance (low sensitivity), particularly in Burkina Faso, which has a total inability to detect microorganisms (fragile and demanding microorganisms) detected by PCR-based assays. There is therefore an urgent need to at least optimize culture, procedures and algorithms for detection of microorganisms associated with male infertility in clinical laboratories of Burkina Faso. The most effective solution is the routine implementation of molecular diagnostic methods.
基金the Universidad Nacional de Co rdoba,Argentina,and the Secretaría de Cienciay Tecnología (UNC,SECyT) for the financial support of the CONSOLIDAR 2018–2022 project‘EFECTO DE LOS MICROORGANISMOS PROMOTORES DEL CRECIMIENTO SOBRE LA ECOFISIOLOGíA Y EL CONTROL DE ENFERMEDADES EN EL CULTIVO DE MANí.'the Consejo Nacional de Investigaciones Científicas y Técnicas(CONICET) for the doctoral fellowshipthe University of Córdoba (Spain) for the support provided through the “Plan Propio de Investigación” 2020–2024。
文摘To improve crop yields,global food production needs sustainable agronomic tools like Plant Growth-Promoting Rhizobacteria(PGPR).Region-adapted PGPR strains are crucial to increasing peanut production.Argentina is the seventh-largest peanut producer,and Cordoba is the main region with 250,000 ha(75%of the total sowing area).This study aimed to isolate,identify,and characterize the biocontrol and growth promotion capacity of PGPR strains belonging to the Bacillus and Pseudomonas genera.The strains were tested against Sclerotinia minor,Sclerotium rolfsii,Fusarium verticillioides,and Aspergillus flavus for biocontrol assays.For growth promotion,pot trials used two peanut cultivars,ASEM 400 INTA and Granoleico,under 40%and 60%field capacity under two water regimes.The isolated strains were Bacillus velezensis,B.subtilis,B.tequilensis,B.safensis,B.altitudinis,and Pseudomonas psychrophila.These strains demonstrated in-vitro phosphorus solubilization,nitrogen fixation,ammonification,nitrification,enzyme releasing,phytohormones production,and high biocontrol capacity of over 75%.SC6 and RI3(both B.velezensis)and P10(P.psychrophila)exhibited outstanding performance.They significantly promoted peanut root biomass by more than 50%and leaf area by 30%,with increased chlorophyll content index and leaf relative water content,particularly under water stress conditions(40%field capacity).According to the results,RI3,SC6,and P10 could be classified as PGPR,which supports the results obtained in other field studies with these same microorganisms.Future investigations should prioritize the development of industrial formulations to assess their effectiveness in alternative crops and to incorporate them into other agricultural practices.
基金supported by the Joint Funds for the innovation of science and Technology,Fujian province(Grant number:2021Y9014).
文摘Electrochemiluminescence(ECL)technology has emerged as a pivotal tool in the field of pathogen detection due to its high sensitivity,strong specificity,operational convenience,and adaptability to complex biological samples.This paper systematically elucidates the fundamental mechanisms and classification characteristics of ECL technology,with a particular focus on its applications in detecting nucleic acids,proteins,metabolites,and drug-resistant mutants of pathogenic microorganisms.Through comparative analysis with traditional detection methods,the technological advantages and suitable scenarios of ECL are highlighted.Furthermore,this paper delves into the existing challenges of ECL technology in clinical applications,providing a theoretical basis for advancing its translational use in pathogen diagnostics.
文摘Marine natural products have long been recognized as a vast and diverse source of bioactive compounds with potential therapeutic applications,particularly in oncology.This review provides an updated overview of the significant advances made in the discovery and development of marine-derived anticancer drugs between 2019 and 2023.With a focus on recent research findings,the review explores the rich biodiversity of marine organisms,including sponges,corals,algae,and microorganisms,which have yielded numerous compounds exhibiting promising anticancer properties.Emphasizing the multifaceted mechanisms of action,the review discusses the molecular targets and pathways targeted by these compounds,such as cell cycle regulation,apoptosis induction,angiogenesis inhibition,and modulation of signaling pathways.Additionally,the review highlights the innovative strategies employed in the isolation,structural elucidation,and chemical modification of marine natural products to enhance their potency,selectivity,and pharmacological properties.Furthermore,it addresses the challenges and opportunities associated with the development of marine-derived anticancer drugs,including issues related to supply,sustainability,synthesis,and clinical translation.Finally,the review underscores the immense potential of marine natural products as a valuable reservoir of novel anticancer agents and advocates for continued exploration and exploitation of the marine environment to address the unmet medical needs in cancer therapy.
基金supported by Hibah pengabdian masyarakat internal UMY tahun 2023/2024(No.ID CJ4487-MyHAM).
文摘Objective:To determine the relationship between the color of vaginal discharge and the volume of vaginal discharge and the types of microorganisms in the genital organs.Methods:Cross-sectional study by conducting vaginal swab examinations on 56 women with complaints of vaginal discharge in Bareng Lor Village,Klaten,and Sewugalur,Kulon Progo,Indonesia.A vaginal swab was carried out with a Gram examination.Data were coded and analyzed using the chi-c test.Results:The color of vaginal discharge was divided into:non-vaginal discharge 16.1%(9/56),white/clear/mucoid 50%(28/56),greenish/white 14.3%(8/56),brownish white/brown 3.6%(2/56),powdery and white 3.6%(2/56),post coitus bleeding 7.1%(4/56),and other complaints(itching,odor,erosion)5.4%(3/56).The volume of vaginal discharge was divided into:normal 16.1%(9/56),a little 48.2%(27/56),and a lot 35.7%(20/56).The types of microorganisms obtained were:no microorganisms growing 8.9%(5/56),Gram positive cocci/bacilli 7.1%(4/56),Gram negative cocci/bacilli 19.6%(11/56),Gram positive/negative coccobacilli 7.1%(4/56),growth of>2 bacteria 42.9%(24/56),and fungus/yeast cells/clue cells 14.3%(8/56).There is a significant relationship between volume and type of microorganisms(P=0.011),while the relationship between color/type of vaginal discharge and microorganisms is not significantly related.Conclusions:The volume of vaginal discharge reflects the presence of risky microorganisms.
基金Project(GZC20233199) supported by the Postdoctoral Fellowship Program of CPSF,ChinaProject(2022YFC2105300) supported by the National Key Research and Development Program of China。
文摘Mechanical activation (MA) is a significant pretreatment technique for enhancing the dissolution of mineral;however, its promotion effect on the role of pyrite during chalcopyrite bioleaching has not been elucidated up to now. In this study, the effect of MA on the role of pyrite on chalcopyrite bioleaching mediated by Acidithiobacillus ferroxidans was investigated by X-ray diffraction, scanning electron microscopy, particle size distribution analysis, and electrochemical measurement. The results showed MA could significantly reduce the minerals particle size, and increase the specific surface area and surface energy of minerals. For example, the d50 of chalcopyrite reduced from 13.40 to 0.31 μm after MA. The copper extraction of mixed MA-chalcopyrite and MA-pyrite system was 63.4%, which exhibited a 51.8% enhancement compared to the non-activated mixed system. Electrochemical experiments identified that the strengthening effect of pyrite on chalcopyrite dissolution was negligible before MA. After MA, the dissolution mechanism of chalcopyrite was not changed, and pyrite could not only provide additional oxidants (acids and iron) but also act as the cathode in the galvanic couple. In this case, the bioleaching of chalcopyrite was accelerated. Therefore, a model of the promotion effect of mechanical activation on the role of pyrite on chalcopyrite bioleaching was proposed.
基金Supported by the Key Science and Technology Program of Xizang Autonomous Region(No.XZ202301ZY0012N)the Key Fisheries Resources and Environmental Survey Project in the Southwest Region(No.CJW2023034)the National Natural Science Foundation of China(No.42306106)。
文摘A halophilic bacterium,named Halomonas sp.NEC-1 was isolated from the Nyer Co Salt Lake on the Xizang Plateau,SW China.The strain exhibited a broad pH tolerance range of 5-11,distinguishing it from Halomonas alkaliphila despite a 99% genetic similarity.Optimal growth conditions,determined through orthogonal experiments,were found to be 37℃,100-g/L salinity,and an initial pH of 6,resulting in a maximum OD_(600) of 7.98±0.06.Halomonas sp.NEC-1 produced 545.43±25.10 mg/L of ectoine under optimal conditions of 75-g/L salinity,40-g/L sodium glutamate,and an initial pH of 6.This production increased to 1388.81±3.69 mg/L after five rounds of hypo-osmotic shocks.During the shocks,ectoine productivity remained stable at approximately 16.29±0.04 to 17.28±0.48 mg/(L·h),representing a 43.40%-52.11% increase compared to the rate without any shock(11.36±1.05 mg/(L·h)).Additionally,the expression of the ectABC gene cluster,related to ectoine synthesis,significantly increased following the shocks,enhancing ectoine production.The ectoine extract demonstrated notable protective effects on Escherichia coli and plasmid DNA.After 10 min of exposure at 60℃,the colony count of E.coli treated with ectoine extract increased by 342% compared to treatment with distilled water.Furthermore,the ectoine extract protected plasmid DNA from 2,2′-Azobis(2-methylpropionamidine)dihydrochloride-induced damage.This study highlights Halomonas sp.NEC-1 is a promising strain for ectoine production and underscores the potential of microbial resources in salt lakes from Xizang region.
基金supported by Capital health development research project(Grant No.2022-2G-4232)。
文摘Viruses, notably airborne viruses, are difficult to collect and detect because of the low concentrations of environmental microorganisms. Bacteriophages are frequently used in air experiments as suitable surrogates for human and animal viruses^([1]). Bacteriophages are non-pathogenic, so they are safe for laboratory workers and do not require specialized biological protection measures.Bacteriophages can be prepared at high titers using simple and low-cost methods.
基金supported by the National Natural Science Foundation of China(32270296)the Shenzhen Postdoctoral Scientific Research,China(77000-42100004)+1 种基金the Key Basic Research and Development Program of Hubei Province,China(2020BBA052)the Natural Science Foundation of Guangdong Province,China(2024A1515010498)and the Fundamental Research Funds for the Central Universities,Sun Yat-sen University,China.
文摘Sharp eyespot(Rhizoctonia cerealis)is a widespread soil-borne fungal disease that poses a severe threat to wheat health,and it is one of the main obstacles to achieving stable and high-quality wheat yields in China.Our collaborative team has developed a novel,efficient,and low-toxicity fungicide named Y17991(N-(2-(2,4-bis-(trifluoromethyl)phenoxy)phenyl)-3-(difluoromethyl)-1-methyl-1H-pyrazole-4-carboxamide).Preliminary laboratory tests confirmed the significant inhibitory effect of this agent on R.cerealis.Large-area field trials also demonstrated its efficacy,with a disease prevention index of 83.52%,which is 1.97%greater than that of the widely used thifluzamide,and it significantly increased the wheat yield.Moreover,this study explored the impacts of Y17991 on the structure and function of the microbial community in wheat rhizosphere soil.Bacterial communities were more strongly affected than fungal communities.Y17991 significantly modulated key amino acid metabolic pathways and certain biosynthetic processes in diseased wheat rhizospheres,and it also enhanced certain biosynthetic pathways and metabolic activities in healthy wheat rhizospheres.Additionally,the application of Y17991 regulated rhizosphere metabolites,thus exerting significant control over the microbial community.We identified 15 microbial strains potentially involved in the prevention and treatment of R.cerealis,and Y17991 treatment promoted the growth of Pedobacter and Bacillus strains.These strains not only aid in plant growth but they also have the potential for disease prevention.In summary,Y17991 application at a reasonable dose does not cause significant disruption to nontarget rhizosphere microbial communities.In future studies,we will continue to investigate the impacts of Y17991 on nonmicrobial components in soil ecosystems,such as protozoa and nematodes.Our research provides a theoretical basis for the scientific application and promotion of new fungicides and offers a significant reference for establishing a comprehensive system for assessing the ecological impact of pesticides on the environment.
基金supported by the National Natural Science Foundation of China(No.31900106)the East China University of Technology Practical Teaching Construction Project(No.DHSY-202261)。
文摘Airborne microorganisms(AM)have significant environmental and health implications.Extensive studies have been conducted to investigate the factors influencing the composition and diversity of AM.However,the knowledge of AM with anthropogenic activities has not reach a consensus.In this study,we took advantage of the dramatic decline of outdoor anthropogenic activities resulting from COVID-19 lockdown to reveal their associations.We collected airborne particulate matter before and during the lockdown period in two cities.The results showed that it was fungal diversity and communities but not bacteria obviously different between pre-lockdownand lockdown samples,suggesting that airborne fungiwere more susceptible to anthropogenic activities than bacteria.However,after the implementation of lockdown,the co-occurrence networks of both bacterial and fungal community became more complex,whichmight be due to the variation of microbial sources.Furthermore,Mantel test and correlation analysis showed that air pollutants also partly contributed to microbial alterations.Airborne fungal community was more affected by air pollutants than bacterial community.Notably,some human pathogens like Nigrospora and Arthrinium were negatively correlated with air pollutants.Overall,our study highlighted the more impacts of anthropogenic activities on airborne fungal community than bacterial community and advanced the understanding of associations between anthropogenic activities and AM.
基金supported by the National Natural Science Foundation of China(Nos.U23A20153,and 32101319).
文摘Sediment properties have a crucial effect on the growth and recovery of aquatic plants in lakes.Addition of various chemical substances has been proposed to reinforce the recovery of plants after a nutrient loading reduction.However,the effects of such sediment amendments on plant growth,especially those from rhizosphere microorganisms,is limited.We added Kaolin clay to sediments in different concentrations to explore its impact on the growth of Vallisneria natans and Ottelia acuminate and the concurrent shift in rhizosphere microorganisms using high-throughput sequencing technology.We found that the addition of low doses(10%and 20%in mass ratio)of Kaolin significantly modified sediment conditions(oxidation reduction potential and pH),with implications also for the composition,diversity,and stability of rhizosphere microorganisms.LEfSe analysis revealed that low-dose addition of Kaolin increased the abundances of functional microbial groups that benefit plant nutrient absorption and enhance plant stress resistance,such as Spirillaceae,Rhodocyclaceae,and Burkholderiales.Moreover,low doses of Kaolin significantly promoted the photosynthesis and nutrient absorption of submerged macrophytes,thereby facilitating plant growth.A structural equation model(SEM)indicated that the direct impact of Kaolin on the growth of submerged plants was relatively minor,while the indirect effect through modulation of rhizosphere microorganisms was important.Our study suggests that low doses of Kaolin may be used to promote the growth of submerged macrophytes when lakes with a high organic content in the sediment are recovering after nutrient loading reduction.
基金supported by the National Natural Science Foundation of China(No.41877425)the Shanghai Municipal Natural Science Foundation,China(No.21ZR1446800)+4 种基金the State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil&Water Pollution(No.GHBK-2022-005)the Key Lab of Eco-restoration of Regional Contaminated Environment(Shenyang University)Ministry of Education(No.KF-22-04)the Fundamental Research Funds for the Central Universities(No.2262022-00084)the open fund from the Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration(No.SHUES2022A04)。
文摘In-situ enhanced bioreduction by functional materials is a cost-effective technology to remove chlorinated hydrocarbons in groundwater.Herein,a novel polydopamine(PDA)-modified biochar(BC)-based composite containing nanoscale zero-valent iron(n ZVI)and poly-l-lactic acid(PLLA)(PB-PDA-Fe)was synthesized to enhance the removal of 1,1,1-trichloroethane(1,1,1-TCA)in simulated groundwater with actual site sediments.Its impact on functional microbial community structure in system was also investigated.The typical characterizations revealed uniform dispersion of PLA and n ZVI particles on the BC surface,being smoother after PDA coating.The composite exhibited a significantly higher performance on 1,1,1-TCA removal(82.38%,initial concentration 100 mg/L)than Fe-PDA and PB-PDA treatments.The diversity and richness of the microbial community in the composite treatment consistently decreased during incubation due to a synergistic effect between PLLA-BC and n ZVI.Desulfitobaterium,Pedobacter,Sphaerochaeta,Shewanella,and Clostridium were identified as enriched genera by the composite through DNA-stable isotope probing(DNA-SIP),playing a crucial role in the bioreductive dechlorination process.All the above results demonstrate that this novel composite selectively enhances the activity of microorganisms with extracellular respiration functions to efficiently dechlorinate 1,1,1-TCA.These findings could contribute to understanding the responsive microbial community by carbon-iron composites and expedite the application of in-situ enhanced bioreduction for effective remediation of chlorinated hydrocarbon-contaminated groundwater.
文摘[Objectives]To investigate optimal storage methods and shelf life determination for several representative bagged traditional Chinese medicine(TCM)decoctions under centralized preparation conditions in intelligent TCM pharmacies.[Methods]First,the nourishing formula was prepared and packaged in bags.Under the three storage conditions of 37℃before cold storage(including full high temperature),cold storage before 37℃(including full cold storage),and alternating 37℃and cold storage,the 30 d cycle was investigated to determine the total microbial colony count,so as to determine a reasonable storage method of traditional Chinese medicine decoction.Secondly,five representative prescriptions were prepared and packaged in bags,stored under 37℃,room temperature and cold conditions.The investigation period was 30 d.The pH,total bacterial count and soluble solid content were measured,and the changes of each index were analyzed to obtain the shelf life of the bagged Chinese medicine decoction.[Results]First,the nourishing formula was investigated for 30 d.The microbial results of refrigeration after 1-2 d of 37℃,complete refrigeration and 37℃cooling with an alternate interval of 2 d or less met the requirements,while the microbial results of refrigeration after 3 d or above of 37℃,refrigeration after 1-5 d and then 37℃,complete 37℃,37℃and cooling with an alternate interval of 3 d or above excessive microorganism.Second,under the condition of 37℃storage,the pH of the five prescriptions decreased significantly,the total microbial colonies exceeded the standard,and the solid content decreased significantly.However,under the condition of room temperature and cold storage,the pH,total microbial colonies,and solid content of the five prescriptions remained stable.[Conclusions]The first is to refrigerate the decoction after 1-2 d of 37℃,completely refrigerate it,and refrigerate the decoction with an alternate interval of 2 d or less at 37℃.The shelf life can last for 30 d.Several storage conditions are conducive to guiding the development of the storage mode of the decoction.Second,under the conditions of cold storage,all the indexes were stable,and the shelf life of the five representative formulas was 30 d.