期刊文献+
共找到190篇文章
< 1 2 10 >
每页显示 20 50 100
A Hierarchical Short Microneedle-Cupping Dual-Amplified Patch Enables Accelerated,Uniform,Pain-Free Transdermal Delivery of Extracellular Vesicles 被引量:1
1
作者 Minwoo Song Minji Ha +8 位作者 Sol Shin Minjin Kim Soyoung Son Jihyun Lee Gui Won Hwang Jeongyun Kim Van Hieu Duong Jae Hyung Park Changhyun Pang 《Nano-Micro Letters》 2026年第1期268-289,共22页
Microneedles(MNs)have been extensively investigated for transdermal delivery of large-sized drugs,including proteins,nucleic acids,and even extracellular vesicles(EVs).However,for their sufficient skin penetration,con... Microneedles(MNs)have been extensively investigated for transdermal delivery of large-sized drugs,including proteins,nucleic acids,and even extracellular vesicles(EVs).However,for their sufficient skin penetration,conventional MNs employ long needles(≥600μm),leading to pain and skin irritation.Moreover,it is critical to stably apply MNs against complex skin surfaces for uniform nanoscale drug delivery.Herein,a dually amplified transdermal patch(MN@EV/SC)is developed as the stem cell-derived EV delivery platform by hierarchically integrating an octopusinspired suction cup(SC)with short MNs(≤300μm).While leveraging the suction effect to induce nanoscale deformation of the stratum corneum,MN@EV/SC minimizes skin damage and enhances the adhesion of MNs,allowing EV to penetrate deeper into the dermis.When MNs of various lengths are applied to mouse skin,the short MNs can elicit comparable corticosterone release to chemical adhesives,whereas long MNs induce a prompt stress response.MN@EV/SC can achieve a remarkable penetration depth(290μm)for EV,compared to that of MN alone(111μm).Consequently,MN@EV/SC facilitates the revitalization of fibroblasts and enhances collagen synthesis in middle-aged mice.Overall,MN@EV/SC exhibits the potential for skin regeneration by modulating the dermal microenvironment and ensuring patient comfort. 展开更多
关键词 Biomimetics CUPPING microneedle Transdermal patch Extracellular vesicles
暂未订购
Rapid enrichment and SERS differentiation of various bacteria in skin interstitial fluid by 4-MPBA-AuNPs-functionalized hydrogel microneedles 被引量:1
2
作者 Ying Yang Xingyu Wang +8 位作者 Yexin Hu Zhongyao Liu Xiao Ma Feng Feng Feng Zheng Xinlin Guo Wenyuan Liu Wenting Liao Lingfei Han 《Journal of Pharmaceutical Analysis》 2025年第3期564-576,共13页
Bacterial infection is a major threat to global public health,and can cause serious diseases such as bacterial skin infection and foodborne diseases.It is essential to develop a new method to rapidly diagnose clinical... Bacterial infection is a major threat to global public health,and can cause serious diseases such as bacterial skin infection and foodborne diseases.It is essential to develop a new method to rapidly diagnose clinical multiple bacterial infections and monitor food microbial contamination in production sites in real-time.In this work,we developed a 4-mercaptophenylboronic acid gold nanoparticles(4-MPBA-AuNPs)-functionalized hydrogel microneedle(MPBA-H-MN)for bacteria detection in skin interstitial fluid.MPBA-H-MN could conveniently capture and enrich a variety of bacteria within 5 min.Surface enhanced Raman spectroscopy(SERS)detection was then performed and combined with machine learning technology to distinguish and identify a variety of bacteria.Overall,the capture efficiency of this method exceeded 50%.In the concentration range of 1×10_(7) to 1×10^(10) colony-forming units/mL(CFU/mL),the corresponding SERS intensity showed a certain linear relationship with the bacterial concentration.Using random forest(RF)-based machine learning,bacteria were effectively distinguished with an accuracy of 97.87%.In addition,the harmless disposal of used MNs by photothermal ablation was convenient,environmentally friendly,and inexpensive.This technique provided a potential method for rapid and real-time diagnosis of multiple clinical bacterial infections and for monitoring microbial contamination of food in production sites. 展开更多
关键词 Hydrogel microneedle SERS Broad-spectrum bacteria detection Skin interstitial fluid Machine learning
在线阅读 下载PDF
Microneedle-Based Approaches for Skin Disease Treatment 被引量:1
3
作者 Yanhua Han Xiaoyu Qin +6 位作者 Weisen Lin Chen Wang Xuanying Yin Jiaxin Wu Yang Chen Xiaojia Chen Tongkai Chen 《Nano-Micro Letters》 2025年第6期143-180,共38页
The use of microneedles(MNs)has been established as an effective transdermal drug delivery strategy that has been extensively deployed for treating various diseases,including skin diseases.MNs can surpass the constrai... The use of microneedles(MNs)has been established as an effective transdermal drug delivery strategy that has been extensively deployed for treating various diseases,including skin diseases.MNs can surpass the constraints of conventional drug delivery methods by their superior safety and efficacy through precise targeting,while simultaneously enabling painless delivery.Currently,MNs are increasingly used as carriers for drug delivery,with the loading of insoluble drugs to improve their treatment efficiency or combining with bioactive substances for the construction of an efficient drug delivery system to maximize the effects of bioactive substances.The methods used for preparation MNs are diverse,enabling them to meet the requirements of most applications.The emergence of MNs has addressed the shortcomings associated with insoluble drugs,expanded the applications of bioactive substances,and improved their use in clinical practice.This review summarizes current information on the application of MNs in a variety of skin diseases,such as psoriasis,vitiligo,alopecia,hypertrophic scarring,atopic dermatitis,melanoma,acne,and skin infections.The current clinical applications and future opportunities for MNs in the treatment of skin diseases are also discussed.Despite substantial progress in the clinical application of MNs as delivery vectors,issues such as low drug loading and poor mechanical strength during MNs preparation remain the main challenges.Therefore,clinical implementation of MNs-based therapies remains limited,highlighting key opportunities for future research. 展开更多
关键词 microneedleS Androgenetic alopecia PSORIASIS Atopic dermatitis Hypertrophic scars MELANOMA
暂未订购
Progressive microneedles for targeting and intelligent drug delivery
4
作者 Jiaqi Li Qing Xia +4 位作者 Shuwen Ma Zhi Wang Teng Guo Nianping Feng Yongtai Zhang 《Asian Journal of Pharmaceutical Sciences》 2025年第3期1-23,共23页
Microneedle-mediated drug delivery systems(MDDS)have experienced robust growth in recent years,with designers leveraging their creativity to apply these systems for direct drug delivery to the skin,mucous membranes,bl... Microneedle-mediated drug delivery systems(MDDS)have experienced robust growth in recent years,with designers leveraging their creativity to apply these systems for direct drug delivery to the skin,mucous membranes,blood vessel walls and even internal organs.In order to achieve precise drug delivery,various delicately conceived drug release modes based on MDDS have been developed.Herein,to elucidate the design concepts of numerous reported MDDS,we have categorized them into two levels(Level-ⅠMDDS and Level-ⅡMDDS)depending on whether nanoscale and microscale carriers are integrated within the microneedles.In this work,the design strategies of MDDS,as well as the current status of their applications in targeted and intelligent drug delivery were reviewed,while their prospects and challenges for future industrialization and clinical applications were also discussed. 展开更多
关键词 microneedle Drug delivery Target INTELLIGENT RESPONSIVE NANOCARRIER
暂未订购
Microneedle for acne treatment:Recent advances in materials and technologies
5
作者 Han Zheng Pengxian Wang +6 位作者 Nian Liu Miao Han Tianpeng Xu Shuai Zhao Yuhe Yang Xin Zhao Peng Li 《Journal of Materials Science & Technology》 2025年第30期289-303,共15页
Acne vulgaris is one of the most common skin disorders affecting millions of patients worldwide,its long-lasting inflammation greatly reduces life quality and causes negative psychosocial impacts.Conventional treatmen... Acne vulgaris is one of the most common skin disorders affecting millions of patients worldwide,its long-lasting inflammation greatly reduces life quality and causes negative psychosocial impacts.Conventional treatments often along with side effects and issues of patient compliance,and ineffective in treating severe conditions.In recent years,microneedle(MN)has emerged as a versatile therapeutic technology,owing to its minimally invasive,effective,and reduced side effects.However,there are few review articles that systematically summarize the progress of microneedles for the treatment of acne.Here conclude the material,function,and application of microneedle technology in the treatment of acne,with a particular focus on two types of anti-acne microneedle:drug-loaded microneedle(DMN)and radio-frequency microneedle(RMN).DMN facilitates targeted drug delivery to the skin's deeper layers,while RMN utilizes radio-frequency currents to stimulate collagen regeneration,thus addressing acne scarring.Additionally,future directions for advanced acne-treating microneedle technology are envisioned,such as diversified drug loading,multi-functionality,production process optimization,and personalized treatment.These different directions are expected to further enhance the safety,efficacy,and patient satisfaction of microneedle acne treatments. 展开更多
关键词 microneedle ACNE ANTIBACTERIAL BIOMATERIALS Degradable material
原文传递
MXene Hydrogel Microneedles with Nitric Oxide and HIF-1αPlasmid Controllable Releasing for Wound Healing
6
作者 Wanchuan Ding Xiangyi Wu +3 位作者 Yi Cheng Ling Lu Weijian Sun Yuanjin Zhao 《Engineering》 2025年第10期301-310,共10页
Microneedle technology is valuable in wound treatment.Current studies focus on optimizing the function of microneedles and screening for effective encapsulated actives.Herein,we develop innovative MXene hydrogel micro... Microneedle technology is valuable in wound treatment.Current studies focus on optimizing the function of microneedles and screening for effective encapsulated actives.Herein,we develop innovative MXene hydrogel microneedles with nitric oxide(NO)and hypoxia-inducible factor-1α(HIF-1α)plasmid controllable release for diabetic wound treatment.These microneedles consist of gelatin coupled with tert-butyl nitrite(Gel-SNO)polymers obtained by conjugating the-SNO group on the gelatin side chain,therefore,NO can be generated and released under near-infra red(NIR)light irradiation owing to the thermal effect.Simultaneously,by harnessing the enhanced photothermal conversion efficiency of the MXene additive,the microneedle patch can quickly dissolve and liberate the enclosed HIF-1αplasmid nanoparticles into the dermis when exposed to NIR radiation.The released NO effectively reduced the inflammatory response and released HIF-1αplasmid induced neovascularization.Thus,in vivo experiments showed that these microneedles could accelerate wound closure by alleviating inflammation,and promoting re-epithelialization and angiogenesis.These results indicated the potential value of MXene hydrogel microneedles in wound healing and other related biomedical fields. 展开更多
关键词 MXene hydrogel microneedle Thermos-responsive Nitric oxide Hypoxia-inducible factor-1αplasmid Wound healing
在线阅读 下载PDF
Bee-stings-inspired intelligently-sensitive electroactive microneedle with serrated structure for advanced electrical-stimulation-intervened chronic wound-management
7
作者 Huie Jiang Jiamin Zhang +5 位作者 Lijuan Chen Qian Zhang Fengqian Yang Yifan Fei Xing Chen Xinhua Liu 《International Journal of Extreme Manufacturing》 2025年第6期436-455,共20页
Rapidly-advancing microneedle-based bioelectronics integrated with electrical stimulation(ES)therapy exhibit significant potential for improving chronic wound management.Herein,bio-inspired by the serrated structure o... Rapidly-advancing microneedle-based bioelectronics integrated with electrical stimulation(ES)therapy exhibit significant potential for improving chronic wound management.Herein,bio-inspired by the serrated structure of bee-stingers,we developed a temperature-sensitive,two-stage microneedle-based electro active platform(GP-PPy/PLA-MN)featuring rivet-like micros tructures that integrates intelligent,precise drug-releasing,ES-transmission,and real-time wound-assessment monitoring for comprehensive chronic wound-management and diagnostic therapy.The bionic-design mechanically anchors the microneedle beneath the skin's dermis,while GP-PPy/PLA-MN demonstrates versatile therapeutic characteristics,including outstanding biocompatibility,antimicrobial properties,and antimigratory origins.The GP-PPy/PLA-MN enables the sustained release of insulin at body temperature for up to24 hours through the poly-N-isopropyl acrylamide grafted amidated-gelatin-based thermo-sensitive hydrogel at the needle-tip,thereby providing long-term stable blood glucose control.GP-PPy/PLA-MN indicates its potential as a novel bioelectronics-based patch to record the temperature and humidity during the wound-healing process,realizing significant wound diagnosis and real-time wound assessment,and fundamentally facilitating the therapeutic efficacy by supplying solid data to protect the clinical practice.Extensive in vitro and in vivo studies have demonstrated that GP-PPy/PLA-MN can provide effective ES and sustained drug release,thereby promoting chronic wound healing and increasing the wound healing rate by 20%compared to the control group after 14 days of treatment.This innovative approach combines bioelectronics with intelligent drug delivery and microneedling technology to effectively address the critical challenges of chronic wound management,offering promising prospects for precision diagnostics and therapeutic interventions. 展开更多
关键词 temperature-sensitive hydrogel electronic microneedle electrical stimulation chronic wound treatment wound status monitoring
暂未订购
Delivery of Sophora flavescens Ait.using a dissolving microneedle enables enhanced psoriasis treatment
8
作者 Zihan Zhou Jie Zhang +7 位作者 Yiwen Chen Bingbing Wang Ping Hou Zifan Ding Luzheng Zhang Jianlin Wang Nailiang Yang Cong Yan 《Journal of Traditional Chinese Medical Sciences》 2025年第2期277-286,共10页
Objective:To assess the efficiency of a Sophora flavescens Ait(S.flavescens,Ku Shen)-soluble microneedle(SFA-MN)for improving skin lesion symptoms in mice with psoriasis.Methods:SFA-MNs were prepared using a two-mold ... Objective:To assess the efficiency of a Sophora flavescens Ait(S.flavescens,Ku Shen)-soluble microneedle(SFA-MN)for improving skin lesion symptoms in mice with psoriasis.Methods:SFA-MNs were prepared using a two-mold molding process with 20%w/v poly-vinylpyrrolidone and 15%w/v polyvinyl alcohol.The SFA-MNs were assessed for morphology,mechanical properties,in vitro dissolution,identification of components,and skin lesion improvement in imiquimod-induced psoriasis mice.Results:The SFA-MNs demonstrated good mechanical properties for efficiently penetrating the dermis,facilitating efficient drug delivery.Furthermore,they effectively inhibited mast cell levels in the dorsal lesion area of psoriasis mice and reduced the expression of the T-lymphocyte factor cluster of differ-entiation 3 and tumor necrosis factor-a.In addition,this system alleviated skin inflammation,splenic swelling,and thymic atrophy in the psoriasis-like mouse model.Seven major components were detected from SFA-MNs by comparison of the mass-to-nucleus ratios(m/z)of the secondary fragments N-methylcytisine,5a,9a-dihydroxymatrine,sophoramine,matrine,oxysophocarpine,oxymatrine,and kushenol O.Conclusion:The drug delivery strategy combining traditional herbal S.flavescens with soluble micro-needle technology provides more targeted and effective immune regulation for treating psoriasis-like mice models,enabling enhanced therapeutic effects compared with the control group. 展开更多
关键词 Soluble microneedle Sophora flavescens Ait. PSORIASIS Immune regulation Drug delivery
暂未订购
Nanoparticles-incorporated hydrogel microneedle for biomedical applications:Fabrication strategies,emerging trends and future prospects
9
作者 Zejun Xu Jiaying Chi +12 位作者 Fei Qin Dongyan Liu Yecai Lai Yingxia Bao Ruizhi Guo Yiqiu liao Zhoufan Xie Jieqiong Jiang Juyan Liu Jianfeng Cai Chao Lu Jiansong Wang Chuanbin Wu 《Asian Journal of Pharmaceutical Sciences》 2025年第4期80-100,共21页
Nanoparticles-incorporated hydrogel microneedles(NPs-HMN)have attracted significant attention due to their exceptional biomedical applications.The arrayed needle tips of NPsHMN effectively penetrate the skin or tissue... Nanoparticles-incorporated hydrogel microneedles(NPs-HMN)have attracted significant attention due to their exceptional biomedical applications.The arrayed needle tips of NPsHMN effectively penetrate the skin or tissue,enabling minimally invasive and painless delivery of therapeutic molecules into the tissue microenvironment.This approach has shown significant improvements in bioavailability and patient compliance.Moreover,the functionalized hydrogel materials of NPs-HMN exhibit a three-dimensional network structure resembling the extracellular matrix,along with controllable drug release,exceptional swelling ability,hydrophilicity,and biocompatibility.These characteristics broaden the potential applications of HMN in therapeutic and biosensing contexts.In addition,the incorporation of nanoparticles(NPs)has been shown to improve the solubility of hydrophobic drugs,enhance mechanical properties,enable intelligent drug release,and facilitate precise targeting of HMN.The versatility and diversity of treatment options afforded by NPs-HMN contribute to significant advancements in animal models and clinical settings,as well as offer valuable insights for biomaterial development.This review provides a comprehensive examination of the fabrication strategies of NPs-HMN and their recent advancements in biomedical applications.We also analyze the mechanisms,advantages,challenges,and future prospects of this system in enhancing drug delivery efficiency to provide theoretical references for further breakthroughs in novel delivery platforms. 展开更多
关键词 Hydrogel microneedle Nanoparticles Drug delivery BIOSENSING
在线阅读 下载PDF
State-of-the-art Review of Metallic Microneedles:Structure,Fabrication,and Application
10
作者 Zhishan Yuan Hongzhao Zhang +4 位作者 Wentao Hu Xiao Yu Si Qin Chengyong Wang Fenglin Zhang 《Chinese Journal of Mechanical Engineering》 2025年第1期84-105,共22页
Microneedle(MN)is a medical device containing an array of needles with a micrometer-scale.It can penetrate the human stratum corneum painlessly and efficiently for treatment and diagnosis purposes.Currently,the materi... Microneedle(MN)is a medical device containing an array of needles with a micrometer-scale.It can penetrate the human stratum corneum painlessly and efficiently for treatment and diagnosis purposes.Currently,the materials commonly used to manufacture MNs include silicon,polymers,ceramics and metals.Metallic MNs(MMNs)have drawn significant attention owing to its superior mechanical properties,machinability,and biocompatibility.This paper is a state-of-the-art review of the structure,fabrication technologies,and applications of MMNs.According to the relative position of the axis of MN and the plane of the substrate,MMNs can be divided into in-plane and out-of-plane.Solid,hollow,coated and porous MMNs are also employed to characterize their internal and surface structures.Until now,numerous fabrication technologies,including cutting tool machining,non-traditional machining,etching,hot-forming,and additive manufacturing,have been used to fabricate MMNs.The recent advances in the application of MMNs in drug delivery,disease diagnosis,and cosmetology are also discussed in-depth.Finally,the shortcomings in the fabrication and application of MMNs and future directions for development are highlighted. 展开更多
关键词 METAL microneedleS STRUCTURE FABRICATION Application
在线阅读 下载PDF
Celastrol-loaded metal-phenolic nanozymes integrated microneedles with ROS scavenging and anti-inflammatory activities for psoriasis treatment
11
作者 Li Qin Haozheng Jiao +3 位作者 Yu Wang Lvyao Yang Xianbao Shi Peng Zhang 《Asian Journal of Pharmaceutical Sciences》 2025年第5期160-175,共16页
Psoriasis is a chronic inflammatory skin disease,which seriously affects the physical and mental health of patients.The progression of psoriasis is influenced by the excessive production of reactive oxygen species(ROS... Psoriasis is a chronic inflammatory skin disease,which seriously affects the physical and mental health of patients.The progression of psoriasis is influenced by the excessive production of reactive oxygen species(ROS)and inflammatory responses.In this paper,novel celastrol(Ce)-loaded metal-phenolic nanozymes(tannic acid-Fe^(3+))(TA-Fe)integrated microneedles(Ce@TA-Fe/MNs)were constructed to achieve the combined oxidative stress alleviation and anti-inflammatory therapy of psoriasis.Molecular dynamics simulations and structural characterization confirmed the successful fabrication of nanozymes.The Ce@TA-Fe/MNs system,characterized by its rapid dissolution kinetics and superior mechanical strength,enabled minimally invasive skin penetration for efficient nanozymes delivery.Nanozymes possessed superoxide dismutase and catalase mimetic enzyme activities,effectively eliminating excessive ROS in psoriatic skin lesions.Additionally,the release of Ce from Ce@TA-Fe provided strong antioxidant and anti-inflammatory effects.Based on these characteristics,Ce@TA-Fe/MNs could effectively alleviate the symptoms in psoriasis mice models.These findings demonstrated that the integration of Ce-equipped nanozymes within MNs holds great promise as a therapeutic strategy for the clinical management of psoriasis. 展开更多
关键词 Nanozymes ROS scavenging ANTI-INFLAMMATION microneedleS PSORIASIS
暂未订购
Microneedle delivery systems for vaccines and immunotherapy
12
作者 Haiyao Jia Jinyuan Liu +3 位作者 Mengqian Shi Manzar Abbas Ruirui Xing Xuehai Yan 《Smart Molecules》 2025年第3期13-25,共13页
Microneedles(MNs)offer a precise and minimally invasive platform for delivering vaccines and therapeutic agents directly into the skin,leveraging the abundance of tissue-resident immune cells to elicit robust and dura... Microneedles(MNs)offer a precise and minimally invasive platform for delivering vaccines and therapeutic agents directly into the skin,leveraging the abundance of tissue-resident immune cells to elicit robust and durable immune responses.Compared to traditional intramuscular or subcutaneous vaccination methods,MNbased vaccines demonstrate superior patient compliance,enhanced antigen stability,and heightened immunogenicity,positioning them as a promising tool in biomedical applications.This review provides a comprehensive overview of the materials and fabrication techniques used in MN preparation,explores their structural classifications,and examines the role of antigens and adjuvants in optimizing vaccine efficacy.Furthermore,the diverse applications of MN delivery systems in preventing infectious diseases,advancing tumor immunotherapy,and addressing other immune-related conditions are discussed. 展开更多
关键词 delivery systems infectious disease prevention microneedleS transdermal immunization tumor therapy vaccines
暂未订购
Microneedle for weight loss:Most commonly used administration site and Chinese medicinal materials constituent
13
作者 Lin-zhi WU Shi-jia HAN +5 位作者 Shuai-yan WANG Zi-wen ZHOU Ke-ran CHEN Zhi-qiang JING Bin XU Tian-cheng XU 《World Journal of Acupuncture-Moxibustion》 2025年第4期283-289,共7页
Objective:Microneedles(MNs),as a key component of third-generation transdermal drug delivery sys-tems,show strong potential for obesity treatment.This study aimed to integrate traditional Chinese medicine(TCM)therapie... Objective:Microneedles(MNs),as a key component of third-generation transdermal drug delivery sys-tems,show strong potential for obesity treatment.This study aimed to integrate traditional Chinese medicine(TCM)therapies,including Chinese patent medicine(CPM)injections and patches,with MN technology to identify commonly used administration sites and Chinese medicinal material(CMM)con-stituents suitable for MN-based weight loss interventions.Methods:Literature was retrieved from PubMed,Web of Science,Google Scholar,CNKI,and Google Patents.First,existing studies on MN-based weight loss were narratively reviewed.Then,studies on CPM injections or patches were analyzed to extract intervention elements,including administration sites,CMM constituents,and symptoms.Acupoint-symptom and CMM constituent-symptom pairs were compiled,and key nodes were identified through complex network analysis using eigenvector centrality,PageRank,and betweenness centrality.Results:Forty-four studies and thirteen patents were included.The review indicated that MN-based in-terventions demonstrated significant weight loss effects;however,current research remains limited by a focus on fat-deposition sites and insufficient development of CMM carriers.Network analysis identi-fied Guanyuan(CV4)and Poria cocos(Fuling)as central nodes across all metrics,suggesting their strong potential as key elements in MN-based therapies.Conclusion:CV4 and Poria cocos represent promising candidates for delivery sites and CMM constituents in MN-mediated obesity treatment.By integrating TCM principles with modern MN technology,these findings provide a theoretical basis for developing more targeted,efficient,and integrative anti-obesity interventions. 展开更多
关键词 microneedle technology Transdermal drug delivery system(TDDS) Weight loss Traditional Chinese Medicine(TCM) Guanyuan(CV4) Poria cocos(Fuling) Noninvasive treatment
原文传递
Microneedles for non-transdermal drug delivery:design strategies and current applications
14
作者 Jinhong Xu Xiangyi Liao +2 位作者 Danli Chen Xiuzhuo Jia Xufeng Niu 《Bio-Design and Manufacturing》 2025年第2期243-274,I0003,共33页
Microneedles(MNs)are an innovative and viable option for drug delivery that offer the distinct advantages of minimal invasiveness,painlessness,stable drug loading,efficient drug permeation,and biocompatibility.MNs wer... Microneedles(MNs)are an innovative and viable option for drug delivery that offer the distinct advantages of minimal invasiveness,painlessness,stable drug loading,efficient drug permeation,and biocompatibility.MNs were first used to penetrate the skin surface and facilitate transcutaneous drug delivery with great success.Recent applications of MNs have extended to non-transdermal drug delivery,specifically,to various tissues and organs.This review captures the fabrication methods for MNs,discusses advanced design strategies for achieving controlled drug release,and summarizes current MN applications in delivering multiple therapeutic agents to the cardiovascular,digestive(e.g.,oral cavity),reproductive,and central nervous systems.The findings in this review would contribute toward the improved designs of MN systems that can be modified according to purpose,including material selection,structural design,choice of fabrication methods,and tissue considerations,to determine the optimal therapeutic regimen for the target treatment area. 展开更多
关键词 microneedles(MNs) Biocompatible materials Non-transdermal drug delivery Controlled release
暂未订购
Permeable polydimethylsiloxane microneedles for the delivery of traditional Chinese medicine elemene
15
作者 Qingchang Tian Mengmeng Liu +4 位作者 Yiqiu Wang Zhaoming Li Daizhou Zhang Tian Xie Shuling Wang 《Journal of Pharmaceutical Analysis》 2025年第2期477-479,共3页
Microneedles(MNs)have attracted increasing attention as a transdermal delivery system(TDDS)[1].However,traditional volatile Chinese medicines cannot be dissolved in conventional soluble MN materials,such as hyaluronic... Microneedles(MNs)have attracted increasing attention as a transdermal delivery system(TDDS)[1].However,traditional volatile Chinese medicines cannot be dissolved in conventional soluble MN materials,such as hyaluronic acid and chitosan,making it difficult for many traditional Chinese medicine ingredients to be applied to MN.Elemene(ELE)was successfully isolated from Curcuma longa,and has numerous antitumor and curative effects[2]. 展开更多
关键词 permeable polydimethylsiloxane volatile chinese medicines ELEMENE microneedleS traditional chinese medicine ingredients curcuma longaand traditional chinese medicine hyaluronic acid
暂未订购
Thermo-responsive microneedles patch for transdermal drug delivery via squeezing in diabetic foot ulcers
16
作者 Xiaotong Wu Dan Xia +4 位作者 Tingting Shi Baoe Li Donghui Wang Chunyong Liang Mingdong Dong 《Journal of Materials Science & Technology》 2025年第2期299-314,共16页
Microneedle(MN)patches could be a promising treatment for diabetic foot ulcers that plague thousands of people worldwide.While reducing skin resistance or increasing driving force can accelerate the efficiency of tran... Microneedle(MN)patches could be a promising treatment for diabetic foot ulcers that plague thousands of people worldwide.While reducing skin resistance or increasing driving force can accelerate the efficiency of transdermal drug delivery with conventional MN patches,it can create toxic chemical residues or require the help of additional devices.Herein,a thermo-responsive microneedles patch(TMN)with high biocompatibility without additional equipment is proposed.The TMN consisted of a bilayer microneedles composed of sodium alginate(SA)-g-poly(N-isopropylacrylamide)layer(SA-g-PNIPAM)loaded with sucrose octasulfate sodium salt(SOS)and hyaluronic acid layer and a polycaprolactone/chitosan nanofiber membrane loading with tetracycline hydrochloride(TH)and SOS.PNIPAM accelerates drug release by extruding the drug through a volumetric phase transition in response to temperature changes,and TH and SOS promote wound healing by inhibiting bacterial growth and promoting vascular regeneration and epithelial formation.The results showed that the drug release of TMN was significantly faster,with the drug release rate of more than 80% in the 10th h,and the antibacterial rate of TMN could reach 800%.In addition,TMN had good biocompatibility and good healing effects in vivo,which may be helpful for the design of multifunctional dressings in the future. 展开更多
关键词 microneedles patch Thermal response Transdermal drug delivery Diabetic foot ulcers
原文传递
A microneedle substrate-based sutureless engineered cardiac patch for myocardial infarction repair
17
作者 Zibo Liu Pengcheng Yang +7 位作者 Yueming Tian Heyuan Deng Jingjing Xia Binhan Li Bingyan Wu Yongcong Fang Zhuo Xiong Ting Zhang 《Bio-Design and Manufacturing》 2025年第6期917-929,I0001-I0003,共16页
Myocardial infarction(MI)is a challenging condition that results in scar formation on the ventricular wall,causing myocardial damage and ventricular thinning.Engineered cardiac patches(ECPs)designed to regenerate myoc... Myocardial infarction(MI)is a challenging condition that results in scar formation on the ventricular wall,causing myocardial damage and ventricular thinning.Engineered cardiac patches(ECPs)designed to regenerate myocardial tissue have been proposed to repair the ventricular wall and replenish myocardial cells.However,their clinical use is limited by manufacturing and fixation challenges.This study introduces a manufacturing strategy for a composite ECP,which comprises an antiadhesion shell layer,a conductive myocardial tissue,and an exosome-laden microneedle substrate.The ECP can anchor to the infarcted myocardium through its microneedle substrate.Meanwhile,its outer shell prevents nonspecific adhesion,enabling stable and suture-free attachment.Using this microneedle substrate,we applied a 3D-printed ECP in a rat model of post-MI repair.Our results showed that this strategy reduced left ventricular damage,improved cardiac ejection fraction,decreased the fibrotic area,increased ventricular wall thickness,improved microvascular recovery,and thus facilitated the repair of maladaptive ventricular remodeling post-MI.This microneedle substrate holds great promise for use in the fixation of patches during the repair of myocardial tissue and other organs,thereby promoting the clinical application of tissue-engineered patches. 展开更多
关键词 microneedleS Engineered cardiac patches Myocardial infarction repair
暂未订购
Microneedle-loaded hybrid extracellular vesicles promote diabetic wound healing
18
作者 Yue Sun Qirong Zhou +9 位作者 Shihao Sheng Huijian Yang Long Bai Zhen Geng Jian Wang Ke Xu Xiao Chen Yingying Jing Guangchao Wang Jiacan Su 《Bio-Design and Manufacturing》 2025年第4期656-671,I0057-I0059,共19页
Chronic diabetic wounds result from a disrupted microenvironment where oxidative stress,impaired angiogenesis,and persistent infection create a vicious cycle that delays healing.Unfortunately,existing treatments often... Chronic diabetic wounds result from a disrupted microenvironment where oxidative stress,impaired angiogenesis,and persistent infection create a vicious cycle that delays healing.Unfortunately,existing treatments often fail to address these interrelated issues,resulting in suboptimal healing.Here,we propose a base-tip dual-component hydrogel microneedle(MN)system(GBEVs-pVEGF/AgNPs@MNs),consisting of a tip loaded with plant-bacterial hybrid extracellular vesicles(GBEVs-pVEGF)and a base containing silver nanoparticles(AgNPs).Upon penetrating the necrotic tissue of diabetic wounds,our multifunctional MNs could effectively deliver GBEVs-pVEGF,thereby alleviating oxidative stress,promoting cell migration,and facilitating angiogenesis.Additionally,the physical barrier formed by the basal layer synergistically mitigates persistent bacterial infections during wound healing in conjunction with the antimicrobial agent AgNPs.This multifunctional MN system,integrating antioxidant,angiogenic,and antimicrobial properties,effectively restores the disrupted wound microenvironment,offering significant potential for accelerating diabetic wound healing. 展开更多
关键词 Extracellular vesicles(EVs) Silver nanoparticles(AgNPs) microneedles(MNs) Drug release Diabetic wound healing
暂未订购
Engineering Microneedle Patches for Improved Penetration:Analysis,Skin Models and Factors Affecting Needle Insertion 被引量:10
19
作者 Pooyan Makvandi Melissa Kirkby +8 位作者 Aaron RJHutton Majid Shabani Cynthia K.Y.Yiu Zahra Baghbantaraghdari Rezvan Jamaledin Marco Carlotti Barbara Mazzolai Virgilio Mattoli Ryan F.Donnelly 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第6期190-230,共41页
Transdermal microneedle(MN)patches are a promising tool used to transport a wide variety of active compounds into the skin.To serve as a substitute for common hypodermic needles,MNs must pierce the human stratum corne... Transdermal microneedle(MN)patches are a promising tool used to transport a wide variety of active compounds into the skin.To serve as a substitute for common hypodermic needles,MNs must pierce the human stratum corneum(~10 to 20μm),without rupturing or bending during penetration.This ensures that the cargo is released at the predetermined place and time.Therefore,the ability of MN patches to sufficiently pierce the skin is a crucial requirement.In the current review,the pain signal and its management during application of MNs and typical hypodermic needles are presented and compared.This is followed by a discussion on mechanical analysis and skin models used for insertion tests before application to clinical practice.Factors that affect insertion(e.g.,geometry,material composition and cross-linking of MNs),along with recent advancements in developed strategies(e.g.,insertion responsive patches and 3D printed biomimetic MNs using two-photon lithography)to improve the skin penetration are highlighted to provide a backdrop for future research. 展开更多
关键词 Insertion responsive Implantable microneedles Skin indentation Transdermal microneedles Pain management
在线阅读 下载PDF
Multidrug dissolvable microneedle patch for the treatment of recurrent oral ulcer 被引量:4
20
作者 Yuqiong Wang An’an Sheng +7 位作者 Xinran Jiang Shanshan Yang Long Lin Mingzhu Yang Fengshuo Zhu Yongyan Hu Jian Li Lingqian Chang 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2023年第3期255-267,共13页
Recurrent oral ulcer is a painful oral mucosal disorder that affects 20%of the world’s population.The lack of a radical cure due to its unknown underlying cause calls for innovative symptomatic treatments.This work r... Recurrent oral ulcer is a painful oral mucosal disorder that affects 20%of the world’s population.The lack of a radical cure due to its unknown underlying cause calls for innovative symptomatic treatments.This work reports a hyaluronic acid-based dissolvablemicroneedle patch(ROUMNpatch,short for recurrent oral ulcer microneedle)loaded with dexamethasone acetate,vitamin C and tetracaine hydrochloride for the treatment of recurrent oral ulcers.The ROUMN patch shows enhancement in both the anti-inflammatory effect elicited by dexamethasone and the pro-proliferation effect of vitamin C.In vitro experiments show that ROUMN has a higher efficiency in suppressing lipopolysaccharide(LPS)-induced interleukin-6(IL-6)expression than dexamethasone alone.Cell proliferation and migrationwere also significantly promoted byROUMNcompared to vitamin C alone.The healing-promoting effect of ROUMN was also verified in vivo using an acetic acid-cauterized oral ulcer model in rats.ROUMN as a treatment accelerated the healing process of oral ulcers,shortening the total healing time to 5 days compared with the 7 days required by treatment using watermelon frost,a commonly used over-the-counter(OTC)drug for oral ulcers.The rapid dissolution of the hyaluronic acid-based microneedles and the superior healing-promoting effect of the drug combination could lead to a broad application prospect of the ROUMN patch in the treatment of recurrent oral ulcers. 展开更多
关键词 Recurrent oral ulcer Dissolvable microneedle Hyaluronic acid microneedle MULTIDRUG ANTI-INFLAMMATION Healing promoting effect
暂未订购
上一页 1 2 10 下一页 到第
使用帮助 返回顶部