期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Effect of Retained Austenite on the Corrosion Resistance of High-Strength Low-Carbon Steel in Artificial Seawater
1
作者 Chao Hai Yuetong Zhu +1 位作者 Cuiwei Du Xiaogang Li 《Acta Metallurgica Sinica(English Letters)》 2025年第4期657-671,共15页
Corrosion is an essential issue limiting the application of high-strength low-carbon steel in seawater environment. The impact of retained austenite on its corrosion behavior with immersion experiments and related cor... Corrosion is an essential issue limiting the application of high-strength low-carbon steel in seawater environment. The impact of retained austenite on its corrosion behavior with immersion experiments and related corrosion sensor technology was explored. A model that clarifies the micro-galvanic effect and the heat-induced changes to the shape and composition of retained austenite was used to discuss the findings. The results indicated that retained austenite was generated following an intercritical process and demonstrated approximately 48 mV higher Volta potential than the matrix. The retained austenite content first increased and then decreased with increasing intercritical temperatures, while reaching the maximum value of 8.5% at 660℃. With the increase in retained austenite content, the corrosion rate was increased by up to 32.8% compared to “quenching + tempering” (QT) specimen. The interfaces between the retained austenite and matrix were the priority nucleation sites for corrosion. Moreover, the retained austenite reduced the corrosion resistance of the steel by increasing the micro-galvanic effect and reducing rust layer compactness. 展开更多
关键词 High-strength low-carbon steel Intercritical heat treatment Retained austenite Corrosion resistance microgalvanic effect
原文传递
Effects of dynamic recrystallization and strain-induced dynamic precipitation on the corrosion behavior of partially recrystallized Mg-9Al-lZn alloys 被引量:4
2
作者 Yenny Cubides Dexin Zhao +4 位作者 Lucas Nash Digvijay Yadav Kelvin Xie Ibrahim Karaman Homero Castaneda 《Journal of Magnesium and Alloys》 SCIE EI CAS 2020年第4期1016-1037,共22页
The corrosion susceptibility of recrystallized and un-recrystallized grains in equal channel angular pressed(ECAPed)Mg-9Al-lZn(AZ91)alloys immersed in chloride containing media was investigated through immersion testi... The corrosion susceptibility of recrystallized and un-recrystallized grains in equal channel angular pressed(ECAPed)Mg-9Al-lZn(AZ91)alloys immersed in chloride containing media was investigated through immersion testing and an electrochemical microcell technique coupledwith high resolution techniques such as scanning Kelvin probe force microscopy(SKPFM),transmission electron microscopy(TEM),andelectron backscatter diffraction(EBSD).During ECAP,dynamic recrystallization(DRX)and strain-induced dynamic precipitation(SIDP)simultaneously occurred,resulting in a bimodal grain structure of original elongated coarse grains and newly formed equiaxed fine grainswith a large volume fraction ofβ-Mg17Al12 precipitates.Corrosion preferentially initiates and propagates in the DRXed grains,owing tothe greater microchemistry difference between theβ-Mg17Al12 precipitates formed at the DRXed grain boundaries and the adjacentα-Mgmatrix,which induces a strong microgalvanic coupling between these phases.Additionally,the weaker basal texture of the DRXed grainsalso makes these grains more susceptible to electrochemical reactions than the highly textured un-DRXed grains.The influence of dynamicrecrystallization and dynamic precipitation was also studied in ECAPed alloys with differenl levels of deformation strain through corrosion andelectrochemical techniques.Increasing the strain level led to a more uniform corrosion with a shallow penetration depth,lower corrosion ratevalues,and higher protective ability of the oxide film.Furthermore,higher levels of strain resulted in greater hardness values of the ECAPedalloys.The superior corrosion resistance and strength of the ECAPed alloys with increasing strain level was attributed to the combination ofsmaller DRXed grain size,higher DRX ratio,and higher volume fraction of uniformly distributed fineβ-Mg17Al12 precipitates.c 2020 Published by Elsevier B.V.on behalf of Chongqing University. 展开更多
关键词 Magnesium alloy Bimodal grain structure Dynamic recrystallization Dynamic precipitation Severe plastic deformation microgalvanic coupling
在线阅读 下载PDF
Remarkably slow corrosion rate of high-purity Mg microalloyed with 0.05wt% Sc 被引量:1
3
作者 Soo-Min Baek Jeong-Ki Kim +1 位作者 Du-Won Min Sung Soo Park 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第3期991-997,共7页
We report that the corrosion resistance of Mg is significantly improved by adding 0.05wt%Sc.Corrosion rates evaluated from weight loss values after room-temperature immersion in 0.6 M NaCl solution for two weeks were ... We report that the corrosion resistance of Mg is significantly improved by adding 0.05wt%Sc.Corrosion rates evaluated from weight loss values after room-temperature immersion in 0.6 M NaCl solution for two weeks were 0.27 and 4.0 mm y^(-1)for the high-purity Mg samples with and without microalloyed 0.05wt%Sc,respectively.The beneficial effect of Sc microalloying on the corrosion resistance of Mg is discussed in connection with Sc-induced microstructural modifications. 展开更多
关键词 MAGNESIUM MICROALLOYING Intermetallic phase microgalvanic corrosion
在线阅读 下载PDF
A Review of Research on Galvanic Corrosion of Aluminum Alloys
4
作者 Huixin Zhu Mingzhe Leng +1 位作者 Guofeng Jin Heyang Miao 《Fluid Dynamics & Materials Processing》 EI 2023年第7期1907-1923,共17页
When aluminum alloys are coupled with dissimilar materials,they often act as corrosion anodes and are suscepted to accelerated corrosion.Therefore,deepening our knowledge of such corrosion phenomena,related mechanisms... When aluminum alloys are coupled with dissimilar materials,they often act as corrosion anodes and are suscepted to accelerated corrosion.Therefore,deepening our knowledge of such corrosion phenomena,related mechanisms,and elaborating new prediction model is of great theoretical and practical significance.In this paper,such mechanisms are explained from both macroscopic and microscopic points of view by considering several aspects such as the second phase particle type,grain size,and environmental ions.More specifically,different perspectives on such a problem are elaborated,which take into account:the properties of the coupling pair materials,geometrical characteristics,environmental media characteristics,the corrosion regularity of different types of aluminum alloys,the influence of area ratio on anode corrosion current density,the interference of the solution primary ions represented by Cl-and the accompanying ions represented by Al3+.A review is also conducted of the standard test methods used in the study of aluminum alloys galvanic corrosion and of research methods such as the Wire Beam Electrodes Technology(WBE),the Scanning Kelvin Probe Force Microscopy(SKPFM)technology.Finally,three kinds of inhibition technologies are discussed,including the anodic oxidation treatment,the corrosion inhibitor treatment and the coating protection method. 展开更多
关键词 Aluminum alloy microgalvanic corrosion influencing factors first principles calculations
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部