Glymphatic flow has been proposed to clear brain waste while we sleep.Cerebrospinal fluid moves from periarterial to perivenous spaces through the parenchyma,with subsequent cerebrospinal fluid drainage to dural lymph...Glymphatic flow has been proposed to clear brain waste while we sleep.Cerebrospinal fluid moves from periarterial to perivenous spaces through the parenchyma,with subsequent cerebrospinal fluid drainage to dural lymphatics.Glymphatic disruption is associated with neurological conditions such as Alzheimer’s disease and traumatic brain injury.Therefore,investigating its structure and function may improve understanding of pathophysiology.The recent controversy on whether glymphatic flow increases or decreases during sleep demonstrates that the glymphatic hypothesis remains contentious.However,discrepancies between different studies could be due to limitations of the specific techniques used and confounding factors.Here,we review the methods used to study glymphatic function and provide a toolkit from which researchers can choose.We conclude that tracer analysis has been useful,ex vivo techniques are unreliable,and in vivo imaging is still limited.Finally,we explore the potential for future methods and highlight the need for in vitro models,such as microfluidic devices,which may address technique limitations and enable progression of the field.展开更多
Multi-organ-on-a-chip(MOOC)technology represents a pivotal direction in the organ-on-a-chip field,seeking to emulate the complex interactions of multiple human organs in vitro through microfluidic systems.This technol...Multi-organ-on-a-chip(MOOC)technology represents a pivotal direction in the organ-on-a-chip field,seeking to emulate the complex interactions of multiple human organs in vitro through microfluidic systems.This technology overcomes the limitations of traditional single-organ models,providing a novel platform for investigating complex disease mechanisms and evaluating drug efficacy and toxicity.Although it demonstrates broad application prospects,its development still faces critical bottlenecks,including inadequate physiological coupling between organs,short functional maintenance durations,and limited real-time monitoring capabilities.Contemporary research is advancing along three key directions,including functional coupling,sensor integration,and full-process automation systems,to propel the technology toward enhanced levels of physiological relevance and predictive accuracy.展开更多
Liposomes serve as critical carriers for drugs and vaccines,with their biological effects influenced by their size.The microfluidic method,renowned for its precise control,reproducibility,and scalability,has been wide...Liposomes serve as critical carriers for drugs and vaccines,with their biological effects influenced by their size.The microfluidic method,renowned for its precise control,reproducibility,and scalability,has been widely employed for liposome preparation.Although some studies have explored factors affecting liposomal size in microfluidic processes,most focus on small-sized liposomes,predominantly through experimental data analysis.However,the production of larger liposomes,which are equally significant,remains underexplored.In this work,we thoroughly investigate multiple variables influencing liposome size during microfluidic preparation and develop a machine learning(ML)model capable of accurately predicting liposomal size.Experimental validation was conducted using a staggered herringbone micromixer(SHM)chip.Our findings reveal that most investigated variables significantly influence liposomal size,often interrelating in complex ways.We evaluated the predictive performance of several widely-used ML algorithms,including ensemble methods,through cross-validation(CV)for both lipo-some size and polydispersity index(PDI).A standalone dataset was experimentally validated to assess the accuracy of the ML predictions,with results indicating that ensemble algorithms provided the most reliable predictions.Specifically,gradient boosting was selected for size prediction,while random forest was employed for PDI prediction.We successfully produced uniform large(600 nm)and small(100 nm)liposomes using the optimised experimental conditions derived from the ML models.In conclusion,this study presents a robust methodology that enables precise control over liposome size distribution,of-fering valuable insights for medicinal research applications.展开更多
Surface engineering plays a crucial role in improving the performance of high energy materials,and polydopamine(PDA)is widely used in the field of energetic materials for surface modification and functionalization.In ...Surface engineering plays a crucial role in improving the performance of high energy materials,and polydopamine(PDA)is widely used in the field of energetic materials for surface modification and functionalization.In order to obtain high-quality HMX@PDA-based PBX explosives with high sphericity and a narrow particle size distribution,composite microspheres were prepared using co-axial droplet microfluidic technology.The formation mechanism,thermal behavior,mechanical sensitivity,electrostatic spark sensitivity,compressive strength,and combustion performance of the microspheres were investigated.The results show that PDA can effectively enhance the interfacial interaction between the explosive particles and the binder under the synergistic effect of chemical bonds and the physical"mechanical interlocking"structure.Interface reinforcement causes the thermal decomposition temperature of the sample microspheres to move to a higher temperature,with the sensitivity to impact,friction,and electrostatic sparks(for S-1)increasing by 12.5%,31.3%,and 81.5%respectively,and the compressive strength also increased by 30.7%,effectively enhancing the safety performance of the microspheres.Therefore,this study provides an effective and universal strategy for preparing high-quality functional explosives,and also provides some reference for the safe use of energetic materials in practical applications.展开更多
Point-of-care testing(POCT)refers to a category of diagnostic tests that are performed at or near to the site of the patients(also called bedside testing)and is capable of obtaining accurate results in a short time by...Point-of-care testing(POCT)refers to a category of diagnostic tests that are performed at or near to the site of the patients(also called bedside testing)and is capable of obtaining accurate results in a short time by using portable diagnostic devices,avoiding sending samples to the medical laboratories.It has been extensively explored for diagnosing and monitoring patients’diseases and health conditions with the assistance of development in biochemistry and microfluidics.Microfluidic paper-based analytical devices(μPADs)have gained dramatic popularity in POCT because of their simplicity,user-friendly,fast and accurate result reading and low cost.SeveralμPADs have been successfully commercialized and received excellent feedback during the past several decades.This review briefly discusses the main types ofμPADs,preparation methods and their detection principles,followed by a few representative examples.The future perspectives of the development inμPADs are also provided.展开更多
Objective Cerebral palsy(CP)is a prevalent neurodevelopmental disorder acquired during the perinatal period,with periventricular white matter injury(PWMI)serving as its primary pathological hallmark.PWMI is characteri...Objective Cerebral palsy(CP)is a prevalent neurodevelopmental disorder acquired during the perinatal period,with periventricular white matter injury(PWMI)serving as its primary pathological hallmark.PWMI is characterized by the loss of oligodendrocytes(OLs)and the disintegration of myelin sheaths,leading to impaired neural connectivity and motor dysfunction.Neural stem cells(NSCs)represent a promising regenerative source for replenishing lost OLs;however,conventional twodimensional(2D)in vitro culture systems lack the three-dimensional(3D)physiological microenvironment.Microfluidic chip technology has emerged as a powerful tool to overcome this limitation by enabling precise spatial and temporal control over 3D microenvironmental conditions,including the establishment of stable concentration gradients of bioactive molecules.Catalpol,an iridoid glycoside derived from traditional medicinal plants,exhibits dual antioxidant and anti-apoptotic properties.Despite its therapeutic potential,the capacity of catalpol to drive NSC differentiation toward OLs under biomimetic 3D conditions,as well as the underlying molecular mechanisms,remains poorly understood.This study aims to develop a microfluidic-based 3D biomimetic platform to systematically investigate the concentration-dependent effects of catalpol on promoting NSCs-to-OLs differentiation and to elucidate the role of the caveolin-1(Cav-1)signaling pathway in this process.Methods We developed a novel multiplexed microfluidic device featuring parallel microchannels with integrated gradient generators capable of establishing and maintaining precise linear concentration gradients(0-3 g/L catalpol)across 3D NSCs cultures.This platform facilitated the continuous perfusion culture of NSC-derived 3D spheroids,mimicking the dynamic in vivo microenvironment.Real-time cell viability was assessed using Calcein-AM/propidium iodide(PI)dual staining,with fluorescence imaging quantifying live/dead cell ratios.Oligodendrocyte differentiation was evaluated through quantitative reverse transcription polymerase chain reaction(qRT-PCR)for MBP and SOX10 gene expression,complemented by immunofluorescence staining to visualize corresponding protein changes.To dissect the molecular mechanism,the Cav-1-specific pharmacological inhibitor methyl‑β‑cyclodextrin(MCD)was employed to perturb the pathway,and its effects on differentiation markers were analyzed.Results Catalpol demonstrated excellent biocompatibility,with cell viability exceeding 96%across the entire tested concentration range(0-3 g/L),confirming its non-cytotoxic nature.At the optimal concentration of 0-3 g/L,catalpol significantly upregulated both MBP and SOX10 expression(P<0.05,P<0.01),indicating robust promotion of oligodendroglial differentiation.Intriguingly,Cav-1 mRNA expression was progressively downregulated during NSC differentiation into OLs.Further inhibition of Cav-1 with MCD further enhanced this effect,leading to a statistically significant increase in OL-specific gene expression(P<0.05,P<0.01),suggesting Cav-1 acts as a negative regulator of OLs differentiation.Conclusion This study established an integrated microfluidic gradient chip-3D NSC spheroid culture system,which combines the advantages of precise chemical gradient control with physiologically relevant 3D cell culture.The findings demonstrate that 3 g/L catalpol effectively suppresses Cav-1 signaling to drive NSC differentiation into functional OLs.This work not only provides novel insights into the Cav-1-dependent mechanisms of myelination but also delivers a scalable technological platform for future research on remyelination therapies,with potential applications in cerebral palsy and other white matter disorders.The platform’s modular design permits adaptation for screening other neurogenic compounds or investigating additional signaling pathways involved in OLs maturation.展开更多
Bubble breakup at T-junction microchannels is the basis for the numbering-up of gas−liquid two-phase flow in parallelized microchannels. This article presents the bubble breakup in viscous liquids at a microfluidic T-...Bubble breakup at T-junction microchannels is the basis for the numbering-up of gas−liquid two-phase flow in parallelized microchannels. This article presents the bubble breakup in viscous liquids at a microfluidic T-junction. Nitrogen is used as the gas phase, and glycerol-water mixtures with different mass concentration of glycerol as the liquid phase. The evolution of the gas−liquid interface during bubble breakup at the microfluidic T-junction is explored. The thinning of the bubble neck includes the squeezing stage and the rapid pinch-off stage. In the squeezing stage, the power law relation is found between the minimum width of the bubble neck and the time, and the values of exponents α1 and α2 are influenced by the viscous force. The values of pre-factors m_(1) and m_(2) are negatively correlated with the capillary number. In the rapid pinch-off stage, the thinning of the bubble neck is predominated by the surface tension, and the minimum width of the bubble neck can be scaled with the remaining time as power-law. The propagation of the bubble tip can be characterized by the power law between the movement distance and the time, with decreasing exponent as increased liquid viscosity.展开更多
The vascular network is integral to the developmental and metabolic processes of various tissues and functions as a systemic circulatory system that also interconnects organs throughout the body.In this study,we descr...The vascular network is integral to the developmental and metabolic processes of various tissues and functions as a systemic circulatory system that also interconnects organs throughout the body.In this study,we describe a multilayered microfluidic organ-on-a-chip platform designed for reproducing various three-dimensional(3D)vascularized microtissue models for biological applications.This platform utilizes a porous membrane as a physical barrier and leverages capillary action for hydrogel self-filling.Its high flow resistance mitigates the risk of gel bursting into the medium channels and facilitates the delivery of substances to generate a wide range of interstitial flow and biochemical factor concentration gradients.This study demonstrated that this platform can be used to accurately replicate 3D microenvironments for vasculogenesis,angiogenesis,and vascularized tumor modeling.We also investigated the critical role of multiple microenvironmental regulations in vascular formation on a chip.Moreover,we reproduced the process of tumor angiogenesis,including primary solid tumor features and the inhibitory effects of antitumor drugs on tumor growth and tumor vasculature before and after angiogenesis.Hence,our multilayered microfluidic platform is valuable for exploring multiple vascular mechanisms and constructing specific microtissues that closely mimic in vivo physiological conditions,providing new strategies for cancer research.Furthermore,the multilayered configuration improves design flexibility and scalability,providing the potential for a multi-organ interconnected platform for high-throughput drug screening.展开更多
Professor LIN Jin-Ming is a distinguished scholar in the Department of Chemistry,Tsinghua University.He was selected into the Chinese Academy of Sciences"Hundred Talents Program"in 2001,and received the Outs...Professor LIN Jin-Ming is a distinguished scholar in the Department of Chemistry,Tsinghua University.He was selected into the Chinese Academy of Sciences"Hundred Talents Program"in 2001,and received the Outstanding Young Scholars Fund from the National Science Foundation in the same year.He is a fellow of the Chinese Chemical Society and a fellow of the Royal Society of Chemistry.Prof.LIN has received about 30 academic awards for his contributions in microfluidics,chemiluminescence and separation science.He is the author or co-author of more than 500 original research papers published in international journals,45 review papers,and 8 books,and holds 50 invention patents.His current research focuses on cell culture and analysis on microfluidics with mass spectrometry and chemiluminescence.展开更多
On-demand droplet manipulation plays a critical role in microfluidics,bio/chemical detection and microreactions.Acoustic droplet manipulation has emerged as a promising technique due to its non-contact nature,biocompa...On-demand droplet manipulation plays a critical role in microfluidics,bio/chemical detection and microreactions.Acoustic droplet manipulation has emerged as a promising technique due to its non-contact nature,biocompatibility and precision,circumventing the complexities associated with other methods requiring surface or droplet pretreatment.Despite their promise,existing methods for acoustic droplet manipulation often involve complex hardware setups and difficulty for controlling individual droplet amidst multiple ones.Here we fabricate simple yet effective acoustic tweezers for in-surface and out-of-surface droplet manipulation.It is found that droplets can be transported on the superhydrophobic surfaces when the acoustic radiation force surpasses the friction force.Using a two-axis acoustic tweezer,droplets can be maneuvered along arbitrarily programmed paths on the surfaces.By introducing multiple labyrinthine structures on the superhydrophobic surface,individual droplet manipulation is realized by constraining the unselected droplets in the labyrinthine structures.In addition,a three-axis acoustic tweezer is developed for manipulating droplets in three-dimensional space.Potential applications of the acoustic tweezers for micro-reaction,bio-assay and chemical analysis are also demonstrated.展开更多
As prepubertal boys do not yet produce spermatozoa,they cannot rely on sperm cryopreservation for fertility preservation before gonadotoxic therapy,such as high-dose alkylating agents or radiotherapy in the case of ch...As prepubertal boys do not yet produce spermatozoa,they cannot rely on sperm cryopreservation for fertility preservation before gonadotoxic therapy,such as high-dose alkylating agents or radiotherapy in the case of childhood cancers.According to the current guidelines,cryopreservation of testicular biopsies containing spermatogonial stem cells(SSCs)may be proposed to high-risk patients for potential later therapeutic use to fulfill the patients’wish for a biological child.One promising technique for human in vitro spermatogenesis and in vitro propagation of human SSCs is microfluidic(MF)culture,in which cells or tissues are subjected to a continuous flow of medium.This provides exact control over such parameters as nutrient content and gradients,as well as the removal of waste metabolites.While MF has been shown to maintain tissues and cell populations of organs for longer than conventional in vitro culture techniques,it has not been widely used for testicular in vitro culture.MF could advance human testicular in vitro culture and is also applicable to reprotoxicity studies.This review summarizes the findings and achievements of testis-on-chip(ToC)setups to date and discusses the benefits and limitations of these for spermatogenesis in vitro and toxicity assessment.展开更多
Cleat serves as the primary flow pathway for coalbed methane(CBM)and water.However,few studies consider the impact of local contact on two-phase flow within cleats.A visual generalized model of endogenous cleats was c...Cleat serves as the primary flow pathway for coalbed methane(CBM)and water.However,few studies consider the impact of local contact on two-phase flow within cleats.A visual generalized model of endogenous cleats was constructed based on microfluidics.A microscopic and mesoscopic observation technique was proposed to simultaneously capture gas-liquid interface morphology of pores and throat and the two-phase flow characteristics in entire cleat system.The local contact characteristics of cleats reduced absolute permeability,which resulted in a sharp increase in the starting pressure.The reduced gas flow capacity narrowed the co-infiltration area and decreased water saturation at the isotonic point in a hydrophilic environment.The increased local contact area of cleats weakened gas phase flow capacity and narrowed the co-infiltration area.Jumping events occurred in methane-water flow due to altered porosity caused by local contact in cleats.The distribution of residual phases changed the jumping direction on the micro-scale as well as the dominant channel on the mesoscale.Besides,jumping events caused additional energy dissipation,which was ignored in traditional two-phase flow models.This might contribute to the overestimation of relative permeability.The work provides new methods and insights for investigating unsaturated flow in complex porous media.展开更多
Chemical synthesis is essential in industries such as petrochemicals, fine chemicals, and pharmaceuticals, driving economic and social development. The increasing demand for new molecules and materials calls for novel...Chemical synthesis is essential in industries such as petrochemicals, fine chemicals, and pharmaceuticals, driving economic and social development. The increasing demand for new molecules and materials calls for novel chemical reactions;however, manual experimental screening is time-consuming. Artificial intelligence (AI) offers a promising solution by leveraging large-scale experimental data to model chemical reactions, although challenges such as the lack of standardization and predictability in chemical synthesis hinder AI applications. Additionally, the multi-scale nature of chemical reactions, along with complex multiphase processes, further complicates the task. Recent advances in microchemical systems, particularly continuous flow methods using microreactors, provide precise control over reaction conditions, enhancing reproducibility and enabling high-throughput experimentation. These systems minimize transport-related inconsistencies and facilitate scalable industrial applications. This review systematically explores recent developments in intelligent synthesis based on microchemical systems, focusing on reaction system design, synthesis robots, closed-loop optimization, and high-throughput experimentation, while identifying key areas for future research.展开更多
The rapid development of microfluidic technology has led to the evolution of microdroplets from simple emulsion structures to complex multilayered and multicompartmental configurations.These advancements have endowed ...The rapid development of microfluidic technology has led to the evolution of microdroplets from simple emulsion structures to complex multilayered and multicompartmental configurations.These advancements have endowed microdroplets with the capability to contain multiple compartments that remain isolated from one another,enabling them to carry different molecules of interest.Consequently,researchers can now investigate intricate spatially confined chemical reactions and signal transduction pathways within subcellular organelles.Moreover,modern microdroplets often possess excellent optical transparency,allowing fluorescently labelled,multi-layered,and compartmental droplets to provide detailed insights through real-time,in situ,and dynamic fluorescence imaging.Hence,this review systematically summarizes current methodologies for preparing multicomponent microdroplets and their applications,particularly focusing on fluorescent microdroplets.Additionally,it discusses existing critical challenges and outlines future research directions.By offering a comprehensive overview of the preparation methods and applications of fluorescent microdroplets,this review aims to stimulate the interest of researchers and foster their utilization in more complex and biomimetic environments.展开更多
Combining deep-learning image inpainting algorithms with the microfluidic technology,the paper proposes a method to achieve dynamic stealth and camouflage by using a microfluidic vision camouflage system simulating th...Combining deep-learning image inpainting algorithms with the microfluidic technology,the paper proposes a method to achieve dynamic stealth and camouflage by using a microfluidic vision camouflage system simulating the chameleon skin.The basic principle is to perceive color changes in the external environment and collect ambient image information,and then utilize the image inpainting algorithm to adjust the control signals of the microfluidic system in real time.The detailed working principle of the microfluidic vision camouflage system is presented,and the mechanism of generating control signals for the system through deep-learning image inpainting algorithms and image-processing techniques is elucidated.The camouflage effect of the chameleon skin is analyzed and evaluated using color similarity.Results indicate that the camouflaged images are consistent with the background environment,thereby improving the target’s stealth and maneuvering characteristics.The camouflage technology developed in the paper based on the microfluidic vision camouflage system can be applied to several situations,such as military camouflage uniforms,robot skins,and weapon equipment.展开更多
There are limited quantitative studies on condensate gas using microfluidics under high-pressure and high-temperature conditions.This study employed microfluidics chips based on real porous media structures to conduct...There are limited quantitative studies on condensate gas using microfluidics under high-pressure and high-temperature conditions.This study employed microfluidics chips based on real porous media structures to conduct constant volume depletion experiments and investigate the microscopic mechanisms of condensate gas recovery.The aim of the experiments was to reveal the phase-behavior differences between bulk-phase gas and gas contained in porous media.The results revealed that condensate oil recovery in microfluidics experiments was higher than that in PVT cell tests,and nonuniform condensation and evaporation were exclusively observed in the microfluidics experiments.Furthermore,lower pore connectivity resulted in higher depletion recovery,while more developed fractures led to reduced recovery.Specifically,the chip with fewer fractures achieved the highest recovery(71.15%),whereas the highly fractured chip exhibited the lowest recovery(56.11%).These findings demonstrate that oil saturation during the process of constant volume depletion(CVD)of gas condensate within porous media is lower than that observed in the PVT cell,thus providing experimental evidence for optimizing condensate gas development in field applications.展开更多
The gut microbiome is closely associated with human health and the development of diseases. Isolating, characterizing, and identifying gut microbes are crucial for research on the gut microbiome and essential for adva...The gut microbiome is closely associated with human health and the development of diseases. Isolating, characterizing, and identifying gut microbes are crucial for research on the gut microbiome and essential for advancing our understanding and utilization of it. Although culture-independent approaches have been developed, a pure culture is required for in-depth analysis of disease mechanisms and the development of biotherapy strategies. Currently, microbiome research faces the challenge of expanding the existing database of culturable gut microbiota and rapidly isolating target microorganisms. This review examines the advancements in gut microbe isolation and cultivation techniques, such as culturomics, droplet microfluidics, phenotypic and genomics selection, and membrane diffusion. Furthermore, we evaluate the progress made in technology for identifying gut microbes considering both non-targeted and targeted strategies. The focus of future research in gut microbial culturomics is expected to be on high-throughput, automation, and integration. Advancements in this field may facilitate strain-level investigation into the mechanisms underlying diseases related to gut microbiota.展开更多
Energetic materials,characterized by their capacity to store and release substantial energy,hold pivotal significance in some fields,particularly in defense applications.Microfluidics,with its ability to manipulate fl...Energetic materials,characterized by their capacity to store and release substantial energy,hold pivotal significance in some fields,particularly in defense applications.Microfluidics,with its ability to manipulate fluids and facilitate droplet formation at the microscale,enables precise control of chemical reactions.Recent scholarly endeavors have increasingly harnessed microfluidic reactors in the realm of energetic materials,yielding morphologically controllable particles with enhanced uniformity and explosive efficacy.However,crucial insights into microfluidic-based methodologies are dispersed across various publications,necessitating a systematic compilation.Accordingly,this review addresses this gap by concentrating on the synthesis of energetic materials through microfluidics.Specifically,the methods based on micro-mixing and droplets in the previous papers are summarized and the strategies to control the critical parameters within chemical reactions are discussed in detail.Then,the comparison in terms of advantages and disadvantages is attempted.As demonstrated in the last section regarding perspectives,challenges such as clogging,dead zones,and suboptimal production yields are non-ignoble in the promising fields and they might be addressed by integrating sound,optics,or electrical energy to meet heightened requirements.This comprehensive overview aims to consolidate and analyze the diverse array of microfluidic approaches in energetic material synthesis,offering valuable insights for future research directions.展开更多
The real-time screening of biomolecules and single cells in biochips is extremely important for disease prediction and diagnosis,cellular analysis,and life science research.Barcode biochip technology,which is integrat...The real-time screening of biomolecules and single cells in biochips is extremely important for disease prediction and diagnosis,cellular analysis,and life science research.Barcode biochip technology,which is integrated with microfluidics,typically comprises barcode array,sample loading,and reaction unit array chips.Here,we present a review of microfluidics barcode biochip analytical approaches for the high-throughput screening of biomolecules and single cells,including protein biomarkers,microRNA(miRNA),circulating tumor DNA(ctDNA),single-cell secreted proteins,single-cell exosomes,and cell interactions.We begin with an overview of current high-throughput detection and analysis approaches.Following this,we outline recent improvements in microfluidic devices for biomolecule and single-cell detection,highlighting the benefits and limitations of these devices.This paper focuses on the research and development of microfluidic barcode biochips,covering their self-assembly substrate materials and their specific applications with biomolecules and single cells.Looking forward,we explore the prospects and challenges of this technology,with the aim of contributing toward the use of microfluidic barcode detection biochips in medical diagnostics and therapies,and their large-scale commercialization.展开更多
Radionuclide imaging is divided into positron emission tomography and single photon emission tomography and is widely used in clinical practice for diagnosis and treatment,as well as in clinical research for the devel...Radionuclide imaging is divided into positron emission tomography and single photon emission tomography and is widely used in clinical practice for diagnosis and treatment,as well as in clinical research for the development and evaluation of new therapies.Although it is a visually intuitive form of three-dimensional functional imaging,this modality requires the injection of radiopharmaceuticals labeled with positron-or gamma-emitting isotopes into patients to assess and quantify anabolism,gene expression,and other processes.For this reason,radiopharmaceuticals must undergo rigorous quality control(QC)to ensure product purity,efficacy,and safety.Traditional QC of pharmaceuticals is manual,requiring specially trained personnel,a range of expensive analytical and chemical equipment and laboratory space,the consumption of many samples,and usually a long time.Compared with ordinary pharmaceuticals,radiopharmaceuticals have the following unique characteristics:radioactivity,short lifetime,low synthesis yield,and high cost.Therefore,analytical methods and instrumentation must be exclusively developed for the QC of radiopharmaceuticals to avoid large losses owing to radioactive decay or handling.Microfluidics integrates microchannels or microchambers into several square centimeters of a microscale chip through micro-nanofabrication,allowing a precise manipulation of the fluid in microtubules,where various traditional physical,chemical,or biological experiments occur.Microfluidics is gaining attention in the field of analytical testing owing to significantly reduced consumption of samples and reagents,reduced analysis time,increased detection sensitivity,increased multiplexing,and reduced instrument size.Features such as micro size,micro volume,high sensitivity,and on-line testing have led to increasing interest in microfluidics.This review covers the development of integrated microfluidic QC devices that can automatically process,test,analyze,and calculate completed test metrics online.展开更多
基金supported by the European Union Horizon 2020 Research and Innovation Programme(Marie Skłodowska-Curie grant agreement No 847419)supported by the Biotechnology and Biological Sciences Research Council via a Discovery Fellowship(BB/W00934X/1)+6 种基金the Aston University RKE Pump Priming Programmefunded by UKRI’s Research England as part of their Expanding Excellence in England(E3)fundsupported by a UKRI Frontier Research Grant EP/Y023684/1(following assessment as an ERC Advanced grant,FORTIFY,ERC-2022-ADG-101096882 under the UK Government Guarantee scheme)acknowledged a Biotechnology and Biological Sciences Research Council Pioneer Award(BB/Y512874/1)MMS was supported by a Medical Research Council Career Development Award(MR/W027119/1)acknowledged support from the BHF Centre of Research Excellence,University of Oxford(grant code:RE/24/130024)a Biotechnology and Biological Sciences Research Council Pioneer Award(BB/Y512874/1).
文摘Glymphatic flow has been proposed to clear brain waste while we sleep.Cerebrospinal fluid moves from periarterial to perivenous spaces through the parenchyma,with subsequent cerebrospinal fluid drainage to dural lymphatics.Glymphatic disruption is associated with neurological conditions such as Alzheimer’s disease and traumatic brain injury.Therefore,investigating its structure and function may improve understanding of pathophysiology.The recent controversy on whether glymphatic flow increases or decreases during sleep demonstrates that the glymphatic hypothesis remains contentious.However,discrepancies between different studies could be due to limitations of the specific techniques used and confounding factors.Here,we review the methods used to study glymphatic function and provide a toolkit from which researchers can choose.We conclude that tracer analysis has been useful,ex vivo techniques are unreliable,and in vivo imaging is still limited.Finally,we explore the potential for future methods and highlight the need for in vitro models,such as microfluidic devices,which may address technique limitations and enable progression of the field.
基金supported by the Shenzhen Medical Research Fund(Grant No.A2303049)Guangdong Basic and Applied Basic Research(Grant No.2023A1515010647)+1 种基金National Natural Science Foundation of China(Grant No.22004135)Shenzhen Science and Technology Program(Grant No.RCBS20210706092409020,GXWD20201231165807008,20200824162253002).
文摘Multi-organ-on-a-chip(MOOC)technology represents a pivotal direction in the organ-on-a-chip field,seeking to emulate the complex interactions of multiple human organs in vitro through microfluidic systems.This technology overcomes the limitations of traditional single-organ models,providing a novel platform for investigating complex disease mechanisms and evaluating drug efficacy and toxicity.Although it demonstrates broad application prospects,its development still faces critical bottlenecks,including inadequate physiological coupling between organs,short functional maintenance durations,and limited real-time monitoring capabilities.Contemporary research is advancing along three key directions,including functional coupling,sensor integration,and full-process automation systems,to propel the technology toward enhanced levels of physiological relevance and predictive accuracy.
基金supported by the National Key Research and Development Plan of the Ministry of Science and Technology,China(Grant No.:2022YFE0125300)the National Natural Science Foundation of China(Grant No:81690262)+2 种基金the National Science and Technology Major Project,China(Grant No.:2017ZX09201004-021)the Open Project of National facility for Translational Medicine(Shanghai),China(Grant No.:TMSK-2021-104)Shanghai Jiao Tong University STAR Grant,China(Grant Nos.:YG2022ZD024 and YG2022QN111).
文摘Liposomes serve as critical carriers for drugs and vaccines,with their biological effects influenced by their size.The microfluidic method,renowned for its precise control,reproducibility,and scalability,has been widely employed for liposome preparation.Although some studies have explored factors affecting liposomal size in microfluidic processes,most focus on small-sized liposomes,predominantly through experimental data analysis.However,the production of larger liposomes,which are equally significant,remains underexplored.In this work,we thoroughly investigate multiple variables influencing liposome size during microfluidic preparation and develop a machine learning(ML)model capable of accurately predicting liposomal size.Experimental validation was conducted using a staggered herringbone micromixer(SHM)chip.Our findings reveal that most investigated variables significantly influence liposomal size,often interrelating in complex ways.We evaluated the predictive performance of several widely-used ML algorithms,including ensemble methods,through cross-validation(CV)for both lipo-some size and polydispersity index(PDI).A standalone dataset was experimentally validated to assess the accuracy of the ML predictions,with results indicating that ensemble algorithms provided the most reliable predictions.Specifically,gradient boosting was selected for size prediction,while random forest was employed for PDI prediction.We successfully produced uniform large(600 nm)and small(100 nm)liposomes using the optimised experimental conditions derived from the ML models.In conclusion,this study presents a robust methodology that enables precise control over liposome size distribution,of-fering valuable insights for medicinal research applications.
基金supported by the National Natural Science Foundation of China(Grant No.22005275).
文摘Surface engineering plays a crucial role in improving the performance of high energy materials,and polydopamine(PDA)is widely used in the field of energetic materials for surface modification and functionalization.In order to obtain high-quality HMX@PDA-based PBX explosives with high sphericity and a narrow particle size distribution,composite microspheres were prepared using co-axial droplet microfluidic technology.The formation mechanism,thermal behavior,mechanical sensitivity,electrostatic spark sensitivity,compressive strength,and combustion performance of the microspheres were investigated.The results show that PDA can effectively enhance the interfacial interaction between the explosive particles and the binder under the synergistic effect of chemical bonds and the physical"mechanical interlocking"structure.Interface reinforcement causes the thermal decomposition temperature of the sample microspheres to move to a higher temperature,with the sensitivity to impact,friction,and electrostatic sparks(for S-1)increasing by 12.5%,31.3%,and 81.5%respectively,and the compressive strength also increased by 30.7%,effectively enhancing the safety performance of the microspheres.Therefore,this study provides an effective and universal strategy for preparing high-quality functional explosives,and also provides some reference for the safe use of energetic materials in practical applications.
文摘Point-of-care testing(POCT)refers to a category of diagnostic tests that are performed at or near to the site of the patients(also called bedside testing)and is capable of obtaining accurate results in a short time by using portable diagnostic devices,avoiding sending samples to the medical laboratories.It has been extensively explored for diagnosing and monitoring patients’diseases and health conditions with the assistance of development in biochemistry and microfluidics.Microfluidic paper-based analytical devices(μPADs)have gained dramatic popularity in POCT because of their simplicity,user-friendly,fast and accurate result reading and low cost.SeveralμPADs have been successfully commercialized and received excellent feedback during the past several decades.This review briefly discusses the main types ofμPADs,preparation methods and their detection principles,followed by a few representative examples.The future perspectives of the development inμPADs are also provided.
基金supported by grants from the Liaoning Province Excellent Talent Program Project(XLYC1902031)Dalian Science and Technology Talent Innovation Plan Grant(2022RG18)Basic Research Project of the Department of Education of Liaoning Province(LJKQZ20222395)。
文摘Objective Cerebral palsy(CP)is a prevalent neurodevelopmental disorder acquired during the perinatal period,with periventricular white matter injury(PWMI)serving as its primary pathological hallmark.PWMI is characterized by the loss of oligodendrocytes(OLs)and the disintegration of myelin sheaths,leading to impaired neural connectivity and motor dysfunction.Neural stem cells(NSCs)represent a promising regenerative source for replenishing lost OLs;however,conventional twodimensional(2D)in vitro culture systems lack the three-dimensional(3D)physiological microenvironment.Microfluidic chip technology has emerged as a powerful tool to overcome this limitation by enabling precise spatial and temporal control over 3D microenvironmental conditions,including the establishment of stable concentration gradients of bioactive molecules.Catalpol,an iridoid glycoside derived from traditional medicinal plants,exhibits dual antioxidant and anti-apoptotic properties.Despite its therapeutic potential,the capacity of catalpol to drive NSC differentiation toward OLs under biomimetic 3D conditions,as well as the underlying molecular mechanisms,remains poorly understood.This study aims to develop a microfluidic-based 3D biomimetic platform to systematically investigate the concentration-dependent effects of catalpol on promoting NSCs-to-OLs differentiation and to elucidate the role of the caveolin-1(Cav-1)signaling pathway in this process.Methods We developed a novel multiplexed microfluidic device featuring parallel microchannels with integrated gradient generators capable of establishing and maintaining precise linear concentration gradients(0-3 g/L catalpol)across 3D NSCs cultures.This platform facilitated the continuous perfusion culture of NSC-derived 3D spheroids,mimicking the dynamic in vivo microenvironment.Real-time cell viability was assessed using Calcein-AM/propidium iodide(PI)dual staining,with fluorescence imaging quantifying live/dead cell ratios.Oligodendrocyte differentiation was evaluated through quantitative reverse transcription polymerase chain reaction(qRT-PCR)for MBP and SOX10 gene expression,complemented by immunofluorescence staining to visualize corresponding protein changes.To dissect the molecular mechanism,the Cav-1-specific pharmacological inhibitor methyl‑β‑cyclodextrin(MCD)was employed to perturb the pathway,and its effects on differentiation markers were analyzed.Results Catalpol demonstrated excellent biocompatibility,with cell viability exceeding 96%across the entire tested concentration range(0-3 g/L),confirming its non-cytotoxic nature.At the optimal concentration of 0-3 g/L,catalpol significantly upregulated both MBP and SOX10 expression(P<0.05,P<0.01),indicating robust promotion of oligodendroglial differentiation.Intriguingly,Cav-1 mRNA expression was progressively downregulated during NSC differentiation into OLs.Further inhibition of Cav-1 with MCD further enhanced this effect,leading to a statistically significant increase in OL-specific gene expression(P<0.05,P<0.01),suggesting Cav-1 acts as a negative regulator of OLs differentiation.Conclusion This study established an integrated microfluidic gradient chip-3D NSC spheroid culture system,which combines the advantages of precise chemical gradient control with physiologically relevant 3D cell culture.The findings demonstrate that 3 g/L catalpol effectively suppresses Cav-1 signaling to drive NSC differentiation into functional OLs.This work not only provides novel insights into the Cav-1-dependent mechanisms of myelination but also delivers a scalable technological platform for future research on remyelination therapies,with potential applications in cerebral palsy and other white matter disorders.The platform’s modular design permits adaptation for screening other neurogenic compounds or investigating additional signaling pathways involved in OLs maturation.
基金supports for this project from State Key Laboratory of Chemical Safety(SKLCS–2024001)are gratefully acknowledged。
文摘Bubble breakup at T-junction microchannels is the basis for the numbering-up of gas−liquid two-phase flow in parallelized microchannels. This article presents the bubble breakup in viscous liquids at a microfluidic T-junction. Nitrogen is used as the gas phase, and glycerol-water mixtures with different mass concentration of glycerol as the liquid phase. The evolution of the gas−liquid interface during bubble breakup at the microfluidic T-junction is explored. The thinning of the bubble neck includes the squeezing stage and the rapid pinch-off stage. In the squeezing stage, the power law relation is found between the minimum width of the bubble neck and the time, and the values of exponents α1 and α2 are influenced by the viscous force. The values of pre-factors m_(1) and m_(2) are negatively correlated with the capillary number. In the rapid pinch-off stage, the thinning of the bubble neck is predominated by the surface tension, and the minimum width of the bubble neck can be scaled with the remaining time as power-law. The propagation of the bubble tip can be characterized by the power law between the movement distance and the time, with decreasing exponent as increased liquid viscosity.
基金supported by grants from the Interdisciplinary Program of Shanghai Jiao Tong University(No.YG2023LC04)the National Natural Science Foundation of China(Nos.32471473,62231025,and 82171011)+1 种基金the Research Program of Shanghai Science and Technology Committee(Nos.24141900900 and 25JC3201100)Chongqing Natural Science Foundation(No.CSTB2022NSCQ-MSX0767)
文摘The vascular network is integral to the developmental and metabolic processes of various tissues and functions as a systemic circulatory system that also interconnects organs throughout the body.In this study,we describe a multilayered microfluidic organ-on-a-chip platform designed for reproducing various three-dimensional(3D)vascularized microtissue models for biological applications.This platform utilizes a porous membrane as a physical barrier and leverages capillary action for hydrogel self-filling.Its high flow resistance mitigates the risk of gel bursting into the medium channels and facilitates the delivery of substances to generate a wide range of interstitial flow and biochemical factor concentration gradients.This study demonstrated that this platform can be used to accurately replicate 3D microenvironments for vasculogenesis,angiogenesis,and vascularized tumor modeling.We also investigated the critical role of multiple microenvironmental regulations in vascular formation on a chip.Moreover,we reproduced the process of tumor angiogenesis,including primary solid tumor features and the inhibitory effects of antitumor drugs on tumor growth and tumor vasculature before and after angiogenesis.Hence,our multilayered microfluidic platform is valuable for exploring multiple vascular mechanisms and constructing specific microtissues that closely mimic in vivo physiological conditions,providing new strategies for cancer research.Furthermore,the multilayered configuration improves design flexibility and scalability,providing the potential for a multi-organ interconnected platform for high-throughput drug screening.
文摘Professor LIN Jin-Ming is a distinguished scholar in the Department of Chemistry,Tsinghua University.He was selected into the Chinese Academy of Sciences"Hundred Talents Program"in 2001,and received the Outstanding Young Scholars Fund from the National Science Foundation in the same year.He is a fellow of the Chinese Chemical Society and a fellow of the Royal Society of Chemistry.Prof.LIN has received about 30 academic awards for his contributions in microfluidics,chemiluminescence and separation science.He is the author or co-author of more than 500 original research papers published in international journals,45 review papers,and 8 books,and holds 50 invention patents.His current research focuses on cell culture and analysis on microfluidics with mass spectrometry and chemiluminescence.
基金supported by National Natural Science Foundation of China(Nos.12072381,22072185,21805315)Guangdong Basic and Applied Basic Research Foundation(No.2024A1515011812)Science and Technology Innovation Project of Guangzhou(No.202102020263).
文摘On-demand droplet manipulation plays a critical role in microfluidics,bio/chemical detection and microreactions.Acoustic droplet manipulation has emerged as a promising technique due to its non-contact nature,biocompatibility and precision,circumventing the complexities associated with other methods requiring surface or droplet pretreatment.Despite their promise,existing methods for acoustic droplet manipulation often involve complex hardware setups and difficulty for controlling individual droplet amidst multiple ones.Here we fabricate simple yet effective acoustic tweezers for in-surface and out-of-surface droplet manipulation.It is found that droplets can be transported on the superhydrophobic surfaces when the acoustic radiation force surpasses the friction force.Using a two-axis acoustic tweezer,droplets can be maneuvered along arbitrarily programmed paths on the surfaces.By introducing multiple labyrinthine structures on the superhydrophobic surface,individual droplet manipulation is realized by constraining the unselected droplets in the labyrinthine structures.In addition,a three-axis acoustic tweezer is developed for manipulating droplets in three-dimensional space.Potential applications of the acoustic tweezers for micro-reaction,bio-assay and chemical analysis are also demonstrated.
文摘As prepubertal boys do not yet produce spermatozoa,they cannot rely on sperm cryopreservation for fertility preservation before gonadotoxic therapy,such as high-dose alkylating agents or radiotherapy in the case of childhood cancers.According to the current guidelines,cryopreservation of testicular biopsies containing spermatogonial stem cells(SSCs)may be proposed to high-risk patients for potential later therapeutic use to fulfill the patients’wish for a biological child.One promising technique for human in vitro spermatogenesis and in vitro propagation of human SSCs is microfluidic(MF)culture,in which cells or tissues are subjected to a continuous flow of medium.This provides exact control over such parameters as nutrient content and gradients,as well as the removal of waste metabolites.While MF has been shown to maintain tissues and cell populations of organs for longer than conventional in vitro culture techniques,it has not been widely used for testicular in vitro culture.MF could advance human testicular in vitro culture and is also applicable to reprotoxicity studies.This review summarizes the findings and achievements of testis-on-chip(ToC)setups to date and discusses the benefits and limitations of these for spermatogenesis in vitro and toxicity assessment.
基金the financial support from the National Natural Science Foundation of China (No.42102127)the Postdoctoral Research Foundation of China (No.2024 M751860)。
文摘Cleat serves as the primary flow pathway for coalbed methane(CBM)and water.However,few studies consider the impact of local contact on two-phase flow within cleats.A visual generalized model of endogenous cleats was constructed based on microfluidics.A microscopic and mesoscopic observation technique was proposed to simultaneously capture gas-liquid interface morphology of pores and throat and the two-phase flow characteristics in entire cleat system.The local contact characteristics of cleats reduced absolute permeability,which resulted in a sharp increase in the starting pressure.The reduced gas flow capacity narrowed the co-infiltration area and decreased water saturation at the isotonic point in a hydrophilic environment.The increased local contact area of cleats weakened gas phase flow capacity and narrowed the co-infiltration area.Jumping events occurred in methane-water flow due to altered porosity caused by local contact in cleats.The distribution of residual phases changed the jumping direction on the micro-scale as well as the dominant channel on the mesoscale.Besides,jumping events caused additional energy dissipation,which was ignored in traditional two-phase flow models.This might contribute to the overestimation of relative permeability.The work provides new methods and insights for investigating unsaturated flow in complex porous media.
基金supported by the National Natural Science Foundation of China(22378227)Shijiazhuang Science and Technology Bureau(231790163A).
文摘Chemical synthesis is essential in industries such as petrochemicals, fine chemicals, and pharmaceuticals, driving economic and social development. The increasing demand for new molecules and materials calls for novel chemical reactions;however, manual experimental screening is time-consuming. Artificial intelligence (AI) offers a promising solution by leveraging large-scale experimental data to model chemical reactions, although challenges such as the lack of standardization and predictability in chemical synthesis hinder AI applications. Additionally, the multi-scale nature of chemical reactions, along with complex multiphase processes, further complicates the task. Recent advances in microchemical systems, particularly continuous flow methods using microreactors, provide precise control over reaction conditions, enhancing reproducibility and enabling high-throughput experimentation. These systems minimize transport-related inconsistencies and facilitate scalable industrial applications. This review systematically explores recent developments in intelligent synthesis based on microchemical systems, focusing on reaction system design, synthesis robots, closed-loop optimization, and high-throughput experimentation, while identifying key areas for future research.
基金the National Nature Science Foundation of China(No.22107028)Natural Science Foundation of Chongqing(No.CSTB2023NSCQ-MSX0335)。
文摘The rapid development of microfluidic technology has led to the evolution of microdroplets from simple emulsion structures to complex multilayered and multicompartmental configurations.These advancements have endowed microdroplets with the capability to contain multiple compartments that remain isolated from one another,enabling them to carry different molecules of interest.Consequently,researchers can now investigate intricate spatially confined chemical reactions and signal transduction pathways within subcellular organelles.Moreover,modern microdroplets often possess excellent optical transparency,allowing fluorescently labelled,multi-layered,and compartmental droplets to provide detailed insights through real-time,in situ,and dynamic fluorescence imaging.Hence,this review systematically summarizes current methodologies for preparing multicomponent microdroplets and their applications,particularly focusing on fluorescent microdroplets.Additionally,it discusses existing critical challenges and outlines future research directions.By offering a comprehensive overview of the preparation methods and applications of fluorescent microdroplets,this review aims to stimulate the interest of researchers and foster their utilization in more complex and biomimetic environments.
基金the National Natural Science Foundation of China for the support(No.51175101)on this paper.
文摘Combining deep-learning image inpainting algorithms with the microfluidic technology,the paper proposes a method to achieve dynamic stealth and camouflage by using a microfluidic vision camouflage system simulating the chameleon skin.The basic principle is to perceive color changes in the external environment and collect ambient image information,and then utilize the image inpainting algorithm to adjust the control signals of the microfluidic system in real time.The detailed working principle of the microfluidic vision camouflage system is presented,and the mechanism of generating control signals for the system through deep-learning image inpainting algorithms and image-processing techniques is elucidated.The camouflage effect of the chameleon skin is analyzed and evaluated using color similarity.Results indicate that the camouflaged images are consistent with the background environment,thereby improving the target’s stealth and maneuvering characteristics.The camouflage technology developed in the paper based on the microfluidic vision camouflage system can be applied to several situations,such as military camouflage uniforms,robot skins,and weapon equipment.
基金supported by the National Natural Science Foundation of China(grant number 52404044).
文摘There are limited quantitative studies on condensate gas using microfluidics under high-pressure and high-temperature conditions.This study employed microfluidics chips based on real porous media structures to conduct constant volume depletion experiments and investigate the microscopic mechanisms of condensate gas recovery.The aim of the experiments was to reveal the phase-behavior differences between bulk-phase gas and gas contained in porous media.The results revealed that condensate oil recovery in microfluidics experiments was higher than that in PVT cell tests,and nonuniform condensation and evaporation were exclusively observed in the microfluidics experiments.Furthermore,lower pore connectivity resulted in higher depletion recovery,while more developed fractures led to reduced recovery.Specifically,the chip with fewer fractures achieved the highest recovery(71.15%),whereas the highly fractured chip exhibited the lowest recovery(56.11%).These findings demonstrate that oil saturation during the process of constant volume depletion(CVD)of gas condensate within porous media is lower than that observed in the PVT cell,thus providing experimental evidence for optimizing condensate gas development in field applications.
文摘The gut microbiome is closely associated with human health and the development of diseases. Isolating, characterizing, and identifying gut microbes are crucial for research on the gut microbiome and essential for advancing our understanding and utilization of it. Although culture-independent approaches have been developed, a pure culture is required for in-depth analysis of disease mechanisms and the development of biotherapy strategies. Currently, microbiome research faces the challenge of expanding the existing database of culturable gut microbiota and rapidly isolating target microorganisms. This review examines the advancements in gut microbe isolation and cultivation techniques, such as culturomics, droplet microfluidics, phenotypic and genomics selection, and membrane diffusion. Furthermore, we evaluate the progress made in technology for identifying gut microbes considering both non-targeted and targeted strategies. The focus of future research in gut microbial culturomics is expected to be on high-throughput, automation, and integration. Advancements in this field may facilitate strain-level investigation into the mechanisms underlying diseases related to gut microbiota.
基金financially supported by Science and Technology on Applied Physical Chemistry Laboratory,China(Grant No.61426022220303)supported by the Young Scientists Fund of the National Natural Science Foundation of China(Grant No.52305617)。
文摘Energetic materials,characterized by their capacity to store and release substantial energy,hold pivotal significance in some fields,particularly in defense applications.Microfluidics,with its ability to manipulate fluids and facilitate droplet formation at the microscale,enables precise control of chemical reactions.Recent scholarly endeavors have increasingly harnessed microfluidic reactors in the realm of energetic materials,yielding morphologically controllable particles with enhanced uniformity and explosive efficacy.However,crucial insights into microfluidic-based methodologies are dispersed across various publications,necessitating a systematic compilation.Accordingly,this review addresses this gap by concentrating on the synthesis of energetic materials through microfluidics.Specifically,the methods based on micro-mixing and droplets in the previous papers are summarized and the strategies to control the critical parameters within chemical reactions are discussed in detail.Then,the comparison in terms of advantages and disadvantages is attempted.As demonstrated in the last section regarding perspectives,challenges such as clogging,dead zones,and suboptimal production yields are non-ignoble in the promising fields and they might be addressed by integrating sound,optics,or electrical energy to meet heightened requirements.This comprehensive overview aims to consolidate and analyze the diverse array of microfluidic approaches in energetic material synthesis,offering valuable insights for future research directions.
基金supported by the National Key Research and Development Plan of China(2023YFB3210400)the Natural Science Innovation Group Foundation of China(T2321004)+3 种基金the National Natural Science Foundation of China(62174101)Shandong University Integrated Research and Cultivation Project(2022JC001)Key Research and Development Plan of Shandong Province(Major Science and Technology Innovation Project2022CXGC020501).
文摘The real-time screening of biomolecules and single cells in biochips is extremely important for disease prediction and diagnosis,cellular analysis,and life science research.Barcode biochip technology,which is integrated with microfluidics,typically comprises barcode array,sample loading,and reaction unit array chips.Here,we present a review of microfluidics barcode biochip analytical approaches for the high-throughput screening of biomolecules and single cells,including protein biomarkers,microRNA(miRNA),circulating tumor DNA(ctDNA),single-cell secreted proteins,single-cell exosomes,and cell interactions.We begin with an overview of current high-throughput detection and analysis approaches.Following this,we outline recent improvements in microfluidic devices for biomolecule and single-cell detection,highlighting the benefits and limitations of these devices.This paper focuses on the research and development of microfluidic barcode biochips,covering their self-assembly substrate materials and their specific applications with biomolecules and single cells.Looking forward,we explore the prospects and challenges of this technology,with the aim of contributing toward the use of microfluidic barcode detection biochips in medical diagnostics and therapies,and their large-scale commercialization.
基金supported by National Natural Science Foundation of China(Grants 32027802 and 22178307)National Key Research and Development Program of China(Grant 2021YFA1101700)the Science Technology Department of Zhejiang Province(Grant 2024C03100).
文摘Radionuclide imaging is divided into positron emission tomography and single photon emission tomography and is widely used in clinical practice for diagnosis and treatment,as well as in clinical research for the development and evaluation of new therapies.Although it is a visually intuitive form of three-dimensional functional imaging,this modality requires the injection of radiopharmaceuticals labeled with positron-or gamma-emitting isotopes into patients to assess and quantify anabolism,gene expression,and other processes.For this reason,radiopharmaceuticals must undergo rigorous quality control(QC)to ensure product purity,efficacy,and safety.Traditional QC of pharmaceuticals is manual,requiring specially trained personnel,a range of expensive analytical and chemical equipment and laboratory space,the consumption of many samples,and usually a long time.Compared with ordinary pharmaceuticals,radiopharmaceuticals have the following unique characteristics:radioactivity,short lifetime,low synthesis yield,and high cost.Therefore,analytical methods and instrumentation must be exclusively developed for the QC of radiopharmaceuticals to avoid large losses owing to radioactive decay or handling.Microfluidics integrates microchannels or microchambers into several square centimeters of a microscale chip through micro-nanofabrication,allowing a precise manipulation of the fluid in microtubules,where various traditional physical,chemical,or biological experiments occur.Microfluidics is gaining attention in the field of analytical testing owing to significantly reduced consumption of samples and reagents,reduced analysis time,increased detection sensitivity,increased multiplexing,and reduced instrument size.Features such as micro size,micro volume,high sensitivity,and on-line testing have led to increasing interest in microfluidics.This review covers the development of integrated microfluidic QC devices that can automatically process,test,analyze,and calculate completed test metrics online.